Clustering in graphs and hypergraphs with categorical edge labels

Ilya Amburg
Cornell University
ia244@cornell.edu

Nate Veldt
Cornell University
nveldt@cornell.edu

Austin R. Benson
Cornell University
arb@cs.cornell.edu

ABSTRACT

Modern graph or network datasets often contain rich structure that goes beyond simple pairwise connections between nodes. This calls for complex representations that can capture, for instance, edges of different types as well as so-called “higher-order interactions” that involve more than two nodes at a time. However, we have fewer rigorous methods that can provide insight from such representations. Here, we develop a computational framework for the problem of clustering hypergraphs with categorical edge labels — or different interaction types — where clusters correspond to groups of nodes that frequently participate in the same type of interaction.

Our methodology is based on a combinatorial objective function that is related to correspondence between clusters on graphs but enables the design of much more efficient algorithms that also seamlessly generalize to hypergraphs. When there are only two label types, our objective can be optimized in polynomial time, using an algorithm based on minimum cuts. Minimizing our objective becomes NP-hard with more than two label types, but we develop fast approximation algorithms based on linear programming relaxations that have theoretical cluster quality guarantees. We demonstrate the efficacy of our algorithms and the scope of the model through problems in edge-label community detection, clustering with temporal data, and exploratory data analysis.

ACM Reference Format:

1 INTRODUCTION

Representing data as a graph or network appears in numerous application domains, including, for example, social network analysis, biological systems, the Web, and any discipline that focuses on modeling interactions between entities [5, 25, 48]. The simple model of nodes and edges provides a powerful and flexible abstraction, and over time, more expressive models have been developed to incorporate richer structure in data. In one direction, models now use more information about the nodes and edges: multilayer networks capture nodes and edges of different types [35, 47], meta-paths formalize heterogeneous relational structure [24, 59], and graph convolutional networks use node features for prediction tasks [34]. In another direction, group, higher-order, or multi-way interactions between several nodes — as opposed to pairwise interactions — are paramount to the model. In this space, interaction data is modeled with hypergraphs [9, 65, 66], tensors [1, 7, 52], affiliation networks [39], simplicial complexes [10, 50, 53, 55], and motif representations [11, 54]. Designing methods that effectively analyze the richer structure encoded by these expressive models is an ongoing challenge in graph mining and machine learning.

In this work, we focus on the fundamental problem of clustering, where the general idea is to group nodes based on some similarity score. While graph clustering methods have a long history [26, 42, 46, 56], existing approaches for rich graph data do not naturally handle networks with categorical edge labels. In these settings, a categorical edge label encodes a type of discrete similarity score — two nodes connected by an edge with category label c are similar with respect to c. This structure arises in a variety of settings: brain regions are connected by different types of connectivity patterns [20]; edges in coauthorship networks are categorized by publication venues, and copurchasing data can contain information about the type of shopping trip. In the examples of coauthorship and copurchasing, the interactions are also higher-order — publications can involve multiple authors and purchases can be made up of several items. Thus, we would like a scalable approach to clustering nodes using a similarity score based on categorical edge labels that work well for higher-order interactions.

Here, we solve this problem with a novel clustering framework for edge-labeled graphs. Given a network with k edge labels (categories or colors), we create k clusters of nodes, each corresponding to one of the labels. As an objective function for cluster quality, we seek to simultaneously minimize two quantities: (i) the number of edges that cross cluster boundaries, and (ii) the number of intra-cluster “mistakes”, where an edge of one category is placed inside the cluster corresponding to another category. This approach results in a clustering of nodes that respects both the coloring induced by the edge labels and the topology of the original network. We develop this computational framework in a way that seamlessly generalizes to the case of hypergraphs to model higher-order interactions, where hyperedges have categorical labels.

The style of our objective function is related to correlation clustering in signed networks [8], as well as its generalization for discrete labels (colors), chromatic correlation clustering [12, 13], which are based on similar notions of mistake minimization. However, a key difference is that our objective function does not penalize placing nodes not connected by an edge in the same cluster. This modeling difference provides serious advantages in terms of tractability, scalability, and the ability to generalize to higher-order interactions.

We first study the case of edge-labeled (edge-colored) graphs with only two categories. We develop an algorithm that optimizes
our Categorical Edge Clustering objective function in polynomial time by reducing the problem to a minimum s-t graph cut problem on a related network. We then generalize this construction to facilitate quickly finding the optimal solution exactly for hypergraphs.

This is remarkable on two fronts. First, typical clustering objectives such as minimum bisection, ratio cut, normalized cut, and modularity are NP-hard to optimize even in the case of two clusters [17, 61]. And in correlation clustering, having two edge types is also NP-hard [8]. In contrast, our setup admits a simple algorithm based on minimum s-t cuts. Second, our approach seamlessly generalizes to hypergraphs. Importantly, we do not approximate hyperedge cuts with weighted graph cuts, which is a standard heuristic approach (or colors), and our approach treats binned edge timestamps as categories, and our approach

with weighted graph cuts, which is a standard heuristic approach

This is remarkable on two fronts. First, typical clustering objectives such as minimum bisection, ratio cut, normalized cut, and modularity are NP-hard to optimize even in the case of two clusters [17, 61]. And in correlation clustering, having two edge types is also NP-hard [8]. In contrast, our setup admits a simple algorithm based on minimum s-t cuts. Second, our approach seamlessly generalizes to hypergraphs. Importantly, we do not approximate hyperedge cuts with weighted graph cuts, which is a standard heuristic approach (or colors), and our approach treats binned edge timestamps as categories, and our approach

2 PRELIMINARIES AND RELATED WORK

Let \(G = (V, E, C, \ell) \) be an edge-labeled (hyper)graph, where \(V \) is a set of nodes, \(E \) is a set of (hyper)edges, \(C \) is a set of categories (or colors), and \(\ell : E \rightarrow C \) is a function which labels every edge with a category. Often, we just use \(C = \{1, 2, \ldots, k\} \), and we can think of \(\ell \) as a coloring of the edges. We use "category", "color", and "label" interchangeably, as these terms appear in different types of literature (e.g., "color" is common for discrete labeling in graph theory and combinatorics). We use \(k = |C| \) to denote the number of categories, \(E_c \subseteq E \) for the set of edges having label \(c \), and \(r \) for the maximum hyperedge size (i.e., order), where the size of a hyperedge is the number of nodes it contains (in the case of graphs, \(r = 2 \)).

