Assistant Professor of Computer Science
Field Member of Applied Math
Cornell University
My research develops numerical methods and computational frameworks
for analyzing and understanding largescale and complex datasets. I
often approach problems with some combination of network science,
matrix and tensor computations, and machine learning.
[Curriculum Vitae]
My research is supported by the ARO and the NSF.
News and events

07.09.2020. Dane Taylor and I are cochairing the SIAM Worksop on Network Science (NS20) to be held jointly with SIAM Annual in Toronto. 
08.06.2019. I am very honored that Network Density of States (with Kun Dong and David Bindel) won the best paper award at KDD. 
11.09.2018. My research with Rediet Abebe, Michael Schaub, Ali Jadbabaie, and Jon Kleinberg on Simplicial closure and higherorder link prediction was published in PNAS. See the Cornell Chronicle article Predicting future combos, from rap songs to pharmaceuticals for the highlights.
Upcoming and recent talks

07.06.2020. SIAM Annual Meeting (AN20) 
06.01.2020. SIAM Conference on Discrete Mathematics (DM20) 
05.05.2020. SIAM Conference on Mathematics of Data Science (MDS20) 
08.05.2019. Workshop on Mining and Learning with Graphs (MLG '19) [slides] 
07.16.2019. ICIAM '19 [slides] 
07.12.2019. ILAS '19 [slides] 
05.28.2019. HigherOrder Models in Network Science NetSci Satellite [slides] 
05.27.2019. Statistical Inference for Network Models NetSci Satellite [slides] 
05.16.2019. WWW '19 [slides]
Teaching & Education
Cornell classes
Spring 2020. CS 6241: Numerical Methods for Data Science
Office hours: 4:155:15pm Thursdays in Gates 413B.Fall 2019. CS 2850/INFO 2040/ECON 2040/SOC 2090: NetworksSpring 2019. CS 6241: Numerical Methods for Data ScienceFall 2018. CS 2850/INFO 2040/ECON 2040/SOC 2090: Networks
Expository material
 SIAM ALA '18 tutorial on Tensor Eigenvectors and Stochastic Processes (with David Gleich).
[web] [slides] [code]
Papers
Preprints
SetStructured Latent Representations.
Qian Huang, Horace He, Abhay Singh, Yan Zhang, SerNam Lim, and Austin R. Benson.
arXiv:2003.04448, 2020.
paper pdf codeLocalized FlowBased Clustering in Hypergraphs.
Nate Veldt, Austin R. Benson, and Jon Kleinberg.
arXiv:2002.09441, 2020.
paper pdf code dataOutcome Correlation in Graph Neural Network Regression.
Junteng Jia and Austin R. Benson.
arXiv:2002.08274, 2020.
paper pdf code dataEntrywise convergence of iterative methods for eigenproblems.
Vasileios Charisopoulos, Austin R. Benson, Anil Damle.
arXiv:2002.08491, 2020.
paper pdf codeChoice Set Optimization Under Discrete Choice Models of Group Decisions.
Kiran Tomlinson and Austin R. Benson.
arXiv:2002.00421, 2020.
paper pdf code dataHypergraph Cuts with General Splitting Functions.
Nate Veldt, Austin R. Benson, and Jon Kleinberg.
arXiv:2001.02817, 2020.
paper pdfIncrementally Updated Spectral Embeddings.
Vasileios Charisopoulos, Austin R. Benson, and Anil Damle.
arXiv:1909.01188, 2019.
paper pdf code posterPlanted Hitting Set Recovery in Hypergraphs.
Ilya Amburg, Jon Kleinberg, and Austin R. Benson.
arXiv:1905.05839, 2019.
paper pdf code data
Peerreviewed papers
Measuring Directed Triadic Closure with Closure Coefficients.
Hao Yin, Austin R. Benson, and Johan Ugander.
To appear in Network Science, 2020.
paper pdfNetwork Interpolation.
Thomas Reeves, Anil Damle, and Austin R. Benson.
