UDiscoverIt Downloads — Reducing Adverse Impacts of Dams Using Multiobjective Optimization
- Alexander S. Flecker, Qinru Shi, Rafael M. Almeida, Héctor Angarita, Jonathan M. Gomes-Selman, Roosevelt García-Villacorta, Suresh A. Sethi, Steven A. Thomas, N. LeRoy Poff, Bruce R. Forsberg, Sebastian A. Heilpern, Stephen K. Hamilton, Jorge D. Abad, Elizabeth P. Anderson, Nathan Barros, Isabel Carolina Bernal, Richard Bernstein, Carlos M. Cañas, Olivier Dangles, Andrea C. Encalada, Ayan S. Fleischmann, Michael Goulding, Jonathan Higgins, Céline Jezequel, Erin I. Larson, Peter B. McIntyre, John M. Melack, Mariana Montoya, Thierry Oberdorff, Rodrigo Paiva, Guillaume Perez, Brendan H. Rappazzo, Scott Steinschneider, Sandra Torres, Mariana Varese, M. Todd Walter, Xiaojian Wu, Yexiang Xue, Xavier E. Zapata-Ríos, Carla P. Gomes. Reducing adverse impacts of Amazon hydropower expansion. Science (2022). [free access]
The Amazon is in the midst of a hydropower boom. More than 350 new dams are proposed across four Amazonian countries (Bolivia, Brazil, Ecuador, and Peru), with more already under construction. Environmental impacts are assessed for individual dams—but what are the combined costs of the hydropower explosion for biodiversity, sediment and nutrient transport, fisheries, navigation, and other benefits provided by intact rivers? Our multidisciplinary team has developed a framework for evaluating cumulative impacts in areas of rapid hydropower growth. The new models can help guide design of more sustainable dam networks that meet hydropower targets while reducing damage to key ecosystem services.
Multi-objective optimization plays a key role in the study of real-world problems, as they often involve multiple criteria. In multi-objective optimization, it is important to identify the so-called Pareto frontier, which characterizes the trade-offs between the objectives of different solutions. We provide a C++ implementation of exact and approximate dynamic programming (DP) algorithms for computing the Pareto frontier on tree-structured networks. The code uses a specialized divide-and-conquer approach for the pruning of dominated solutions. This optimization outperforms the previous approaches, leading to speed-ups of two to three orders of magnitude in practice. We apply a rounding technique to the exact dynamic programming algorithm that provides a fully polynomial-time approximation scheme (FPTAS). The FPTAS finds a solution set of polynomial-size, which approximates the Pareto frontier within an arbitrary small e factor and runs in time that is polynomial in the size of the instance and 1/ e. We illustrate the code by evaluating trade-offs in ecosystem services due to the proliferation of hydropower dams throughout the Amazon basin. In particular, we apply our algorithms to identify portfolios of hydropower dam sites that simultaneously minimize impacts on river flow, river connectivity, sediment transport, fish diversity, and greenhouse gas emissions while achieving energy production goals, at different scales, including the entire Amazon basin. The code can be easily adapted to compute the Pareto frontier of various multi-objective problems for other river basins or other tree-structured networks.
Files
Demo Links
Related Publications
- Alexander S. Flecker, Qinru Shi, Rafael M. Almeida, Héctor Angarita, Jonathan M. Gomes-Selman, Roosevelt García-Villacorta, Suresh A. Sethi, Steven A. Thomas, N. LeRoy Poff, Bruce R. Forsberg, Sebastian A. Heilpern, Stephen K. Hamilton, Jorge D. Abad, Elizabeth P. Anderson, Nathan Barros, Isabel Carolina Bernal, Richard Bernstein, Carlos M. Cañas, Olivier Dangles, Andrea C. Encalada, Ayan S. Fleischmann, Michael Goulding, Jonathan Higgins, Céline Jezequel, Erin I. Larson, Peter B. McIntyre, John M. Melack, Mariana Montoya, Thierry Oberdorff, Rodrigo Paiva, Guillaume Perez, Brendan H. Rappazzo, Scott Steinschneider, Sandra Torres, Mariana Varese, M. Todd Walter, Xiaojian Wu, Yexiang Xue, Xavier E. Zapata-Ríos, Carla P. Gomes. Reducing adverse impacts of Amazon hydropower expansion. Science (2022). [free access]
This is a C++ source code package implementing a dynamic programming algorithm for computing the Pareto frontier (for two criteria) on tree structured networks. A dataset for hydroelectric dams, using the energy and GHG emissions criteria, are provided.
