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Abstract. Real-world decision-making often involves working with
many distinct objectives. However, as we consider a larger number of
objectives, performance degrades rapidly and many instances become
intractable. Our goal is to approximate higher-dimensional Pareto fron-
tiers within a reasonable amount of time. Our work is motivated by
a problem in computational sustainability that evaluates the trade-
offs between various ecological impacts of hydropower dam prolifera-
tion in the Amazon river basin. The current state-of-the-art algorithm
finds a good approximation of the Pareto frontier within hours for
three-objective problems, but a six-objective problem cannot be solved
in a reasonable amount of time. To tackle this problem, we devel-
oped two different approaches: an expansion method, which assembles
Pareto-frontiers optimized with respect to subsets of the original set
of criteria, and a compression method, which assembles Pareto-frontiers
optimized with respect to compressed criteria, which are a weighted
sum of multiple original criteria. Our experimental results show that
the aggregation of the different methods can reliably provide good
approximations of the true Pareto-frontiers in practice. Source code
and data are available at https://github.com/gomes-lab/Dam-Portfolio-
Selection-Expansion-and-Compression-CPAIOR.

Keywords: Multi-objective Optimization · Approximation DP

1 Introduction

Multi-objective optimization (MOO) is of vital importance in many real-world
problems in computational sustainability [7,13,30], which often involve balanc-
ing various environmental, economic, and social objectives, as captured e.g., in
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Fig. 1. Amazon hydropower dam portfolio selection problem. Green circles refer to
potential dam sites while yellow circles represent already built dams. The sizes of the
circles reflect the sizes of the dams in terms of energy output. (Color figure online)

the Sustainable Development Goals [28], that are all crucial to consider when
designing solutions to these problems in alignment with human values. Such multi-
objective optimization problems often have a large number of competing objec-
tives that must be simultaneously optimized. However, most multi-objective algo-
rithms only work efficiently for 2 or 3 objectives due to the curse of dimensional-
ity [4,17,29]. Thus, finding methods to adapt state-of-the-art MOO algorithms
to higher-dimensional problems is a topic of great interest. We propose two effec-
tive methods for efficiently approximating higher-dimensional Pareto Frontiers on
tree-structured networks, using a state-of-the-art approximation algorithm, which
works well in practice on lower-dimensional multi-objective problems.

Our main motivation comes from the real-world problem of strategic planning
of hydropower dam expansion [16,32] in the Amazon basin (see Fig. 1), which
has a lasting impact on a multitude of ecosystem services provided by the river
network such as fish habitat and migration routes, sediment transportation, and
fish biodiversity [2,8,34]. Finding optimal portfolios of hydropower dams while
balancing the trade-offs between various ecological, social, and economic goals
is a good example of a challenging combinatorial multiobjective optimization
problem with a relatively large number of objectives. The current state-of-the-
art algorithm [14,31] exploits the underlying tree-structure of the river networks
and uses a dynamic programming scheme to approximate the Pareto frontier
with provable guarantees, within an arbitrary small ε factor, and a runtime that
is polynomial in the size of the instance and 1

ε . However, the runtime of this algo-
rithm is still exponential with respect to the number of objectives. For large river
networks such as the Amazon basin, while the algorithm is able to solve three
or four-objective optimization problems efficiently with a small approximation
factor, its performance drops off dramatically once we reach five objectives.

To encompass the complexity of balancing hydropower generation with
ecosystem service impacts in the Amazon, higher numbers of objectives need
to be considered. Here we address a set of six objectives associated with the
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proliferation of hydropower dams in the Amazon: hydropower generation,
the main benefit provided by dams; River connectivity index, an indicator
of the amount of habitat accessible to migratory fish; sediment transporta-
tion, the amount of sediment and nutrients transported by the river to the main
stem and is essential for flood plain agriculture and fish habitat; biodiversity
impact, which indicates the overall impact of dams on local biodiversity; degree
of regulation, which represents the change of river flow regimes caused by dams
and has a lasting influence on fish populations; and greenhouse gases emis-
sions, which is an estimate of the total amount of greenhouse gases emitted
by the construction and operation of dams, such as methane emissions due to
the anaerobic decomposition of organic matter from areas flooded by the dams.
Failing to consider any one of these six objectives leads to a less comprehensive
representation of overall dam impacts. Thus, we aim to approximate the higher-
dimensional (e.g., 6 criteria) Pareto frontier with the state-of-the-art algorithm
that works efficiently on lower-dimensional (e.g., 3 criteria) problems.

