- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Fall 2024 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University - High School Programming Contests 2024
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Abstract: We propose a new framework for constructing pseudorandom generators for n-variate Boolean functions. It is based on two new notions. First, we introduce fractional pseudorandom generators, which are pseudorandom distributions taking values in [−1,1]^n . Next, we use a fractional pseudorandom generator as steps of a random walk in [−1,1]^n that converges to {-1,1}^n . We prove that this random walk converges fast (in time logarithmic in n) due to polarization. As an application, we construct pseudorandom generators for Boolean functions with bounded Fourier tails. We use this to obtain a pseudorandom generator for functions with sensitivity s, whose seed length is polynomial in s. Other examples include functions computed
by branching programs of various sorts or by bounded depth circuits.
Based on joint work with Pooya Hatami, Kaave Hosseini, and Shachar Lovett.