2.1 Categorical edge clustering objective

Given \(G \), we consider the task of assigning a category (color) to each node in such a way that nodes in category \(c \) tend to participate in edges with label \(c \); in this setup, we partition the nodes into \(k \) clusters with one category per cluster. We encode the objective function as minimizing the number of "mistakes" in a clustering, where a mistake is an edge that either (i) contains nodes assigned to different clusters or (ii) is placed in a cluster corresponding to a category which is not the same as its label. In other words, the objective is to minimize the number of edges that are not completely contained in the cluster corresponding to the edge's label.

Let \(Y \) be a categorical clustering, or equivalently, a coloring of the nodes, where \(Y(i) \) denotes the color of node \(i \). Let \(m_Y : E \rightarrow \{0, 1\} \) be the category-mistake function, defined for an edge \(e \in E \) by

\[
m_Y(e) = \begin{cases} 1 & \text{if } Y(i) \neq \ell(e) \text{ for any node } i \in e, \\ 0 & \text{otherwise}. \end{cases}
\]

Then, the Categorical Edge Label Clustering objective score for the clustering \(Y \) is simply the number of mistakes:

\[
\text{CatEdgeClus}(Y) = \sum_{e \in E} m_Y(e).
\]

This form applies equally to hypergraphs; a mistake is a hyperedge with a node placed in a category different from the edge's label.

Our objective can easily be modified for weighted (hyper)graphs. If a hyperedge \(e \) has weight \(w(e) \), then the category mistake function simply becomes \(m_Y(e) = w(e) \) if \(Y(i) \neq \ell(e) \) for any node \(i \) in \(e \) and is 0 otherwise. Our results easily generalize to this setting, but we present results in the unweighted case for ease of notation.

2.2 Relation to Correlation Clustering

Our objective function is related to chromatic correlation clustering [12], in which one clusters an edge-colored graph into any number of clusters, and a penalty is incurred for any one of three types of mistakes: (i) an edge of color \(c \) is placed in a cluster of a different color; (ii) an edge of any color has nodes of two different colors; or (iii) a pair of nodes not connected by an edge is placed inside a cluster. This objective is a strict generalization of the classical correlation clustering objective [8].

Our Categorical Edge Clustering objective is similar, except we remove the penalty for placing non-adjacent nodes in the same cluster (mistakes of type (iii)). The chromatic correlation clustering objective treats the absence of an edge between nodes \(i \) and \(j \) as a strong indication that these nodes should not share the same label. We instead interpret a non-edge simply as missing information: the absence of an edge may be an indication that \(i \) and \(j \) do not belong together, but it may also be the case that they have a relationship that simply has not been measured. This is a natural assumption with large, sparse real-world graphs, where we rarely have information on all pairs of entities. Another key difference between chromatic correlation clustering and our objective is that in the former, one may form several clusters for the same color. For our objective, merging two separate clusters for the same color can only improve the objective.

Our formulation also leads to several differences in computational tractability. Chromatic correlation clustering is NP-hard in general, and there are several approximation algorithms [6, 12, 13].
There are several methods for clustering general data points that have categorical features [14, 28, 30], but these methods are not designed for clustering graph data. There are also methods for clustering in graphs with attributes [4, 15, 62, 67]; these focus on vertex features and do not connect categorical features to cluster indicators. Finally, there are several clustering approaches for multilayer networks modeling edge types [23, 38, 47], but the edge types are not meant to be indicative of a cluster type.

3 THE CASE OF TWO CATEGORIES

In this section we design algorithms to solve the Categorical Edge Clustering problem when there are only two categories. In this case, both the graph and hypergraph problem can be reduced to a minimum s-t cut problem, which can be efficiently solved.

3.1 An algorithm for graphs

To solve the two-category problem on graphs, we first convert it to an instance of a weighted minimum s-t cut problem on a graph with no edge labels. Recall that E_c is the set of edges with category label c. Given the edge-labeled graph $G = (V, E, C, ℓ)$, we construct a new graph $G' = (V', E')$ as follows:

- Introduce a terminal node v_t for each of the two labels $c \in L$, so that $V' = V \cup V_t$ where $V_t = \{v_t \mid c \in L\}$.
- For each label c and each $(i, j) \in E_c$, introduce edges $(i, j), (v_c, i)$ and (v_c, j), all of which have weight $\frac{1}{2}$.

Since there are only two categories c_1 and c_2, let $s = v_{c_1}$ be treated as a source node and $t = v_{c_2}$ be treated as a sink node. The minimum s-t cut problem in G' is defined by

$$\min\limits_{S \subseteq V} \text{cut}(S \cup s),$$

where $\text{cut}(T)$ is the weight of edges crossing from nodes in $T \subseteq V'$ to its complement set $T' = V' \setminus T$. This classical problem that can be efficiently solved in polynomial time, and we have an equivalence with the original two-category edge clustering objective.

Proposition 3.1. For any $S \subseteq V$, the value of $\text{cut}(S \cup s)$ in G' is equal to the value of $\text{CatEdgeClust}(S, S)$, where S and S' are the clusters for categories c_1 and c_2.

Proof. Let edge $e = (i, j)$ be a "mistake" in the clustering ($\mu_y(e) = 1$) and without loss of generality have color c_1. If i and j are assigned to c_2, then the half-weight edges (i, v_{c_1}) and (j, v_{c_1}) are cut.

Thus, a minimizer for the s-t cut in G' directly gives us a minimizer for our Categorical Edge Clustering objective. We next provide a similar reduction for the case of hypergraphs.

3.2 An algorithm for hypergraphs

We now develop a method to exactly solve our objective in the two-color case with arbitrary order-r hypergraphs, and we again proceed by reducing to an s-t cut problem. Our approach is to construct a subgraph for every hyperedge and paste these subgraphs together to create a new graph $G' = (V', E')$, where minimum s-t cuts produce partitions that minimize the Categorical Edge Clustering objective. A similar construction has been used for a P^r Potts model in computer vision [36], and our reduction is the first direct application of this approach to network analysis.

