CoRN.ftc.FTC



Require Export MoreIntegrals.
Require Export CalculusTheorems.

Opaque Min.

Section Indefinite_Integral.

The Fundamental Theorem of Calculus

Finally we can prove the fundamental theorem of calculus and its most important corollaries, which are the main tools to formalize most of real analysis.

Indefinite Integrals

We define the indefinite integral of a function in a proper interval in the obvious way; we just need to state a first lemma so that the continuity proofs become unnecessary.
Let I : interval, F : PartIR be continuous in I and a be a point in I.

Variable I : interval.
Variable F : PartIR.

Hypothesis contF : Continuous I F.

Variable a : IR.
Hypothesis Ha : I a.

Lemma prim_lemma : x : IR, I xContinuous_I (Min_leEq_Max a x) F.
Proof.
 intros.
 elim contF; intros incI contI.
 Included.
Qed.

Lemma Fprim_strext : x y Hx Hy,
 Integral (prim_lemma x Hx) [#] Integral (prim_lemma y Hy) → x [#] y.
Proof.
 intros x y Hx Hy H.
 elim (Integral_strext' _ _ _ _ _ _ _ _ _ H).
  intro; elimtype False.
  generalize a0; apply ap_irreflexive_unfolded.
 auto.
Qed.

Definition Fprim : PartIR.
 apply Build_PartFunct with (pfpfun := fun (x : IR) (Hx : I x) ⇒ Integral (prim_lemma x Hx)).
Proof.
  apply iprop_wd.
 exact Fprim_strext.
Defined.

End Indefinite_Integral.

Implicit Arguments Fprim [I F].

Notation "[-S-] F" := (Fprim F) (at level 20).

Section FTC.

The FTC

We can now prove our main theorem. We begin by remarking that the primitive function is always continuous.
Assume that J : interval, F : PartIR is continuous in J and x0 is a point in J. Denote by G the indefinite integral of F from x0.

Variable J : interval.
Variable F : PartIR.

Hypothesis contF : Continuous J F.

Variable x0 : IR.
Hypothesis Hx0 : J x0.


Lemma Continuous_prim : Continuous J G.
Proof.
 split.
  Included.
 intros a b Hab H. split.
 Included.
 intros e H0.
 simpl in |- *; simpl in H.
  (e[/] _[//] max_one_ap_zero (Norm_Funct (included_imp_Continuous _ _ contF _ _ _ H))).
  apply div_resp_pos.
   apply pos_max_one.
  assumption.
 intros x y H1 H2 Hx Hy H3.
 cut (included (Compact (Min_leEq_Max y x)) (Compact Hab)).
  intro Hinc.
  cut (Continuous_I (Min_leEq_Max y x) F). intro H4.
   apply leEq_wdl with (AbsIR (Integral H4)).
    eapply leEq_transitive.
     apply Integral_leEq_norm.
    apply leEq_transitive with (Max (Norm_Funct (included_imp_Continuous _ _ contF _ _ _ H)) [1][*]
      AbsIR (x[-]y)).
     apply mult_resp_leEq_rht.
      apply leEq_transitive with (Norm_Funct (included_imp_Continuous _ _ contF _ _ _ H)).
       apply leEq_Norm_Funct.
       intros.
       apply norm_bnd_AbsIR.
       apply Hinc; auto.
      apply lft_leEq_Max.
     apply AbsIR_nonneg.
    eapply shift_mult_leEq'.
     apply pos_max_one.
    apply H3.
   apply AbsIR_wd.
   rstepl (Integral (prim_lemma J F contF x0 Hx0 y Hy) [+]Integral H4[-]
     Integral (prim_lemma J F contF x0 Hx0 y Hy)).
   apply cg_minus_wd.
    apply eq_symmetric_unfolded; apply Integral_plus_Integral with (Min3_leEq_Max3 x0 x y).
    apply included_imp_Continuous with J; auto.
    apply included3_interval; auto.
   apply Integral_wd.
   apply Feq_reflexive.
   apply (included_trans _ (Compact (Min_leEq_Max x0 y)) J); Included.
  apply included_imp_Continuous with J; auto.
  Included.
 Included.
Qed.

The derivative of G is simply F.

Hypothesis pJ : proper J.