High-dimensional real-world data are often shown to dwell on low-dimensional
manifolds [15,18]. Similarly, we make the assumption that, for multi-objective
optimization problems on river networks, the six-objective Pareto frontier might
approximately lie on a lower-dimensional manifold. Current state-of-the-art works
are able to solve this type of MOO problem with three or four objectives effi-
ciently and with a guaranteed approximation factor. Given that these solutions
are very likely to be on the Pareto frontier for more objectives, we conjecture that
the aggregated solutions from Pareto frontiers optimized for all combinations of
three or four-element subsets of the six objectives may form a good approximation
of various local regions of the six-objective Pareto frontier. This naturally leads
to two questions. First, for a specific n-objective optimization problem, can the
true Pareto frontier be approximated by the Pareto frontiers defined by combi-
nations of k < n objectives? Complementary to the first question, can we reduce
k′ > k objectives to k objectives via different linear combinations of criteria and
still approximate the true k′ dimensional Pareto frontier?

In answering these questions, we provide two major contributions to greatly
improve the approximation of the Pareto frontier for 6 objectives for the Amazon
river basin: (1) An expansion method, which computes the Pareto frontier with
respect to different combinations of subsets of the original n criteria, aggregating
the resulting non-dominated solutions with respect to all original criteria. (2) A
compression method, complementary to the expansion method, which com-
putes the Pareto frontier with respect to the original criteria compressed into
fewer criteria via linear combinations, aggregating the resulting non-dominated
solutions with respect to all original criteria. (3) We show our approaches pro-
duce high-quality Pareto frontiers, in a reasonable amount time, and demonstrate
their effectiveness for three different sub-basins within the Amazon and for the
entire Amazon basin.

Related Work. Our work leverages a state-of-the-art dynamic programming
(DP) algorithm for computing the exact or approximation-guaranteed Pareto
frontier for tree-structured networks, referred to as tree-DP [10,14,31]. Typically,
the size of the Pareto frontier increases dramatically when the number of criteria



4 Y. Bai et al.

increases and tree-DP’s running time is proportional to it. Moreover, tree-DP
considers all the criteria at the same time so they cannot run in parallel, which
is not computationally efficient. Our methods approximate the Pareto frontier
from subsets of all the criteria and they can naturally be computed in parallel.
Parallel DP [9] may also be employed to boost its speed. Moreover, Genetic Algo-
rithms (GA) have been widely applied to approximate Pareto frontiers and solve
multiobjective optimization problems. Many well-established multiobjective GA
methods have been developed over the past 40 years, including, but not limited
to, vector evaluated GA (VEGA) [25], Multi-objective GA (MOGA) [11], Non-
dominated Sorting Genetic Algorithm and its iterations (NSGA, NSGA-II, and
NAGA-III) [5,6,27], and multiobjective evolutionary algorithm based on decom-
position (MOEA/D) [33]. Nevertheless, GA approaches are not competitive with
the current state-of-the-art algorithm [14,31], which exploits the underlying tree-
structure of the river networks and uses a dynamic programming scheme to be
able to approximate the Pareto frontier with provable guarantees with a runtime
that is polynomial in the number of nodes in the network. Other methods, for
instance, decision diagrams [3], propositional logic [26] and ray-based methods
[19–21,23] are also be used for multiobjective optimization problems, but they
cannot scale for the dam portfolio selection problem.

2 Problem Formulation

In this paper, we consider a multi-objective optimization problem with n (n ≥ 3)
objective functions z1, z2, · · · , zn, where the values of these functions are deter-
mined by a solution π (also referred to as a policy). Without loss of generality,
we assume that all these objectives are to be maximized. For any solution π,
we define the value vector of π to be

v(π) = (z1(π), · · · , zn(π)).

Pareto Dominance: For two solutions π and π′, if zi(π) ≥ zi(π′) for all i =
1, 2, · · · , n and zi(π) > zi(π′) holds for at least one i = 1, 2, · · · , n, then we say
that the solution π dominates the solution π′

Pareto Frontier: If a solution π is not dominated by any other feasible solution,
we say that π is a Pareto-optimal solution. The set of all Pareto-optimal solutions
is called the Pareto frontier (denoted as P ).