We start by adding terminal nodes $s = v_{c_1}$ and $t = v_{c_2}$ (corresponding to categories c_1 and c_2) as well as all nodes in V to V'. For each hyperedge $e = (v_1, \ldots, v_r)$ of G, we add a node u_e to V' and add the following directed edges to E' (see also Figure 1):

- If e has label c_1, add $(s, u_e), (u_e, v_1), \ldots, (u_e, v_r)$ to E'.
- If e has label c_2, add $(u_e, t), (v_1, u_e), \ldots, (v_r, u_e)$ to E'.

Again, the minimum s-t cut on G' produces a partition that also minimizes the categorical edge clustering objective, as shown below.

Theorem 3.2. Let S^* be the solution to the minimum cut problem. Then the label assignment Y defined by $Y[i] = c_1$ if $i \in S^*$ and $Y[i] = c_2$ if $i \in S'$ minimizes the Categorical Edge Clustering objective.

Proof. Consider a hyperedge $e = (v_1, \ldots, v_r)$ with label c_2. We show that $\mu_y(e)$ precisely corresponds to an s-t cut on the subgraph of G' induced by e (Figure 1, right). If $Y[v_1] = \ldots = Y[v_r] = c_2$, then $v_1, \ldots, v_r \in S^*$ and the cost of the minimum s-t cut is 0 (via placing s by itself). Now suppose at least one of $Y[v_1], \ldots, Y[v_r]$ equals c_1. Without loss of generality, say that $Y[v_1] = c_1$, so $v_1 \in S^*$. If $u_e \in S^*$, we cut (u_e, t) and none of the edges (v_i, u_e) contribute to the cut. If $u_e \in S'$, we cut (v_1, u_e); and it cannot be the case that (v_i, u_e) is cut for $i \neq 1$ (otherwise, we could have reduced the cost of the minimum cut by placing $u_e \in S^*$).

To summarize, if edge e with label c_2 induces a mistake in the clustering, then the cut contribution is 1; otherwise, it is 0. A symmetric argument holds if e has label c_1.
This procedure also works for the special case of graphs. However, G' has more nodes and directed edges in the more general reduction, which can increase running time in practice.

Computational considerations. Both algorithms solve a single minimum cut problem on a graph with $O(T)$ vertices and $O(T)$ edges, where $T = \sum_{e \in E} |e|$ is the sum of hyperedge degrees (this is bounded above by $r|E|$, where r is the order of the hypergraph). In theory, this can be solved in $O(T^2)$ time in the worst case [49]. However, practical performance is often much different than this worst-case running time. That being said, we do find the maximum flow formulations to often be slower than the linear programming relaxations we develop in Section 4. We emphasize that being able to solve the Categorical Edge Clustering objective in polynomial time for two colors is itself interesting, and that the algorithms we use for experiments in Section 5 are able to scale to large hypergraphs.

Considerations for unlabeled edges. Our formulation assumed that all of the (hyper)edges carry a unique label. However, in some datasets, there may be edges with no label or multiple labels. In these cases, the edge’s existence still signals that its constituent nodes should be colored the same — just not with a particular color. A natural augmentation to our objective is then to penalize this edge only when it is not entirely contained in some cluster. Our reductions above handle this case by simply connecting the corresponding nodes in V' to both terminals instead of just one.

4 MORE THAN TWO CATEGORIES

We now move to the general formulation of Categorical Edge Clustering when there can be more than two categories or labels. We first show that optimizing the objective in this setting is NP-hard. After, we develop approximation algorithms based on linear programming relaxations and multiway cut problems with theoretical guarantees on solution quality. Many of these algorithms are practical, and we use them in numerical experiments in Section 5.

4.1 NP-hardness of Categorical Edge Clustering

We now prove that the Categorical Edge Clustering objective is NP-hard for the case of three categories. Our proof follows the structure of the NP-hardness reduction for 3-terminal multiway cut [21], and the reduction is from the NP-hard maximum cut (maxcut) problem.

Consider an unweighted instance of maxcut on a graph $G = (V, E)$. To convert this into an instance of 3-color Categorical Edge Clustering, we replace each edge $(u, v) \in E$ with the 3-color gadget in Figure 2. We will use the following lemma in our reduction.

Lemma 4.1. In any node coloring of the 3-color gadget (Figure 2), the minimum number of edges whose color does not match both of its nodes (i.e., number of mistakes in categorical edge clustering) is three. This only occurs when one of (u, v) is red and the other is blue.

Proof. If u is red and v is blue, then we can achieve the minimum three mistakes by clustering each node in the gadget with its horizontal neighbor in Figure 2 or alternatively by placing each node with its vertical neighbor. If u and v are constrained to be in the same cluster, then the optimal solution is to place all nodes in the gadget together, which makes 4 mistakes. It is not hard to check that all other color assignments yield a penalty of 4 or more.

Now let G' be the instance of 3-color Categorical Edge Clustering obtained by replacing each edge $(u, v) \in E$ with a 3-color gadget.

Theorem 4.2. There exists a partition of the nodes in G into two sets with K or more cut edges if and only if there is a 3-coloring of the nodes in G' that makes $4|E| - K$ or fewer mistakes.

Proof. Consider first a cut in $G = (V, E)$ of size $K' \geq K$. Let S_r and S_b denote the two clusters in the corresponding bipartition of G, mapping to red and blue clusters. Consider each $(u, v) \in E$ in turn along with its 3-color gadget. If $(u, v) \in E$ is cut, cluster all nodes in its gadget with their vertical neighbor if $u \in S_r$ and $v \in S_b$, and cluster them with their horizontal neighbor if $u \in S_r$ and $v \in S_b$. Either way, this makes exactly 3 mistakes. If (u, v) is not cut, then label all nodes in the gadget red if $u, v \in S_r$, or blue if $u, v \in S_b$, which makes exactly 4 mistakes. The total number of mistakes in G' is then $3K' + 4(|E| - K') = 4|E| - K' \leq 4|E| - K$. Now start with G' and consider a node coloring that makes $B' \leq B = 4|E| - K$ mistakes. There are $|E| 3$-color gadgets in G'. We claim that there must be at least K of these gadgets at which only three mistakes are made. If this were not the case, then assume exactly $H < K$ gadgets where 3 mistakes are made. By Lemma 4.1, there are $|E| - H$ gadgets where at least 4 mistakes are made, so the total number of mistakes is $B' \geq 3H + 4(|E| - H) = 4|E| - H > 4|E| - K$, contradicting our initial assumption. Thus, by Lemma 4.1, there are at least K edges $(u, v) \in E$ where one of (u, v) is red and the other is blue, and the maximum cut in G is at least K.