Theorem FTC1 : Derivative J pJ G F.
Proof.
 split; Included.
 split; Included.
 intros; apply Derivative_I_char.
   Included.
  inversion_clear contF.
  Included.
 intros.
 red in contF.
 inversion_clear contF.
 elim (contin_prop _ _ _ _ (X2 _ _ _ X) e X0); intros d H3 H4.
  d.
  assumption.
 intros x y X3 X4 Hx Hy Hx' H.
 simpl in |- ×.
 rename Hab into Hab'.
 set (Hab := less_leEq _ _ _ Hab') in ×.
 cut (included (Compact (Min_leEq_Max x y)) (Compact Hab)).
  intro Hinc.
  cut (Continuous_I (Min_leEq_Max x y) F).
   2: apply included_imp_Continuous with J; auto.
   intro H8.
   apply leEq_wdl with (AbsIR (Integral H8[-]
     Integral (Continuous_I_const _ _ (Min_leEq_Max x y) (F x Hx')))).
    apply leEq_wdl with (AbsIR (Integral (Continuous_I_minus _ _ _ _ _ H8
      (Continuous_I_const _ _ _ (F x Hx'))))).
     eapply leEq_transitive.
      apply Integral_leEq_norm.
     apply mult_resp_leEq_rht.
      2: apply AbsIR_nonneg.
     apply leEq_Norm_Funct.
     intros z Hz Hz1.
     simpl in |- ×.
     apply leEq_wdl with (AbsIR (F z (X1 z (X z (Hinc z Hz))) [-]F x Hx')).
      2: apply AbsIR_wd; algebra.
     apply H4; auto.
     eapply leEq_transitive.
      2: apply H.
     eapply leEq_wdr.
      2: apply eq_symmetric_unfolded; apply Abs_Max.
     eapply leEq_wdr.
      2: apply AbsIR_eq_x; apply shift_leEq_minus.
      2: astepl (Min x y); apply Min_leEq_Max.
     apply compact_elements with (Min_leEq_Max x y); auto.
     apply compact_Min_lft.
    apply AbsIR_wd; apply Integral_minus.
   apply AbsIR_wd; apply cg_minus_wd.
    rstepl (Integral (prim_lemma _ _ contF x0 Hx0 _ Hx) [+]Integral H8[-]
      Integral (prim_lemma _ _ contF x0 Hx0 _ Hx)).
    apply cg_minus_wd.
     apply eq_symmetric_unfolded; apply Integral_plus_Integral with (Min3_leEq_Max3 x0 y x).
     apply included_imp_Continuous with J; auto.
     apply included3_interval; auto.
    apply Integral_wd. apply Feq_reflexive.
    apply (included_trans _ (Compact (Min_leEq_Max x0 x)) J); try apply included_interval; auto.
   apply Integral_const.
  Included.
 Included.
Qed.

Any other function G0 with derivative F must differ from G by a constant.

Variable G0 : PartIR.
Hypothesis derG0 : Derivative J pJ G0 F.

Theorem FTC2 : {c : IR | Feq J (G{-}G0) [-C-]c}.
Proof.
 apply FConst_prop with pJ.
 apply Derivative_wdr with (F{-}F).
  FEQ.
 apply Derivative_minus; auto.
 apply FTC1.
Qed.

The following is another statement of the Fundamental Theorem of Calculus, also known as Barrow's rule.


End FTC.

Theorem Barrow : J F (contF : Continuous J F)
 (pJ:proper J) G0 (derG0 : Derivative J pJ G0 F)
 a b (H : Continuous_I (Min_leEq_Max a b) F) Ha Hb,
 let Ha' := Derivative_imp_inc _ _ _ _ derG0 a Ha in let Hb' := Derivative_imp_inc _ _ _ _ derG0 b Hb in Integral H [=] G0 b Hb'[-]G0 a Ha'.
Proof.

Hint Resolve Continuous_prim: continuous.
Hint Resolve FTC1: derivate.

Section Limit_of_Integral_Seq.

Corollaries

With these tools in our hand, we can prove several useful results.
From this point onwards:
In the first place, if a sequence of continuous functions converges then the sequence of their primitives also converges, and the limit commutes with the indefinite integral.

Variable J : interval.

Variable f : natPartIR.
Variable F : PartIR.

Hypothesis contf : n : nat, Continuous J (f n).
Hypothesis contF : Continuous J F.

Section Compact.

We need to prove this result first for compact intervals.
Assume that a, b, x0 : IR with (f n) and F continuous in [a,b], x0∈[a,b]; denote by (g n) and G the indefinite integrals respectively of (f n) and F with origin x0.