ε-approximations for multi-objective solutions: for two Pareto frontiers
P1, P2, we say P1 is ε-approximated by P2 if and only if for any π1 ∈ P1, there
exists a π2 ∈ P2, we have π1 ≥ (1 − ε)π2 for all objectives.

Hydropower Dam Portfolio Selection Problem: Hydropower dams gener-
ate hydroelectricity, which accounts for 16.6% of the world’s total electricity and
70% of all renewable electricity [1]. However, the construction of a hydropower
dam can cause significant adverse environmental impacts, e.g., disruption of fish
migration routes, alteration of river flow regimes, and greenhouse gas emissions.
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Fig. 2. An example of converting a river network (a) to a tree-structure (b). A node
in the tree is a contiguous section of river uninterrupted by dam sites. Edges in the
tree are dam sites that connect upstream and downstream segments. The mouth of the
river (labelled u in this example) becomes the root of the tree. The tree-DP algorithm
leverages this tree structure to be an efficient approximation algorithm.

[2,12]. So the selection of which potential dam sites to build is of vital importance
for balancing energy production with ecosystem impacts. The hydropower dam
portfolio selection problem is to generate an (approximated) Pareto frontier (the
portfolio) of deciding what dams should be built (or selected) from a candidate
pool of dam locations proposed by experts with respect to the six important
criteria mentioned in the introduction. One solution in the portfolio is a subset
of the dam candidate pool to be built.

The Off-the-Shelf Algorithm: Our methods leverages an algorithm that can
compute low-dimensional Pareto frontiers efficiently for tree-structured prob-
lems. In this paper, we use the state-of-the-art tree dynamic programming (tree-
DP) based approximation algorithm [14,31]. It can compute the exact solution
given enough time or compute an ε approximated solution. The tree-DP algo-
rithm models the entire river system as a tree structure (directed tree). Each
dam site represents an edge and two vertices of that edge are the upstream river
region and downstream river region respectively, where the river region is a con-
tiguous part of the river, i.e., the streams of that region are connected and not
blocked by any potential dam position (see Fig. 2). A bottom-up DP process
can be done to compute the Pareto frontier. The running complexity of the DP
algorithm is proportional to the number of solutions considered at each node, it
can round the value of each criterion to the multiplicative of a small value (the
approximation factor) to merge many similar solutions into one solution.
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Fig. 3. An example of trying to approximate a three-criteria Pareto frontier with two-
criteria optimization results. Each dot represents the values of the three criteria of one
solution. For the two criteria solutions, we compute the value of the remaining criterion
based on the dams built in that solution. We can observe that the two-criteria solutions
only cover the edges of the Pareto optimal sets formed by the three-criteria optimization
results.

3 The Expansion Method

We denote the actual n-objective Pareto frontier as Pn and define Vn = {v(π)|π ∈
Pn}. Given a positive integer 2 ≤ k < n, for all 1 ≤ i1 < i2 < · · · < ik ≤ n, i.e.,
all the possible sized k combinations of n criteria, we compute an ε-approximate
Pareto frontier P̃i1,··· ,ik w.r.t. zi1 , zi2 , · · · , zik . We define the union for these
k-objective Pareto frontiers to be

P̃k =
⋃

1≤i1<···<ik≤n

P̃i1,··· ,ik ,

and
Ṽk = {v(π)|π ∈ P̃k}.

P̃k is the output of the Expansion method (see Fig. 4). In this paper we study
the following proposition: for some real-world problems, Ṽk forms a sufficiently
good coverage of Vn with appropriate choices of k and ε.

The Expansion method method might look counter-intuitive at first
because when we consider the smallest possible cases, two-criteria optimiza-
tion solutions usually only cover the edges of a three-criteria Pareto frontier
(see Fig. 3). However, in practice, we are able to approximate higher-dimensional
Pareto frontiers using lower-dimensional Pareto frontiers. We will show an exam-
ple after introducing the compression method.
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Fig. 4. High-level depiction of the expansion and compression methods. The left cir-
cle contains all the criteria we are interested in. Both the expansion and compression
methods use the off-the-shelf Pareto-frontier algorithm optimized with respect to the
criteria in the parentheses. In the expansion method, we choose all possible combina-
tions of three criteria, from all criteria, and merge their results to generate the final
results (evaluated with respect to all criteria). The compression method reduces the
number of criteria by compressing the original criteria into fewer criteria. For example,
5-3-1-2-2 denotes that five criteria are reduced into three by keeping the first one as is
and compressing the last two pairs of criteria. The compression operator is defined in
Eq. 1.