Consequently, if we can minimize Categorical Edge Clustering in polynomial time, we can solve the maximum cut decision problem in polynomial time, and Categorical Edge Clustering is thus NP-hard. As a natural next step, we turn to approximation algorithms.

4.2 Algorithms based on LP relaxations

We now develop approximation algorithms by relaxing an integer linear programming (ILP) formulation of our problem. We design the algorithms for hypergraphs, with graphs as a special case. Suppose we have an edge-labeled hypergraph $G = (V, E, C)$ with $C = \{1, \ldots, k\}$, where $E_c = \{e \in E \mid \ell(e) = c\}$. The Categorical Edge Clustering objective can be written as the following ILP:

$$\begin{align*}
\min & \sum_{c \in C} \sum_{e \in E_c} x_e \\
\text{s.t.} & \quad \text{for all } v \in V: \sum_{c=1}^k x^v_c = k - 1 \\
& \quad \text{for all } c \in C, e \in E_c: \quad x^v_c \leq x_e \quad \text{for all } v \in e \\
& \quad x^v_c, x_e \in \{0, 1\} \quad \text{for all } c \in C, v \in V, e \in E.
\end{align*}$$

(4)
Algorithm 1: A simple 2-approximation for Categorical Edge Clustering based on an LP relaxation. Algorithm 2 details a more sophisticated rounding scheme.

1 **Input:** Labeled hypergraph \(G = (V, E, C, \ell) \).
2 **Output:** Label \(Y[i] \) for each node \(i \in V \).
3 Solve the LP-relaxation of ILP (4).
4 **for** \(c \in C \) **do**
5 \(S_c \leftarrow \{ v \in V \mid x^c_v < 1/2 \} \).
6 **for** \(i \in S_c \) **do** assign \(Y[i] \leftarrow c \).
7 **end**
8 **end**
9 Assign unlabeled nodes to an arbitrary \(c \in C \).

In this ILP, \(x^c_v = 1 \) if node \(v \) is not assigned to category \(c \), and is zero otherwise. The first constraint in (4) ensures that \(x^c_v \) is zero for exactly one category. The second constraint says that in any minimizer, \(x^c_v = 0 \) if and only if all nodes in \(c \) are colored the same as \(c \); otherwise, \(x^c_v = 1 \). If we relax the binary constraints in (4):

\[
0 \leq x^c_v \leq 1, \quad 0 \leq x_v \leq 1,
\]

then the ILP is just a linear program (LP) that can be solved in polynomial time.

When \(k = 2 \), the constraint matrix of the LP relaxation is totally unimodular as it corresponds to the incidence matrix of a balanced signed graph [64]. Thus, all feasible solutions for the LP satisfy the binary constraints of the original ILP (4), which is another proof that the two-category problem can be solved in polynomial time.

With more than two categories, the LP solution can be fractional, and we cannot directly determine a node assignment from the LP solution. Nevertheless, solving the LP provides a lower bound on the optimal solution, and we show how to round the result to produce a clustering within a bounded factor of the lower bound. Algorithm 1 contains our rounding scheme, and the following theorem shows that it provides a clustering within a factor of 2 from optimal.

Theorem 4.3. Algorithm 1 returns a worst 2-approximation to the Categorical Edge Clustering objective.

Proof. First, for any \(v \in V \), \(x^c_v < 1/2 \) for at most one category \(c \in C \) in the solution. If this were not the case, there would exist two colors \(a \) and \(b \) such that \(x^a_v < 1/2 \) and \(x^b_v < 1/2 \) and

\[
\sum_{c=1}^k x^c_v = x^a_v + x^b_v + \sum_{c \in C \setminus \{a, b\}} x^{c'}_v < 1 + k - 2 = k - 1,
\]

which violates the first constraint of the LP relaxation. Therefore, each node will be assigned to at most one category. Consider any \(e \in E \), for which all nodes are not assigned to \(c \). This means that there exists at least one node \(v \in e \) such that \(x^c_v \geq 1/2 \). Thus, the Algorithm incurs a penalty of one for this edge, but the LP relaxation pays a penalty of \(x^c_v \geq x^c_v \geq 1/2 \). Therefore, every edge mistake will be accounted for within a factor of 2.

We can get better approximations in expectation with a more sophisticated randomized rounding algorithm (Algorithm 2). In this approach, we form sets \(S'_c \) based on a threshold parameter \(t \) so that each node may be included in more than one set. To produce a valid clustering, we first generate a random permutation of colors to indicate the (arbitrary) priority of one color over another. For any \(v \in V \) contained in more than one set \(S'_c \), we assign \(v \) to the cluster with highest priority. By carefully setting the parameter \(t \), this approach has better guarantees than Algorithm 1.

Theorem 4.4. If \(t = k/(2k - 1) \), Algorithm 2 returns an at worst \((2 - 1/k) \)-approximation for Categorical Edge Clustering in expectation. And if \(t = (r + 1)/(2r + 1) \), Algorithm 2 returns an at worst \((2 - 1/(1 + r)) \)-approximation in expectation.

