- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Spring 2025 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University / Cornell Tech - High School Programming Workshop and Contest 2025
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Robotics Ph. D. prgram
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Declarative Interaction Design for Data Visualization
Interactive visualization is an increasingly popular medium for analysis and communication as it allows readers to engage data in dialogue. Hypotheses can be rapidly generated and evaluated in situ, facilitating an accretive construction of knowledge and serendipitous discovery. Yet, existing models of visualization relegate interaction to a second-class citizen: imperative event handling callbacks that are difficult to specify, and even harder to reason about.
In this talk, I will introduce two new declarative languages that lower the threshold for authoring interactive visualizations, and enable higher-level reasoning about the design space of interactions. Reactive Vega is an expressive representation that is well-suited for custom, explanatory visualizations. It shifts the burden of execution from the user to the underlying streaming dataflow system. Vega-Lite builds on Vega to provide a higher-level grammar for rapidly specifying interactive graphics for exploratory analysis. Its concise format decomposes interaction design into semantic units that can be systematically enumerated.
Together, these languages serve as platforms for further research into novel methods of expressing visualization design, and systems for interactive data analysis. And, critically, they provide a growing and engaged community to study their use with -- the Wikipedia and Jupyter communities, for instance, have embraced Vega and Vega-Lite to author interactive visualizations within articles and data science notebooks, respectively.
Bio:
Arvind Satyanarayan is a Computer Science PhD candidate at Stanford University, working with Jeffrey Heer and the University of Washington Interactive Data Lab. Arvind's research develops new declarative languages for interactive visualization, and leverages them in new systems for visualization design and data analysis. His work has been recognized with a Google PhD Fellowship, Best Paper Awards at IEEE InfoVis & ACM CHI, and has been deployed on Wikipedia to enable interactive visualizations within articles.