4 The Compression Method

The Expansion method is likely to miss some solutions since it only optimizes
with respect to a subset of the full criteria. We, therefore, propose a compres-
sion method (see Fig. 4) to further complement the Pareto frontier computed
by the expansion method. By compressing k′ > k criteria into k criteria, the off-
the-shelf algorithm can compute the Pareto frontier for k criteria while implicitly
considering k′ criteria.

Formally, as defined before, Pn refers to the actual n−objective Pareto fron-
tier and Vn = {v(π)|π ∈ Pn}. The compression configuration can be defined
as (k′, k, a1, a2, . . . , ak (Fig. 4) where 0 < k < k′ ≤ n and

∑k
i=1 ai = k′.

The idea of this configuration is to compress k′ criteria into k criteria and
ai (i = 1, · · · , k) describe what criteria should be merged. The compression
operator is defined as follows: for all the possible sized k′ combinations of n cri-
teria: 0 < i1, i2, · · · , ik′ ≤ n, the compressed criteria evaluation function c′

i can
be computed as:

c′
i =

sum[i]∑

j=sum[i−1]+1

wj ∗ zj (1)

where a0 = 0, sum[i] =
∑i

j=1 aj , sum[0] = 0 and wj is the scalar weight. Note,
if any two criteria ip, iq are compressed into one criterion, then p �= q. The
scales of different criteria vary substantially so the selection of the weights wi

is vital to the performance. A straightforward selection strategy is to normalize
the criteria into the same scale: denote zmax

j as the max j-th criterion value

among all the dams/rivers and wj can be set as 1 − zmax
j∑n

i=1 zmax
i

. This normalized
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strategy treats each criterion as having the same importance. Then, for all the
possible 0 < i1, i2, · · · , ik′ ≤ n, i.e., k′ combinations of n criteria, we compute
the Pareto frontier P̃1′,2′,...,k′ . We define the union of these k-objective Pareto
frontiers to be P̃k′ and it is the output of our compression method (see Fig. 4 for
more details). In general, k′ is the number of actual criteria we consider while
k refers to the number of compressed criteria considered by the algorithm. The
ai (i = 1, . . . , k) specifies how we compress the k′ criteria into k criteria.

These two methods share a common idea, i.e., approximate the high-
dimensional Pareto frontier using many low-dimensional Pareto frontiers. The
difference is that the compression method implicitly considers more criteria by
compressing multiple criteria into fewer criteria.

Fig. 5. Exact non-Convex Pareto frontier of energy-connectivity for the Tapajós basin.

5 Experiments

5.1 Experimental Setup

Our study focuses on the Amazon basin, where more than 350 large hydropower
dams have been proposed. To show the generalizability of our methods and
provide scalability insights, we also considered three sub-basins of the Amazon
basin: Marañón, Tapajós and the West Amazon. We compute the Pareto fron-
tier with respect to the six important criteria introduced in the introduction:
hydropower generation, river connectivity index, sediment transportation, bio-
diversity impact, the degree of river regulation, and greenhouse gases emissions.
For our underlying off-the-shelf algorithm and baseline, we use the state-of-the-
art tree DP algorithm that computes the exact or approximate Pareto frontier,
adopting the original papers’ recommended configurations [14,31]. Our baseline
is to directly consider all six criteria with the minimal approximation factor the
runtime constraints allow.
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5.2 Evaluation Method

To compare the optimization results of the various methods, we need a met-
ric that can evaluate both the optimality and the coverage of the approximate
Pareto frontiers. Note that the exact Pareto frontier we are trying to approxi-
mate can be non-convex (see Fig. 5). So, not only do we care about the overall
shape of the Pareto frontier, but also the evaluation of the individual solutions.
Therefore, we propose an evaluation method that divides the solution space into
ε hypercubes following [24]’s approach.