Files
- Dynamic Programming for Computing the Pareto Frontier (for Energy and GHGs) on Tree Structured Networks
- README
Related Publications
- Rafael M. Almeida, Qinru Shi, Jonathan M. Gomes-Selman, Xiaojian Wu, Yexiang Xue, Hector Angarita, Nathan Barros, Bruce R. Forsberg, Roosevelt García-Villacorta, Stephen K. Hamilton, John M. Melack, Mariana Montoya, Guillaume Perez, Suresh A. Sethi, Carla P. Gomes, Alexander S. Flecker. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nature Communications (2019). [pdf]
- Jonathan Michael Gomes Selman, Qinru Shi, Yexiang Xue, Roosevelt García-Villacorta, Alexander S. Flecker, Carla P. Gomes. Boosting Efficiency for Computing the Pareto Frontier on Tree Structured Networks. CPAIOR 2018: 263-279 [pdf]
- Xiaojian Wu, Jonathan Gomes-Selman, Qinru Shi, Yexiang Xue, Roosevelt García-Villacorta, Elizabeth Anderson, Suresh Sethi, Scott Steinschneider, Alexander Flecker, Carla P. Gomes. Efficiently Approximating the Pareto Frontier: Hydropower Dam Placement in the Amazon Basin. AAAI 2018: 849-859 [pdf]
2024
- Marc Grimson, Rafael Almeida, Qinru Shi, Yiwei Bai, Hector Angarita, Felipe Siqueira Pacheco, Rafael Schmitt, Alexander Flecker, Carla P. Gomes. Scaling Up Pareto Optimization for Tree Structures with Affine Transformations: Evaluating Hybrid Floating Solar-Hydropower Systems in the Amazon. AAAI 2024: 22067-22075 [pdf]
- Zhongdi Qu, Marc Grimson, Yue Mao, Sebastian Heilpern, Imanol Miqueleiz, Felipe Siqueira Pacheco, Alexander Flecker, Carla P. Gomes. Strategies for Compressing the Pareto Frontier: Application to Strategic Planning of Hydropower in the Amazon Basin. CPAIOR (2) 2024: 141-157 [pdf]
2023
- Yiwei Bai, Qinru Shi, Marc Grimson, Alexander Flecker, Carla P. Gomes. Efficiently Approximating High-Dimensional Pareto Frontiers for Tree-Structured Networks Using Expansion and Compression. CPAIOR 2023: 1-17 [pdf]
2022
- Rafael M Almeida, Rafael JP Schmitt, Andrea Castelletti, Alexander S Flecker, Julien J Harou, Sebastian A Heilpern, Noah Kittner, G Mathias Kondolf, Jeff J Opperman, Qinru Shi, Carla P Gomes, Peter B McIntyre. Strategic planning of hydropower development: balancing benefits and socioenvironmental costs. Current Opinion in Environmental Sustainability (2022). [pdf]
- Alexander S. Flecker, Qinru Shi, Rafael M. Almeida, Héctor Angarita, Jonathan M. Gomes-Selman, Roosevelt García-Villacorta, Suresh A. Sethi, Steven A. Thomas, N. LeRoy Poff, Bruce R. Forsberg, Sebastian A. Heilpern, Stephen K. Hamilton, Jorge D. Abad, Elizabeth P. Anderson, Nathan Barros, Isabel Carolina Bernal, Richard Bernstein, Carlos M. Cañas, Olivier Dangles, Andrea C. Encalada, Ayan S. Fleischmann, Michael Goulding, Jonathan Higgins, Céline Jezequel, Erin I. Larson, Peter B. McIntyre, John M. Melack, Mariana Montoya, Thierry Oberdorff, Rodrigo Paiva, Guillaume Perez, Brendan H. Rappazzo, Scott Steinschneider, Sandra Torres, Mariana Varese, M. Todd Walter, Xiaojian Wu, Yexiang Xue, Xavier E. Zapata-Ríos, Carla P. Gomes. Reducing adverse impacts of Amazon hydropower expansion. Science (2022). [free access]
2021
- Rafael M. Almeida, Ayan S. Fleischmann, João P.F. Brêda, Diego S. Cardoso, Hector Angarita, Walter Collischonn, Bruce Forsberg, Roosevelt García-Villacorta, Stephen K. Hamilton, Phillip M. Hannam, Rodrigo Paiva, N. LeRoy Poff, Suresh A. Sethi, Qinru Shi, Carla P. Gomes, Alexander S. Flecker. Climate change may impair electricity generation and economic viability of future Amazon hydropower. Global Environmental Change (2021). [pdf]
2019
- Rafael M. Almeida, Qinru Shi, Jonathan M. Gomes-Selman, Xiaojian Wu, Yexiang Xue, Hector Angarita, Nathan Barros, Bruce R. Forsberg, Roosevelt García-Villacorta, Stephen K. Hamilton, John M. Melack, Mariana Montoya, Guillaume Perez, Suresh A. Sethi, Carla P. Gomes, Alexander S. Flecker. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nature Communications (2019). [pdf]
2018
- Xiaojian Wu, Jonathan Gomes-Selman, Qinru Shi, Yexiang Xue, Roosevelt García-Villacorta, Elizabeth Anderson, Suresh Sethi, Scott Steinschneider, Alexander Flecker, Carla P. Gomes. Efficiently Approximating the Pareto Frontier: Hydropower Dam Placement in the Amazon Basin. AAAI 2018: 849-859 [pdf]
- Jonathan Michael Gomes Selman, Qinru Shi, Yexiang Xue, Roosevelt García-Villacorta, Alexander S. Flecker, Carla P. Gomes. Boosting Efficiency for Computing the Pareto Frontier on Tree Structured Networks. CPAIOR 2018: 263-279 [pdf]
- Qinru Shi, Jonathan Michael Gomes Selman, Roosevelt García-Villacorta, Suresh Sethi, Alexander S. Flecker, Carla P. Gomes. Efficiently Optimizing for Dendritic Connectivity on Tree-Structured Networks in a Multi-Objective Framework. COMPASS 2018: 26:1-26:8 [pdf]