Proof. For the choices of \(t \) listed in the statement of the theorem, \(t \in [1/2, 2/3] \) as long as \(r \geq 2 \) and \(k \geq 2 \), which is always true. We say that color \(c \) wants node \(v \) if \(v \in S_c \), but this does not automatically mean that \(v \) will be colored as \(c \). For any \(v \in V \), there exist at most two colors that want \(v \). If \(v \) were wanted by more than two colors, this would mean \(v \in S_a \cap S_b \cap S_c \) for three distinct colors \(a, b, c \). This leads to a violation of the first constraint in (4):

\[
x^a_v + x^b_v + x^c_v + \sum_{i \in \{a, b, c\}} x^i_v < 3t + (k - 3) \leq 2 + (k - 3) = (k - 1).
\]

Consider an arbitrary \(t \in (1/2, 2/3) \). We can bound the expected number of mistakes made by Algorithm 2 and pay for them individually in terms of the LP lower bound. To do this, we consider a single hyperedge \(e \in E \), with color \(c \) and bound the probability of making a mistake and the LP cost of this hyperedge.

Case 1: \(x_c \geq t \). In this case, we are guaranteed to make a mistake at edge \(e \), since \(x_c \geq t \) implies there is some node \(v \in e \) such that \(x^c_v \geq t \), and so \(v \notin S_c \). However, because the LP value at this edge is \(x_c \geq t \), we pay for our mistake within a factor of \(2/t \).

Case 2: \(x_c < t \). Now, color \(c \) wants every node in the hyperedge \(e \in E \). If no other colors want any node \(v \in e \), then Algorithm 2 will not make a mistake at \(e \), and we have no mistake to account for. Assume then that there is some node \(v \in e \) and a color \(c' \neq c \) such that \(c' \) wants \(v \). This implies that \(x^c_v < t \), from which we have that \(x^c_v \geq 1 - x^c_v > 1 - t \) (to satisfy the first inequality in (4)). Thus,

\[
x_c \geq x^c_v > 1 - t.
\]

This gives a lower bound of \(1 - t \) on the contribution of the LP objective at edge \(e \).

In the worst case, each \(v \in e \) may be wanted by a different \(c' \neq c \), and the number of colors other than \(c \) that want some node in \(e \) is bounded above by \(B_1 = k - 1 \) and \(B_2 = r \). We avoid a mistake at \(e \) if and only if \(c \) has higher priority than all of the alternative colors,

Algorithm 2: LP relaxation for Categorical Edge Clustering with a randomized rounding scheme. Theorem 4.4 gives approximation guarantees based on \(t \).

1 **Input:** Labeled hypergraph \(G = (V, E, C = \{1, 2, \ldots, k\}, \ell) \); rounding parameter \(t \in [1/2, 2/3] \).
2 **Output:** Label \(Y[i] \) for each node \(i \in V \).
3 Solve the LP-relaxation of ILP (4).
4 **for** \(c \in \pi \) uniform random permutation of \(\{1, 2, \ldots, k\} \).
5 **for** \(c = \pi_1, \ldots, \pi_k \) do
6 \(S_c \leftarrow \{ v \in V \mid x^c_v < t \} \).
7 **for** \(i \in S_c \) **do** assign \(Y[i] \leftarrow \pi(c) \).
8 **end**
9 Assign unlabeled nodes to an arbitrary \(c \in C \).
where priority is established by the random permutation \(\pi \). Thus,

\[
\Pr[\text{mistake at } e \mid x_e < t] \leq \frac{B_i}{2B_i+1} = \min \left\{ \frac{t}{r+1}, \frac{k-1}{k} \right\}.
\] (6)

Recall from (5) that the LP pays \(x_e > 1-t \). Therefore, the expected cost at a hyperedge \(e \in E_c \) satisfying \(x_e < t \) is at most \(\frac{B_i}{2B_i+1} \) in expectation. Taking the worst approximation factor from Case 1 and Case 2. Algorithm 2 will in expectation provide an approximation factor of \(\frac{\sqrt{r+1}}{r+1} \). This will be minimized when the approximation bounds from Cases 1 and 2 are equal, which occurs when \(t = \frac{B_i}{2B_i+1} \). If \(B_i = k - 1 \), then \(t = \frac{k-1}{2k-1} \) and the expected approximation factor is \(2 - 1/k \). And if \(B_i = r \), then \(t = \frac{r}{r+1} \) and the expected approximation factor is 2 - 1/(r + 1).

For the graph case (\(r = 2 \)), this theorem implies a \(\frac{\sqrt{r+1}}{r+1} \)-approximation for Categorical Edge Clustering with any number of categories.

Computational considerations. The linear program has \(O(|E|) \) variables and sparse constraints, which written as a matrix inequality would have \(O(T) \) non-zeroes, where \(T \) is again the sum of hyperedge degrees. Improving the best theoretical running times for solving linear programs is an active area of research [19, 40], but practical performance of solving linear programs is often much different than worst-case guarantees. In Section 5, we show that a high-performance LP solver from Gurobi is extremely efficient in practice, finding solutions in seconds on hypergraphs with several categories and tens of thousands of hyperedges in tens of seconds.

4.3 Algorithms based on multiway cut

We now provide alternative approximations based on multiway cut, similar to the reductions from Section 3. Again, we develop this technique for general hypergraphs and graphs are a special case.

Suppose we have an edge-labeled hypergraph \(G = (V, E, C, \ell) \). We construct a new graph \(G' = (V', E') \) as follows. First, introduce a terminal node \(v_c \) for each category \(c \in C \), so that \(V' = V \cup \{v_c \mid c \in C\} \). Second, for each hyperedge \(e = \{v_1, \ldots, v_r\} \in E \), add a clique on nodes \(v_1, \ldots, v_r, v_c \) to \(E' \), where each edge in the clique has weight \(1/r \). (Overlapping cliques are just additive on the weights.)

The multiway cut objective is the number of cut edges in any partition of the nodes into \(k \) clusters such that each cluster contains exactly one of the terminal nodes. We can associate each cluster with a category, and any clustering \(Y \) of nodes in Categorical Edge Clustering for \(G \) can be mapped to a candidate partition for multiway cut in \(G' \). Let \textbf{MultiwayCut}(\(Y \)) denote the value of the multiway cut objective for the clustering \(Y \). The next result relates multiway cut to Categorical Edge Clustering.