Variables a b : IR.
Hypothesis Hab : a [<=] b.
Hypothesis contIf : n : nat, Continuous_I Hab (f n).
Hypothesis contIF : Continuous_I Hab F.
Hypothesis convF : conv_fun_seq' a b Hab f F contIf contIF.

Variable x0 : IR.
Hypothesis Hx0 : J x0.
Hypothesis Hx0' : Compact Hab x0.


Hypothesis contg : n : nat, Continuous_I Hab (g n).
Hypothesis contG : Continuous_I Hab G.

Lemma fun_lim_seq_integral : conv_fun_seq' a b Hab g G contg contG.
Proof.
 assert (H : conv_norm_fun_seq _ _ _ _ _ contIf contIF).
  apply conv_fun_seq'_norm; assumption.
 intros e H0.
 elim (Archimedes (AbsIR (b[-]a) [/] _[//]pos_ap_zero _ _ H0)); intros k Hk.
 elim (H k); intros N HN.
  N; intros.
 assert (H2 : included (Compact (Min_leEq_Max x0 x)) (Compact Hab)).
  apply included2_compact; auto.
 simpl in |- ×.
 apply leEq_wdl with (AbsIR (Integral (Continuous_I_minus _ _ _ _ _ (prim_lemma _ _ (contf n) x0 Hx0 _
   (contin_imp_inc _ _ _ _ (contg n) _ Hx)) (prim_lemma _ _ contF x0 Hx0 _
     (contin_imp_inc _ _ _ _ contG _ Hx))))).
  2: apply AbsIR_wd; apply Integral_minus.
 eapply leEq_transitive.
  apply Integral_leEq_norm.
 apply leEq_transitive with (one_div_succ k[*]AbsIR (b[-]a)).
  apply mult_resp_leEq_both.
     apply positive_norm.
    apply AbsIR_nonneg.
   eapply leEq_transitive.
    2: apply (HN n H1).
   apply leEq_Norm_Funct; intros.
   apply norm_bnd_AbsIR.
   apply H2; auto.
  apply compact_elements with Hab; auto.
 unfold one_div_succ, Snring in |- ×.
 rstepl (AbsIR (b[-]a) [/] _[//]nring_ap_zero _ _ (sym_not_eq (O_S k))).
 apply shift_div_leEq.
  apply pos_nring_S.
 eapply shift_leEq_mult'.
  assumption.
 apply less_leEq; eapply leEq_less_trans.
  apply Hk.
 simpl in |- ×.
 apply less_plusOne.
Qed.

End Compact.

And now we can generalize it step by step.

Lemma limit_of_integral : conv_fun_seq'_IR J f F contf contF x y Hxy,
 included (Compact Hxy) J Hf HF,
 Cauchy_Lim_prop2 (fun nintegral x y Hxy (f n) (Hf n)) (integral x y Hxy F HF).
Proof.
 intros H x y Hxy H0 Hf HF.
 assert (Hx : J x). apply H0; apply compact_inc_lft.
  assert (Hy : J y). apply H0; apply compact_inc_rht.
  set (g := fun n : nat ⇒ ( [-S-]contf n) x Hx) in ×.
 set (G := ( [-S-]contF) x Hx) in ×.
 set (Hxg := fun n : natHy) in ×.
 apply Lim_wd with (Part G y Hy).
  simpl in |- *; apply Integral_integral.
 apply Cauchy_Lim_prop2_wd with (fun n : natPart (g n) y (Hxg n)).
  2: intro; simpl in |- *; apply Integral_integral.
 cut ( n : nat, Continuous_I Hxy (g n)). intro H1.
  cut (Continuous_I Hxy G). intro H2.
   apply fun_conv_imp_seq_conv with (contf := H1) (contF := H2).
    set (H4 := fun n : natincluded_imp_Continuous _ _ (contf n) _ _ _ H0) in ×.
    set (H5 := included_imp_Continuous _ _ contF _ _ _ H0) in ×.
    unfold g, G in |- ×.
    apply fun_lim_seq_integral with H4 H5.
     unfold H4, H5 in |- ×.
     apply H; auto.
    apply compact_inc_lft.
   apply compact_inc_rht.
  unfold G in |- *; apply included_imp_Continuous with J; Contin.
 intro; unfold g in |- *; apply included_imp_Continuous with J; Contin.
Qed.