To appear in SIAM Journal on Mathematics of Data Science (SIMODS), 2020.
paper pdf codeClustering in graphs and hypergraphs with categorical edge labels.
Ilya Amburg, Nate Veldt, and Austin R. Benson.
To appear at WWW, 2020.
paper pdf code dataFrozen Binomials on the Web: Word Ordering and Langauge Conventions in Online Text.
Katherine Van Koevering, Austin R. Benson, and Jon Kleinberg.
To appear at WWW, 2020.
paper pdf codeUsing cliques with higherorder spectral embeddings improves graph visualizations.
Huda Nassar, David Gleich, Austin R. Benson, Shweta Jain, and Caitlin Kennedy.
To appear at WWW, 2020.
Random Walks on Simplicial Complexes and the normalized Hodge 1Laplacian.
Michael T. Schaub, Austin R. Benson, Paul Horn, Gabor Lippner, and Ali Jadbabaie.
To appear in SIAM Review (SIREV), 2020.
paper pdfRetrieving Top Weighted Triangles in Graphs.
Raunak Kumar, Paul Liu, Moses Charikar, and Austin R. Benson.
Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM), 2020.
paper pdf code dataNeural Jump Stochastic Differential Equations.
Junteng Jia and Austin R. Benson.
Advances in Neural Information Processing Systems (NeurIPS), 2019.
paper pdf code posterModeling and Analysis of Tagging Networks in Stack Exchange Communities.
Shangdi Yu*, Xiang Fu*, and Austin R. Benson (*equal contribution).
Journal of Complex Networks, 2019.
paper pdf code dataComputing tensor Zeigenvectors with dynamical systems.
Austin R. Benson and David F. Gleich.
SIAM Journal on Matrix Analysis and Applications (SIMAX), 2019.
paper pdf codeUnsupervised learning of dislocation motion.
Darren C. Pagan, Thien Q. Phan, Jordan S. Weaver, Austin R. Benson, and Armand J. Beaudoin.
Acta Materialia, 2019.
paper pdfAutomated Grain Yield Behavior Classification.
Darren C. Pagan, Jakob Kaminsky, Wesley A. Tayon, Kelly E. Nygren, Armand J. Beaudoin, and Austin R. Benson.
The Journal of The Minerals, Metals & Materials Society (JOM), 2019.
paper pdfPairwise Link Prediction.
Huda Nassar, Austin R. Benson, and David F. Gleich.
Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2019.
Best Paper Award Runnerup .
paper pdf codeGraphbased SemiSupervised & Active Learning for Edge Flows.
Junteng Jia, Michael T. Schaub, Santiago Segarra, and Austin R. Benson.
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2019.
paper pdf code posterNetwork Density of States.
Kun Dong, Austin R. Benson, and David Bindel.
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2019.
Best Paper Award .
paper pdf code posterThree hypergraph eigenvector centralities.
Austin R. Benson.
SIAM Journal on Mathematics of Data Science (SIMODS), 2019.
paper pdf codeLink Prediction in Networks with CoreFringe Data.
Austin R. Benson and Jon Kleinberg.
Proceedings of the World Wide Web Conference (WWW), 2019.
paper pdf code posterChoosing to grow a graph: Modeling network formation as discrete choice.
Jan Overgoor, Austin R. Benson, and Johan Ugander.
Proceedings of the World Wide Web Conference (WWW), 2019.
paper pdf code posterRandom Spatial Network Models with CorePeriphery Structure.
Junteng Jia and Austin R. Benson.
Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM), 2019.
paper pdf code data posterSampling Methods for Counting Temporal Motifs.
Paul Liu, Austin R. Benson, and Moses Charikar.
Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM), 2019.
paper pdf code dataThe Local Closure Coefficient: A New Perspective On Network Clustering.
Hao Yin, Austin R. Benson, and Jure Leskovec.
Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM), 2019.
paper pdfSimplicial closure and higherorder link prediction.
Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Kleinberg.
Proceedings of the National Academy of Sciences (PNAS), 2018.
paper pdf supplement code dataFound Graph Data and Planted Vertex Covers.
Austin R. Benson and Jon Kleinberg.
Advances in Neural Information Processing Systems (NeurIPS), 2018.
paper pdf code data posterSequences of Sets.
Austin R. Benson, Ravi Kumar, and Andrew Tomkins.
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2018.
paper pdf code data posterHigherorder clustering in networks.
Hao Yin, Austin R. Benson, and Jure Leskovec.
Physical Review E (PRE), 2018.
paper pdf codeA Discrete Choice Model for Subset Selection.
Austin R. Benson, Ravi Kumar, and Andrew Tomkins.
Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM), 2018.
paper pdf code data posterLocal higherorder graph clustering.
Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich.
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2017.
paper pdf code dataMotifs in temporal networks.
Ashwin Paranjape*, Austin R. Benson*, and Jure Leskovec. (*equal contribution)
Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM), 2017.
paper pdf code data posterThe spacey random walk: a stochastic process for higherorder data.
Austin R. Benson, David F. Gleich, and LekHeng Lim.
SIAM Review (SIREV), 2017.
paper pdf code dataHigherorder organization of complex networks.
Austin R. Benson, David F. Gleich, and Jure Leskovec.
Science, 2016.
paper pdf supplement code dataGeneral tensor spectral coclustering for higherorder data.
Tao Wu, Austin R. Benson, and David F. Gleich.
Advances in Neural Information Processing Systems (NeurIPS), 2016.
paper pdf codeOn the relevance of irrelevant alternatives.
Austin R. Benson, Ravi Kumar, and Andrew Tomkins.
Proceedings of the International Conference on World Wide Web (WWW), 2016.
paper pdfModeling user consumption sequences.
Austin R. Benson, Ravi Kumar, and Andrew Tomkins.
Proceedings of the International Conference on World Wide Web (WWW), 2016.
paper pdfImproving the numerical stability of fast matrix multiplication.
Grey Ballard, Austin R. Benson, Alex Druinksy, Benjamin Lipshitz, and Oded Schwartz.
SIAM Journal on Matrix Analysis and Applications (SIMAX), 2016.
paper pdf codeTensor spectral clustering for partitioning higherorder network structures.
Austin R. Benson, David F. Gleich, and Jure Leskovec.
Proceedings of the SIAM International Conference on Data Mining (SDM), 2015.
paper pdf codeA framework for practical parallel fast matrix multiplication.
Austin R. Benson and Grey Ballard.
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 2015.
paper pdf codeScalable methods for nonnegative matrix factorizations of nearseparable tallandskinny matrices.
Austin R. Benson, Jason D. Lee, Bartek Rajwa, and David F. Gleich.
Advances in Neural Information Processing Systems (NeurIPS), 2014.
Selected for spotlight presentation .
paper pdf code data posterLearning multifractal structure in large networks.
Austin R. Benson, Carlos Riquelme, and Sven Schmit.
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2014.
paper pdf supplementA parallel directional Fast Multipole Method.
Austin R. Benson, Jack Poulson, Kenneth Tran, Björn Engquist, and Lexing Ying.
SIAM Journal on Scientific Computing (SISC), 2014.
paper pdf codeSilent error detection in numerical timestepping schemes.
Austin R. Benson, Sven Schmit, and Robert Schreiber.
International Journal of High Performance Computing Applications (IJHPCA), 2014.
paper pdf supplement codeDirect QR factorizations for tallandskinny matrices in MapReduce architectures.
Austin R. Benson, David F. Gleich, and James Demmel.
Proceedings of the IEEE International Conference on Big Data (IEEE BigData), 2013.
paper pdf code
Theses
Tools for higherorder network analysis.
Austin Reilley Benson.
Stanford PhD thesis, 2017.
Stanford ICME Gene Golub Doctoral Dissertation Award winner .
paper pdf