Theorem 4.5. For any clustering \(Y \),

\[
\text{CatEdgeClus}(Y) \leq \text{MultiwayCut}(Y) \leq \frac{r + 1}{2} \text{CatEdgeClus}(Y).
\]

Proof. Let \(e = \{v_1, \ldots, v_r\} \) with label \(\ell(e) = \ell \) be a hyperedge in \(G \). We can show the bounds hold when considering the associated clique in \(G' \) and then apply additivity. First, if \(e \) is not a mistake in the Categorical Edge Clustering, then no edges are cut in the clique. If \(e \) is a mistake in the Categorical Edge Clustering, then there are some edges cut in the associated clique. The smallest possible contribution to the multiway cut objective occurs when all but one node is assigned to \(c \). Without loss of generality, consider this to be \(v_1 \), which is in \(r \) cut edges: \((r - 1)\) corresponding to the edges from \(v_1 \) to other nodes in the hyperedge, plus one for the edge from \(v_1 \) to the terminal \(v_c \). Each of the \(r \) cut edges has weight \(1/r \), so the multiway cut contribution is 1.

The largest possible cut occurs when all nodes in \(e \) are colored differently from \(e \). In this case, the edges incident to each node in the clique are all cut. For any one of these nodes, the sum of edge weights incident to that node equals 1 by the same arguments as above. This cost is incurred for each of the \(r \) nodes in the hyperedge plus the terminal node \(v_c \), for a total weight of \(r + 1 \). Since each edge is counted twice, the actual penalty is \((r + 1)/2\).

Computational considerations. Minimizing the multiway cut objective is NP-hard [21], but there are many approximation algorithms. Theorem 4.5 implies that any \(p \)-approximation for multiway cut provides a \((p + 1)/2\)-approximation for Categorical Edge Clustering. For example, the simple isolating cuts heuristic yields a \(\frac{r+1}{2} \)-approximation, and more sophisticated algorithms provide a \(\frac{r+1}{2} \)-approximation [18]. For our experiments, we use the isolating cut approach, which solves \(O(k) \) maximum flow problems on a graph with \(O(r|R|) \) vertices and \(O(r^2|R|) \) edges. This can be expensive in practice. We will find that the LP relaxation performs better in terms of solution quality and running time.

A node-weighted multiway cut reduction. We also provide an approximation based on a **direct reduction** to a node-weighted multiway cut (NWMC) problem that is of theoretical interest. As above, suppose we have an edge-labeled hypergraph \(G = (V, E, C, \ell) \). We construct a new graph \(G'' = (V', E') \) as follows. First, introduce a terminal node \(v_c \) for each category \(c \in C \), so that \(V' = V \cup \{v_c \mid c \in C\} \). Assign infinite weight to all nodes in \(V' \). Next, for each hyperedge \(e = \{v_1, \ldots, v_r\} \in E \), add an auxiliary node \(v_e \) with weight 1. Next, append edges \((v_e, v_1), \ldots, (v_e, v_r)\) as well as \((v_e, v_c)\) for \(\ell(e) = c \) to \(E' \). It straightforward to check that deleting \(v_e \) corresponds to making a mistake at hyperedge \(e \). Thus an optimizer of NWMC on \(G'' \) is also an optimizer of Categorical Edge Clustering on \(G \).

Solving NWMC is also NP-hard [29], and there are again well-known approximation algorithms. The above discussion implies any \(p \)-approximation to NWMC also provides a \(p \)-approximation for Categorical Edge Clustering. For example, an LP-based algorithm has a \((2 - 1/k)\)-approximation [29]. This approximation is better but the LPs are too large to be practical; however, the improvement of a direct algorithm suggests room for better theoretical results.

4.4 Approximation through a linear objective

The Categorical Edge Clustering objective assigns a penalty of 1 regardless of the proportion of the nodes in a hyperedge which are clustered away from hyperedge’s color. Although useful, we might consider alternative penalties that value the extent to which each hyperedge is satisfied in the final clustering. One natural penalty for a hyperedge of color \(c \) is the number of nodes within that hyperedge that are not clustered into that color. With such a “linear” mistake function, we define the Categorical Node Clustering Objective as

\[
\text{CatNodeClus}(Y) = \sum_{e \in E} m_Y(e), \text{ where } m_Y(e) = \sum_{i : e \in I(i) \neq \ell(i)}.
\]

It turns out that this objective is optimized with a simple majority vote algorithm that assigns a node to the majority color of all hyperedges that contain it.
We first evaluate our methods on several real-world edge-labeled graphs. Our hyperedge implementation is designed for hypergraph clustering, but we still use them as a baseline for comparison. The other baselines are Chromatic Balls (CB) and Lazy Chromatic Balls (LCB) — two algorithms for chromatic correlation clustering [12]. These methods repeatedly select an unclustered edge and greedily grow a cluster around it by adding nodes that share edges with the same label. Unlike our methods, CB and LCB distinguish between category (color) assignment and cluster assignment: two nodes may be colored the same but placed in different clusters. To provide a uniform comparison among methods, we merge distinct clusters of the same category into one larger cluster. These methods are not designed for hypergraph clustering, but we still use them for comparison by reducing a hypergraph to an edge-labeled graph, where nodes i and j share an edge in category c if they appear together in more hyperedges of category c than any other.

Results. Table 1 reports how well each algorithm solves the Categorical Edge Clustering objective. We report the approximation guarantee (the ratio between each algorithm’s output and the LP lower bound), as well as the edge satisfaction, which is the fraction of hyperedges that end up inside a cluster with the correct label. Maximizing edge satisfaction is equivalent to minimizing the number of edge label mistakes but provides an intuitive way to interpret and analyze our results. High edge satisfaction scores imply that a dataset is indeed characterized by large groups of objects that tend to interact in a certain way with other members of the same group. A low satisfaction score indicates that a single label for each node may be insufficient to capture the intricacies of the data.