Lemma limit_of_Integral : conv_fun_seq'_IR J f F contf contF x y,
 included (Compact (Min_leEq_Max x y)) J Hxy Hf HF,
 Cauchy_Lim_prop2 (fun nIntegral (a:=x) (b:=y) (Hab:=Hxy) (F:=f n) (Hf n))
   (Integral (Hab:=Hxy) (F:=F) HF).
Proof.
 intros convF x y H.
 set (x0 := Min x y) in ×.
 intros.
 assert (Hx0 : J x0).
  apply H; apply compact_inc_lft.
 assert (Hx0' : Compact Hxy x0).
  apply compact_inc_lft.
 set (g := fun n : nat ⇒ ( [-S-]contf n) x0 Hx0) in ×.
 set (G := ( [-S-]contF) x0 Hx0) in ×.
 unfold Integral in |- *; fold x0 in |- ×.
 apply (Cauchy_Lim_minus (fun n : natintegral _ _ _ _ (Integral_inc2 _ _ _ _ (Hf n)))
   (fun n : natintegral _ _ _ _ (Integral_inc1 _ _ _ _ (Hf n)))); fold x0 in |- ×.
  apply limit_of_integral with (Hf := fun n : natIntegral_inc2 _ _ Hxy _ (Hf n)); auto.
  apply included_trans with (Compact (Min_leEq_Max x y)); Included.
  apply included_compact.
   apply compact_inc_lft.
  apply compact_Min_rht.
 apply limit_of_integral with (Hf := fun n : natIntegral_inc1 _ _ Hxy _ (Hf n)); auto.
 apply included_trans with (Compact (Min_leEq_Max x y)); auto.
 apply included_compact.
  apply compact_inc_lft.
 apply compact_Min_lft.
Qed.

Section General.

Finally, with x0, g, G as before,

Hypothesis convF : conv_fun_seq'_IR J f F contf contF.

Variable x0 : IR.
Hypothesis Hx0 : J x0.


Hypothesis contg : n : nat, Continuous J (g n).
Hypothesis contG : Continuous J G.

Lemma fun_lim_seq_integral_IR : conv_fun_seq'_IR J g G contg contG.
Proof.
 red in |- *; intros.
 unfold g, G in |- ×.
 cut (J a). intro H.
  set (h := fun n : nat[-C-] (Integral (prim_lemma _ _ (contf n) x0 Hx0 a H))) in ×.
  set (g' := fun n : nath n{+} ( [-S-]contf n) a H) in ×.
  set (G' := [-C-] (Integral (prim_lemma _ _ contF x0 Hx0 a H)) {+} ( [-S-]contF) a H) in ×.
  assert (H0 : n : nat, Continuous_I Hab (h n)).
   intro; unfold h in |- *; Contin.
  cut ( n : nat, Continuous_I Hab (( [-S-]contf n) a H)). intro H1.
   assert (H2 : n : nat, Continuous_I Hab (g' n)).
    intro; unfold g' in |- *; Contin.
   cut (Continuous_I Hab (( [-S-]contF) a H)). intro H3.
    assert (H4 : Continuous_I Hab G').
     unfold G' in |- *; Contin.
    apply conv_fun_seq'_wdl with g' H2 (included_imp_Continuous _ _ contG _ _ _ Hinc).
     intro; FEQ.
     simpl in |- ×.
     apply eq_symmetric_unfolded; apply Integral_plus_Integral with (Min3_leEq_Max3 x0 x a).
     apply included_imp_Continuous with J; Contin.
    apply conv_fun_seq'_wdr with H2 G' H4.
     FEQ.
     simpl in |- ×.
     apply eq_symmetric_unfolded; apply Integral_plus_Integral with (Min3_leEq_Max3 x0 x a).
     apply included_imp_Continuous with J; Contin.
    unfold g', G' in |- ×.
    apply conv_fun_seq'_wdl with (f := g')
      (contf := fun n : natContinuous_I_plus _ _ _ _ _ (H0 n) (H1 n)) (contF := H4).
     unfold g' in H2.
     intro; apply Feq_reflexive; Included.
    unfold g', G' in |- ×.
    apply (fun_Lim_seq_plus' _ _ Hab h (fun n : nat ⇒ ( [-S-]contf n) a H) H0 H1 _ _
      (Continuous_I_const _ _ _ (Integral (prim_lemma _ _ contF x0 Hx0 a H))) H3).
     unfold h in |- ×.
     apply seq_conv_imp_fun_conv
       with (x := fun n : natIntegral (prim_lemma _ _ (contf n) x0 Hx0 a H)).
     apply limit_of_Integral with (Hf := fun n : natprim_lemma _ _ (contf n) x0 Hx0 a H); auto.
     Included.
    apply fun_lim_seq_integral with (fun n : natincluded_imp_Continuous _ _ (contf n) _ _ _ Hinc)
      (included_imp_Continuous _ _ contF _ _ _ Hinc).
     apply convF; auto.
    apply compact_inc_lft.
   apply included_imp_Continuous with J; Contin.
  intro; apply included_imp_Continuous with J; Contin.
 apply Hinc; apply compact_inc_lft.
Qed.