Fig. 6. We use two criteria as an example. The solution space is divided into several
hypercubes. The upper bound of each cube is 1+ε of its lower bound. The lower bound
a is the minimum value of its criterion. The number of hypercubes one solution covers
is a good metric. Consider two solutions sets 1 and 2. Set1 covers two hypercubes, while
set2 covers two hypercubes. Note that these numbers are computed when we consider
each solution set individually. When we compare them, we need to compute the new
Pareto frontier after merging their solutions.

More specifically, for a n-objective optimization problem where, without loss
of generality, every objective is to be maximized and the objective values are
strictly non-negative, we define the solution space to be a n-dimensional space
where each axis represents the value of one objective. We also make the assump-
tion that the minimum possible value of each objective is non-negative. For a
given error bound ε > 0, we divide the solution space into hypercubes where the
upper bound is 1 + ε of the lower bound on each axis, with the smallest value of
the lower bounds being the minimum possible value of the corresponding objec-
tive. Similar to the definition of Pareto-dominance, for two different hypercubes,
if for each axis, the upper bound of the first hypercube is greater than or equal
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Table 1. Non-dominated hypercubes occupied by the different methods. Note that the
occupied non-dominated hypercubes are computed by merging and comparing tree-DP
solutions, Expansion solutions, and Compression solutions. The approximation factors
are shown in Table 2. The number in the parentheses is the number of criteria that are
considered by the tree-DP algorithm. The epsilon is used in the hypercube computation.
The Compression method further improves the performance. Expansion+Compression
is a good approximation for all the basins, outperforming the baseline tree-DP, which
provides a theoretical approximation guarantee.

Basin epsilon Tree DP (6) Expansion-3 (3) Expansion-4 (4) Compression-3 (2) Compression-4 (3) Compression-5 (3) Expansion + Compression

Marañón 0.01 12070 9 2 1344 14884 1620 17425

Marañón 0.05 35 1 0 747 771 2 816

Tapajós 0.01 0 681 382 1435 14878 0 17371

Tapajós 0.05 0 44 22 187 1057 0 1277

West Amazon 0.01 0 66 149 306 20851 0 21371

West Amazon 0.05 0 6 11 27 1160 0 1191

Amazon 0.01 0 6778 9 1623 1243 2397 12044

Amazon 0.05 0 485 1 216 85 75 847

to the upper bound of the second hypercube, we say that the first hypercube
dominates the second hypercube. More details can be found in the Fig. 6.

To compare two or more sets of solutions, we first identify all of the ε-
hypercubes that are occupied by at least one solution in any of the solution
sets. We then find the set of occupied hypercubes that are not dominated by
any other occupied hypercube. Finally, we compute for each set of solutions the
number of non-dominated hypercubes they occupy. If one set of solutions cov-
ers more non-dominated ε-hypercubes than the other set, we say that the first
solution set has better ε-coverage than the second solution set. Notice that since
the set of occupied hypercubes will change depending on the sets of solutions
compared and the number of solutions in each set, the number of non-dominated
hypercubes covered by one set of solutions may change depending on the solution
sets compared to, so the number of non-dominated hypercubes covered cannot
be used as a universal metric of the quality of approximate Pareto frontiers.
However, when comparing fixed sets of solutions, the metric provides a good
comparison of the accuracy and coverage of the solution sets.

The visualized Pareto frontiers computed by different solutions can be more
straightforward for comparison. However, it is difficult to visualize Pareto fron-
tiers of dimensions higher than three. For the sake of clear visualization and
easier comparison, we use the Uniform Manifold Approximation and Projection
(UMAP) [22] method to project a high-dimensional Pareto-frontier onto a two-
dimensional plane while preserving the general proximity relationships between
the values of solutions. We merge the solutions generated by the tree-DP and our
methods, then only save the non-dominated solutions, and finally, use UMAP to
visualize these solutions. We have developed a website for visualizing the Pareto
frontier.

https://www.cs.cornell.edu/gomes/udiscoverit/amazon-ecovistas/visualizations.html
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Fig. 7. UMAP results of the baseline approximate six-criteria Pareto frontier of the
Marañón basin (ε = 0.1) and the Expansion + Compression approximation results.
We can observe that our method covers most solutions of the tree-DP algorithm. Note
that the solutions fed into the UMAP results are all non-dominated solutions.

