- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Fall 2024 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University - High School Programming Contests 2024
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Battling Demons in Peer Review
Abstract: Peer review is the backbone of scholarly research. It is however faced with a number of challenges (or "demons") which cause unfairness to authors, and degrade the overall quality of the process. This talk will present principled and practical approaches to battle these demons in peer review:
(1) Subjectivity: How to ensure that all papers are judged by the same yardstick?
(2) Mis-calibration: How to use ratings in presence of arbitrary or adversarial mis-calibration?
(3) Bias: How to rigorously test for existence of (gender/fame/race/...) biases in peer review?
(4) Strategic behavior: How to insulate peer review from strategic behavior of author-reviewers?
(5) Noise: How to assign reviewers to papers to simultaneously ensure fair and accurate evaluations in the presence of review noise?
The work uses tools from statistics and learning theory, social choice theory, information theory, game theory and decision theory. No prior knowledge on these topics will be assumed.
Bio: Nihar B. Shah is an Assistant Professor in the Machine Learning and Computer Science departments at Carnegie Mellon University (CMU). His research interests include statistics, machine learning, information theory, and game theory, with a focus on applications to learning from people. He is a recipient of the the 2017 David J. Sakrison memorial prize from EECS Berkeley for a "truly outstanding and innovative PhD thesis", the Microsoft Research PhD Fellowship 2014-16, the Berkeley Fellowship 2011-13, the IEEE Data Storage Best Paper and Best Student Paper Awards for the years 2011/2012, and the SVC Aiya Medal 2010, and has supervised the Best Student Paper at AAMAS 2019.