In all cases, the LP solution is integral or nearly integral, indicating that LP does an extremely good job solving the original NP-hard objective, often finding an exact optimal solution. As a result, it outperforms all other methods on all datasets. Furthermore, on nearly all datasets, we can solve the LP within a few seconds or a few minutes. Walmart is the exception—given the large number of categories, the LP contains nearly 4 million variables, and far more constraints. Other baseline algorithms can be faster, but they do not perform as well in solving the objective.
The high edge satisfaction scores indicate that our method does the best job identifying sets of nodes which as a group tend to participate in one specific type of interaction. In contrast, the MV algorithm identifies nodes that individually exhibit a certain behavior, but the method does not necessarily form clusters of nodes that as a group interact in a similar way. Because our LP method outperforms our IC approach on all datasets in terms of both speed and accuracy, in the remaining experiments we focus only on comparing LP against other competing algorithms.

Table 1: Summary statistics of datasets — number of nodes $|V|$, number of (hyper)edges $|E|$, maximum hyperedge size r, and number of categories K — along with Categorical Edge Clustering performance for the algorithms LP-round (LP), Majority Vote (MV), Cat-IsolCut (IC), ChromaticBalls (CB) and LazyChromaticBalls (LCB). Performance is listed in terms of the approximation guarantee given by the LP lower bound (lower is better) and in terms of the edge satisfaction, which is the fraction of edges that are not mistakes (higher is better; see Eq. (2)). Our LP method performs the best overall and can even find exactly (or nearly) optimal solutions to the NP-hard objective by matching the lower bound. We also report the running times for rough comparison, though our implementations are not optimized for efficiency. Due to its simplicity, MV is extremely fast.

| Dataset | $|V|$ | $|E|$ | r | K | Approx. Guarantee | Edge Satisfaction | Runtime (in seconds) |
|-----------------------|------|------|-----|-----|-------------------|-------------------|---------------------|
| | | | | | LP MV IC CB LCB | LP MV IC CB LCB | |
| Brain | 638 | 21180| 2 | 2 | 1.0 1.01 1.27 1.56 1.41 | 0.64 0.64 0.55 0.44 0.5 | 1.8 0.0 1.9 0.4 0.8 |
| MAG-10 | 80198| 51889| 25 | 10 | 1.0 1.18 1.37 1.44 1.35 | 0.62 0.55 0.48 0.45 0.49 | 51 0.1 203 333 699 |
| Cooking | 6714 | 39774| 65 | 20 | 1.0 1.21 1.21 1.23 1.24 | 0.2 0.03 0.03 0.01 0.01 | 72 0.0 1223 4.6 6.7 |
| DAWN | 2109 | 87104| 22 | 10 | 1.0 1.09 1.0 1.31 1.15 | 0.53 0.48 0.53 0.38 0.46 | 13 0.0 190 0.3 0.4 |
| Walmart-Trips | 88837| 65988| 25 | 44 | 1.0 1.2 1.19 1.26 1.26 | 0.24 0.09 0.09 0.04 0.05 | 7686 0.2 68801 493 1503|

5.2 Categorical Edge Community Detection

Next we demonstrate the superiority of LP in detecting communities of nodes with the same node labels (i.e., categorial communities), based on labeled edges between nodes. We perform experiments on synthetic edge-labeled graphs, as well as two real-world datasets, where we reveal edge labels indicative of the ground truth node labels and see how well we can recover the node labels.

Synthetic Model. We use the synthetic random graph model of Bonchi et al. for chromatic correlation clustering [12]. A user specifies the number of nodes n, colors L, and clusters K, as well as edge parameters p, q, and w. The model first assigns nodes to clusters uniformly at random, and then assigns clusters to colors uniformly at random. (Due to the random assignment, some clusters and colors may not be sampled. Thus, K and L are upper bounds on the number of distinct clusters and unique colors.) For nodes i and j in the same cluster, the model connects them with an edge with probability p. With probability $1-w$, the edge is the same color as i and j. Otherwise, it is a uniform random color. If i and j are in different clusters, an edge is drawn with probability q and given a uniform random color. We will also use a generalization of this model to synthetic r-uniform hypergraphs. The difference is that we assign colored hyperedges to r-tuples of the n nodes, rather than just pairs, and we assign each cluster to a unique color.

Synthetic Graph Results. We set up two experiments, where performance is measured by the fraction of nodes placed in the correct cluster (node label accuracy). In the first, we form graphs with $n=1000$, $p=0.05$, and $q=0.01$, fixing $L=K=15$ (which in practice leads to graphs with 15 clusters and typically between 8 and 12 distinct edge and cluster colors). We then vary the noise parameter w from 0 to 0.75 in increments of 0.05. Figure 3a reports the median accuracy over 5 trials of each method for each value of w. In the second, we fix $w=0.2$, and vary the number of clusters K from 5 to 50 in increments of 5 with $L=K$. Figure 3b reports the median accuracy over 5 trials for each value of K.

In both experiments, our LP method substantially outperforms the others, although the methods perform more similarly for high noise levels or large numbers of clusters. In both experiments, we found that LP similarly outperformed other methods in terms of Adjusted Rand Index and F1-score, followed in performance by MV. Cluster identification scores for LCB and CB were particularly low (ARI scores always below 0.02), as these methods formed far too many clusters. Given that LCB and CB are specifically designed for settings where $K \gg L$, we ran another experiment with $L=20$ and K ranging from 50 to 200. Even in this setting, LP achieved higher accuracy, as well as better ARI scores when $K \leq 100$. LCB and CB only obtained better ARI scores in parameter regimes where all algorithms had ARI scores below 0.1. We include more details in an extended online version of our paper.

Synthetic Hypergraph Results. We ran similar experiments on synthetic 3-uniform hypergraphs. We again set $n=1000$ and used $p=0.005$ and $q=0.0001$ for intra-cluster and inter-cluster hyper-edge probabilities. In one experiment, we fixed $L=15$ and varied w, and in another we fixed $w=0.2$ and varied the number of clusters L. Figures 3c and 3d shows the accuracies. Again, LP tends to have the best performance. When $L=15$, our method achieves nearly perfect accuracy for $w \leq 0.6$. However, we observe performance sensitivity when the noise is too large: when w increases from 0.6 to 0.65, the output of LP no longer tracks the ground truth cluster assignment. This occurs despite the fact that the LP solution is integral, and we are in fact optimally solving the Categorical Edge Clustering objective. We conjecture this sharp change in accuracy is due to an information theoretic detectability threshold, which depends on parameters of the synthetic model.