5.3 Experimental Results

We first show how well each of the Expansion methods and Compression
methods can approximate the six criteria Pareto frontier for the full Amazon
Basin and three sub-basins. Since the Pareto frontier may be non-convex (see
Fig. 5), our metric is the number of non-dominated hypercubes occupied by the
solutions computed by a given method. For methods’ solution comparison, from
both fine-grain and coarse perspectives, we used two hypercube error bounds:
ε = 0.01 and ε = 0.05.

For all the experiments, we always include hydropower generation as a sin-
gle criterion, otherwise, the optimal solution would be the trivial solution of
building no dams as hydropower generation is the only criterion positively cor-
related with construction. Due to the scale of the problem, the state-of-the-art
tree-DP algorithm can only compute or approximate the Pareto frontier in a
reasonable amount of time for k = 3, 4 criteria. Thus, for both the expan-

Table 2. Approximation factors of the baseline, the expansion method, and the com-
pression method. The number in the parentheses is the number of criteria considered
by the tree-DP algorithm. Factors vary and are set so that every experiment is under
the 80 hour limit, except for the baseline.

Basin Baseline (6) Expansion-3 (3) Expansion-4 (4) Compression-3 (2) Compression-4 (3) Compression-5 (3)

Marañón 0.1 0 0 0 0 0

Tapajós 1.0 0.1 0.4 0.3 0.3 0.3

West Amazon 1.0 0.2 0.2 0.2 0.2 0.2

Amazon 1.25 0.5 2.0 0.5 0.5 0.5
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Fig. 8. UMAP results of four basins’ Expansion and Compression solutions. We merge
their sets of solutions and use all the non-dominated solutions to compute these UMAP
results. The number in the names of the method refers to the actual criteria (k′ of the
Compression method) considered. We can observe that for all the basins, two methods
capture different perspectives of the problem and this leads to very different solutions.

sion and compression methods, we consider combinations of 3 and 4 criteria.
For the Expansion method we refer to the experiment that computes all the
possible 3 criteria combinations Expansion-3 and 4 criteria combinations as
Expansion-4 , and they both consider C5

2/3 = 10 combinations (here we choose
from 5 criteria instead of 6 since we always include energy as one criterion).
For the compression method, we describe the configuration in the following for-
mat, assuming the criteria are sequentially numbered: (k′, k, a1, . . . , ak), which
denotes that we compress k′ criteria into k criteria using the scheme a1, . . . , ak.
Each ai denotes how many of the original criteria in the sequence are com-
pressed to produce the final criterion i. The formal definition of compressing
these ai criteria can check Eq. 1. We consider three situations for the compres-
sion method: (1) (3, 2, 1, 2) (denoted as Compression-3 ): since the first target
criterion must be the single (uncompressed) energy criterion, we have a total of
C5

2 = 10 combinations; (2) (4, 3, 1, 2, 1) (denoted as Compression-4 ): where
we have a total of C5

2 × C5
1 = 50 combinations; and (3) (5, 3, 1, 2, 2) (denoted

as Compression-5 ): where we have a total of C
4∗5
2

2 = 45 combinations. To
reduce the computational overhead, we assign each (compressed) criterion the
same importance factor when reducing multiple criteria into one. We tune the
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Fig. 9. UMAP results for the four basins’ Expansion-3 and Expansion-4 solutions. We
merge their sets of solutions and use all the non-dominated solutions to compute these
UMAP results. For all the basins, except for the entire Amazon, the Expansion methods
compute very different solutions, when considering different numbers of criteria. For
the entire Amazon basin, due to the large approximation factor (2.0) used by the
Expansion-4 method, it can only find a few solutions.

approximation factor of the tree-DP algorithm to ensure a single experiment (e.g.
a combination of energy-connectivity-GHG (greenhouse gas emissions) using the
expansion method) is finished within an 80 hours time budget running on a com-
putation node that has 24 Intel(R) Xeon(R) CPU X5690 @ 3.47GHz. Note we
do not set a time limit for the baseline method. The baseline runtime for all four
basins is greater than 10 days.

