- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Fall 2024 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University - High School Programming Contests 2024
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Abstract:
The maximum flow problem is one of the most fundamental and well-studied problems in continuous and combinatorial optimization. Over the past 5 years there have been a series of results which showed how to careful combine new combinatorial graph decompositions with new iterative continuous optimization methods to approximately solve the problem on undirected graphs in nearly linear time. In this talk I will survey this work and show how to develop simple coordinate descent based methods that match the state-of-the-art and in various settings improve upon it. Moreover, I will discuss how this yields an alternative to the recent breakthrough result of Sherman (2017) for solving ℓ∞-regression and leads to faster exact maximum flow algorithms in various settings.
This talk is based on joint work with Kevin Tian available on arXiv.