End General.

End Limit_of_Integral_Seq.

Section Limit_of_Derivative_Seq.

Similar results hold for the sequence of derivatives of a converging sequence; this time the proof is easier, as we can do it directly for any kind of interval.
Let g be the sequence of derivatives of f and G be the derivative of F.

Variable J : interval.
Hypothesis pJ : proper J.

Variables f g : natPartIR.
Variables F G : PartIR.

Hypothesis contf : n : nat, Continuous J (f n).
Hypothesis contF : Continuous J F.
Hypothesis convF : conv_fun_seq'_IR J f F contf contF.

Hypothesis contg : n : nat, Continuous J (g n).
Hypothesis contG : Continuous J G.
Hypothesis convG : conv_fun_seq'_IR J g G contg contG.

Hypothesis derf : n : nat, Derivative J pJ (f n) (g n).

Lemma fun_lim_seq_derivative : Derivative J pJ F G.
Proof.
 elim (nonvoid_point _ (proper_nonvoid _ pJ)); intros a Ha.
 set (h := fun n : nat ⇒ ( [-S-]contg n) a Ha) in ×.
 set (H := ( [-S-]contG) a Ha) in ×.
 assert (H0 : Derivative J pJ H G). unfold H in |- *; apply FTC1.
  assert (H1 : n : nat, Derivative J pJ (h n) (g n)). intro; unfold h in |- *; apply FTC1.
  assert (H2 : conv_fun_seq'_IR J _ _ (fun n : natDerivative_imp_Continuous _ _ _ _ (H1 n))
    (Derivative_imp_Continuous _ _ _ _ H0)).
  unfold h, H in |- ×. eapply fun_lim_seq_integral_IR with (contf := contg); auto.
  cut {c : IR | Feq J (F{-}H) [-C-]c}.
  intro H3.
  elim H3; clear H3; intros c Hc.
  apply Derivative_wdl with (H{+} [-C-]c).
   apply Feq_transitive with (H{+} (F{-}H)).
    apply Feq_plus.
     apply Feq_reflexive; Included.
    apply Feq_symmetric; assumption.
   clear Hc H2 H1; clearbody H.
   FEQ.
  apply Derivative_wdr with (G{+} [-C-][0]).
   FEQ.
  apply Derivative_plus; auto.
  apply Derivative_const.
 assert (H3 : n : nat, {c : IR | Feq J (f n{-}h n) [-C-]c}).
  intro; apply FConst_prop with pJ.
  apply Derivative_wdr with (g n{-}g n). FEQ. apply Derivative_minus; auto.
   assert (contw : n : nat, Continuous J (f n{-}h n)). unfold h in |- *; Contin.
  assert (contW : Continuous J (F{-}H)). unfold H in |- *; Contin.
  apply fun_const_Lim with (fun n : natf n{-}h n) contw contW.
   auto.
  eapply fun_Lim_seq_minus'_IR.
   apply convF.
  apply H2.
 assumption.
Qed.

End Limit_of_Derivative_Seq.

Section Derivative_Series.

As a very important case of this result, we get a rule for deriving series.

Variable J : interval.
Hypothesis pJ : proper J.
Variables f g : natPartIR.

Hypothesis convF : fun_series_convergent_IR J f.
Hypothesis convG : fun_series_convergent_IR J g.
Hypothesis derF : n : nat, Derivative J pJ (f n) (g n).

Lemma Derivative_FSeries : Derivative J pJ (FSeries_Sum convF) (FSeries_Sum convG).
Proof.
 apply fun_lim_seq_derivative with (f := fun n : natFSum0 n f)
   (contf := Continuous_Sum0 _ _ (convergent_imp_Continuous _ _ convF))
     (contF := Continuous_FSeries_Sum _ _ convF) (g := fun n : natFSum0 n g)
       (contg := Continuous_Sum0 _ _ (convergent_imp_Continuous _ _ convG))
         (contG := Continuous_FSeries_Sum _ _ convG).
   3: Deriv.
  apply FSeries_conv.
 apply FSeries_conv.
Qed.

End Derivative_Series.