The main results are summarized in Table 1 and the approximation factors
of all methods are shown in Table 2. We compute the non-dominated hypercubes
for each method, then combine these hypercubes and remove all dominated ones
to form the hypercube Pareto frontier. Since the number of solutions can be
quite large and there are many solutions that are quite similar to each other,
we sort the solutions with respect to the number of dams they build and sample
3, 000 solutions uniformly from each sub-experiment. For the baseline method,
we either select all of its solutions or uniformly sample 1, 000, 000 solutions.
For each method, we then count how many grids of its solution set belong to
the hypercube Pareto frontier. Table 1 shows that even for the smallest sub-
basin, the Marañón, which the tree-DP algorithm can finish with an ε = 0.1
approximation factor, our method can get a better approximation (17425 v.s.
12070). In Fig. 7, we also show visually how our method can cover almost every
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solution of the six criteria Pareto frontier computed by the Tree-DP algorithm
(approximation factor ε = 0.1) for the Marañón sub-basin using UMAP. For the
other larger basins, where the tree-DP algorithm alone is only able to scale with
a very loose approximation factor, the solution sets computed by our Expansion
and Compression methods entirely dominate those of the tree-DP algorithm.

We also compare the sets of solutions generated by our two methods to
study how different they are. The results are summarized in Fig. 8, where we
compare the UMAP results after removing all the dominated solutions. For all
the basins, except for the full Amazon basin, our two methods generate very dif-
ferent solutions. The Compression methods produce the largest number of non-
dominated solutions (see Table 1). In terms of the full Amazon basin, interest-
ingly the Expansion method outperforms the Compression method, even though
the Compression method further improves the Expansion method. Understand-
ing the trade-offs of the two approaches is a future research question. In any
case, the combination Expansion+Compression clearly outperforms the tree-DP
algorithm baseline, as the approximation used by the tree-DP algorithm for
six criteria has to be quite loose since the number of solutions is enormously
large when directly considering all six criteria. In contrast, the Expansion and
Compression methods use a much smaller approximation factor as the num-
ber of target criteria is small (2 or 3), efficiently handled by the tree-DP algo-
rithm, which makes up for only optimizing with respect to subsets of the original
criteria.

5.4 Ablation Study

We conducted experiments to study how the number of criteria affects the solu-
tion sets computed by the expansion method and the compression method. We
merge the solution sets of all expansion methods and all compression methods
separately, and then remove all the dominated solutions from them. We then
run UMAP to project their non-dominated solutions to a 2-dimensional space
to analyze the relative distances between the solutions. The results are shown
in Fig. 9 (Expansion) and Fig. 10 (Compression). For all the basins, except for
the full Amazon basin, Expansion-3 and Expansion-4 cover very different areas.
For the entire Amazon basin, Expansion-3 dominates Expansion-4 since it is
able to use a much smaller approximation factor (0.5 v.s. 2.0). For the Com-
pression method, in general, solutions from Compression-4 and Compression-5
dominate Compression-3 solutions since the first two methods actually consider
one more criterion Moreover, except for the full Amazon basin, Compression-4
and Compression-5 methods cover diverse areas. These results show that con-
sidering different numbers of criteria can provide different solution perspectives.
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Fig. 10. UMAP results of four basins’ Compression-3, Compression-4 and
Compression-5 solutions. We merge their sets of solutions and use all the non-
dominated solutions to compute these UMAP results. For all the basins, solution
sets from the Compression-4 and Compression-5 experiments in general dominate the
Compression-3 solutions since the first two methods actually consider one more crite-
rion. Moreover, for all the basins except for the full Amazon basin, the solution sets of
Compression-4 and Compression-5 cover very different solutions.

6 Conclusion

We propose the Expansion method to efficiently approximate an n (high)-
dimension Pareto frontier by computing all the possible k (low)-dimension Pareto
frontiers and merging their solutions together. Moreover, we also introduce a
Compression method that compresses multiple criteria into fewer criteria, allow-
ing the algorithm to consider more criteria implicitly, further improving the
Expansion method. The combination of the Expansion and Compression meth-
ods provides a good Pareto frontier approximation for three Amazon sub-basins
and the full Amazon basin for six criteria, in practice outperforming the baseline
tree-DP approach, which provides a theoretical approximation guarantee. Under-
standing the trade-offs between the Expansion and Compression approaches
is an interesting topic for further research. We hope this work inspires other
approaches for efficiently approximating high-dimensional Pareto frontiers.
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