In many applications traditional software development is being replaced by machine learning generated models resulting in accuracy improvements and deployment advantages. This fundamental shift in how we develop software is known as Software 2.0. The continued success of Software 2.0 will require efficient and flexible computer hardware optimized for the demanding performance needs of machine learning. In this talk, we will discuss the design of high-performance computer architectures for machine learning. Our vertically integrated approach to machine learning performance combines new machine learning algorithms, new domain-specific languages, advanced compilation technology and software-defined hardware.


Kunle Olukotun is the Cadence Design Systems Professor of Electrical Engineering and Computer Science at Stanford University. Olukotun is well known as a pioneer in multicore processor design and the leader of the Stanford Hydra chip multipocessor (CMP) research project. Olukotun founded Afara Websystems to develop high-throughput, low-power multicore processors for server systems. The Afara multicore processor, called Niagara, was acquired by Sun Microsystems. Niagara derived processors now power all Oracle SPARC-based servers. Olukotun currently directs the Stanford Pervasive Parallelism Lab (PPL), which seeks to proliferate the use of heterogeneous parallelism in all application areas using Domain Specific Languages (DSLs). Olukotun is a member of the Data Analytics for What’s Next (DAWN) Lab which is developing infrastructure for usable machine learning. Olukotun is an ACM Fellow and IEEE Fellow for contributions to multiprocessors on a chip and multi-threaded processor design. Olukotun received his Ph.D. in Computer Engineering from The University of Michigan.