Academic Department Labels in an Email Network. To test the algorithms on real-world data, we use the Email-Eu-core network [41, 63]. Nodes in the graph represent researchers at a European institution, edges indicate email correspondence (we consider the edges as undirected), and nodes are labeled by the departmental affiliation of each researcher. We wish to test how well each method can identify node labels, if we assume we have access to a (perhaps
Figure 3: (a)–(b): Performance of algorithms on a synthetic graph model for chromatic correlation clustering [12]. Across a range of parameters, our LP method outperforms competing methods in predicting the ground truth label of the nodes. (c)–(d): In experiments on synthetic 3-uniform hypergraphs, LP performs well for most parameter regimes but there is some sensitivity to the very noisy setting.

Figure 4: Accuracy in clustering nodes in real-world datasets when edge labels are a noisy signal for ground truth node cluster membership. For both an email graph (a) and a product co-purchasing hypergraph (b), our LP-Round method consistently outperforms other methods.

5.3 Temporal Community Detection

In the next experiment, we show how our framework can be used to identify communities of nodes in a temporal network, where we use timestamps on edges as a type of categorical label that two nodes should be clustered together. For data, we use the CollegeMsg network [51], which records private messages (time-stamped edges) between 1899 users (nodes) of a social media platform at UC-Irvine.

Removing timestamps and applying a standard graph clustering algorithm would be a standard approach to identify communities of users. However, this loses the explicit relationship with time. As an alternative, we convert timestamps into discrete edge labels by ordering edges with respect to time and separating them into k equal-sized bins representing time windows. Optimizing Categorical Edge Clustering then corresponds to clustering users into time windows, in order to maximize the number of private messages that occur between users in the same time window. In this way, our framework can identify temporal communities in a social network, i.e., groups of users that are highly active in sending each other messages within a short period of time.

We construct edge-labeled graphs for different values of k, and compare LP against clusterings obtained by discarding time stamps and running Graclus [22], a standard graph clustering algorithm. Graclus seeks to cluster the nodes into k disjoint clusters S_1, \ldots, S_k to minimize the normalized cut objective:

$$\text{Neut}(S_1, S_2, \ldots, S_k) = \sum_{i=1}^{k} \frac{\text{cut}(S_i)}{\text{vol}(S_i)},$$

where $\text{cut}(S)$ is the number of edges leaving S, and $\text{vol}(S)$ is the volume of S, i.e., the number of edge end points in S. Figure 5a shows that LP is in fact competitive with Graclus in finding clusterings with small normalized cut scores, even though LP is designed for a...
Figure 6: As β increases, we discard fewer high-degree ingredients before clustering the rest. Our method always "makes" more recipes (higher edge satisfaction) and "wastes" fewer ingredients (smaller number of unused ingredients).

Figure 6: We finally highlight specific ingredient clusters that LP identifies but MV does not. When $\beta = 170$, LP places 10 ingredients with the Brazilian cuisine which MV does not, leading to 23 extra recipes that are unique to LP. Of these, 21 correspond to variants of the Caipirinha, a popular Brazilian cocktail. When $\beta = 70$, 24 ingredients and 24 recipes are unique to the French cuisine cluster of LP. Of these, 18 correspond to desserts, and 14 have a significant fruit component. Table 2 has examples of ingredients and recipes from both these clusters.

Table 2: Examples of ingredients and recipes from special clusters identified by LP, but not Majority Vote.

<table>
<thead>
<tr>
<th>French Fruit-Based Desserts ($\beta = 70$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients:</td>
</tr>
<tr>
<td>Recipes:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brazilian Caipirinha Recipes ($\beta = 170$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients:</td>
</tr>
<tr>
<td>Recipes:</td>
</tr>
</tbody>
</table>

also consider a measure of “ingredient waste” for each method. An ingredient is unused if we cannot make any recipes by combining the ingredient with other ingredients in its cluster. A low number of unused ingredients indicates that a method forms clusters where ingredients combine together well. Figure 6b shows the number of unused ingredients as β varies. Again, LP outperforms MV.

Specific ingredient and recipe clusters.

We finally highlight specific ingredient clusters that LP identifies but MV does not. When $\beta = 170$, LP places 10 ingredients with the Brazilian cuisine which MV does not, leading to 23 extra recipes that are unique to LP. Of these, 21 correspond to variants of the Caipirinha, a popular Brazilian cocktail. When $\beta = 70$, 24 ingredients and 24 recipes are unique to the French cuisine cluster of LP. Of these, 18 correspond to desserts, and 14 have a significant fruit component. Table 2 has examples of ingredients and recipes from both these clusters.

Analysis of the Cooking Hypergraph.

Finally, we apply our framework and LP-round algorithm to gain insights into the Cooking hypergraph dataset from Section 5.1, demonstrating our methodology for exploratory data analysis. An edge in this hypergraph is a set of ingredients for a recipe, and each recipe is categorized according to cuisine. Categorical Edge Clustering thus corresponds to separating ingredients among cuisines, in a way that maximizes the number of recipes whose ingredients are all in the same cluster (see Ahn et al. [3] for related analyses).

Table 1 shows that only 20% of the recipes can be made (i.e., a 0.2 edge satisfaction) after partitioning ingredients among cuisine types. This is due to the large number of common ingredients such as salt and olive oil that are shared across many cuisines (a problem in other recipe network analyses [60]). We negate the negative effect of high-degree nodes as follows. For an ingredient i, let d^c_i be the number of recipes of cuisine c containing i. Let $M_i = \max_c d^c_i$ measure majority degree and $T_i = \sum_c d^c_i$ the total degree. Note that $B_i = T_i - M_i$ is a lower bound on the number of hyperedge mistakes we will make at edges incident to node i. We can refine the original dataset by removing all nodes with B_i greater than some β.

Making recipes or wasting ingredients. Figure 6a shows edge satisfaction scores for LP and MV when we cluster for different β. When $\beta = 10$, edge satisfaction is above 0.64 with LP. As β increases, edge satisfaction decreases, but LP outperforms MV in all cases.
REFERENCES

[59] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment 4, 11 (2011), 992–1003.