CoRN.algebra.Cauchy_COF


Require Export COrdCauchy.
Require Export RingReflection.

The Field of Cauchy Sequences

In this chapter we will prove that whenever we start from an ordered field F, we can define a new ordered field of Cauchy sequences over F.
Let F be an ordered field.

Section Structure.

Variable F : COrdField.

Setoid Structure

R_Set is the setoid of Cauchy sequences over F; given two sequences x,y over F, we say that x is smaller than y if from some point onwards (y n) [-] (x n) is greater than some fixed, positive e. Apartness of two sequences means that one of them is smaller than the other, equality is the negation of the apartness.

Definition R_Set := CauchySeq F.

Section CSetoid_Structure.

Definition R_lt (x y : R_Set) := {N : nat |
  {e : F | [0] [<] e | n, N ne [<=] CS_seq _ y n[-]CS_seq _ x n}}.

Definition R_ap (x y : R_Set) := R_lt x y or R_lt y x.

Definition R_eq (x y : R_Set) := Not (R_ap x y).

Lemma R_lt_cotrans : cotransitive R_lt.
Proof.
 red in |- ×.
 intros x y.
 elim x; intros x_ px.
 elim y; intros y_ py.
 intros Hxy z.
 elim z; intros z_ pz.
 elim Hxy; intros N H.
 elim H; clear Hxy H; intros e He HN.
 simpl in HN.
 set (e3 := e [/]ThreeNZ) in ×.
 cut ([0] [<] e3); [ intro He3 | unfold e3 in |- *; apply pos_div_three; auto ].
 set (e6 := e [/]SixNZ) in ×.
 cut ([0] [<] e6); [ intro He6 | unfold e6 in |- *; apply pos_div_six; auto ].
 set (e12 := e [/]TwelveNZ) in ×.
 cut ([0] [<] e12); [ intro He12 | unfold e12 in |- *; apply pos_div_twelve; auto ].
 set (e24 := e [/]TwentyFourNZ) in ×.
 cut ([0] [<] e24); [ intro He24 | unfold e24 in |- *; apply pos_div_twentyfour; auto ].
 elim (px e24 He24); intros Nx HNx.
 elim (py e24 He24); intros Ny HNy.
 elim (pz e24 He24); intros Nz HNz.
 set (NN := max N (max Nx (max Ny Nz))) in ×.
 set (x0 := x_ NN) in ×.
 set (y0 := y_ NN) in ×.
 set (z0 := z_ NN) in ×.
 elim (less_cotransitive_unfolded _ (x0[+]e3) (y0[-]e3)) with z0.
   intro Hyz.
   left.
    NN; e6; auto.
   intros n Hn; simpl in |- ×.
   apply leEq_wdl with (e3[-] (e24[+]e24[+]e24[+]e24)).
    2: unfold e3, e6, e12, e24 in |- *; rational.
   apply leEq_transitive
     with (e3[-] (z0[-]z_ Nz[+] (z_ Nz[-]z_ n) [+] (x_ n[-]x_ Nx) [+] (x_ Nx[-]x0))).
    apply minus_resp_leEq_rht.
    repeat apply plus_resp_leEq_both.
       unfold z0 in |- *; elim (HNz NN); auto; unfold NN in |- *; eauto with arith.
      apply shift_minus_leEq; apply shift_leEq_plus'.
      unfold cg_minus in |- *; apply shift_plus_leEq'.
      elim (HNz n); auto; apply le_trans with NN; auto; unfold NN in |- *; eauto with arith.
     elim (HNx n); auto; apply le_trans with NN; auto; unfold NN in |- *; eauto with arith.
    apply shift_minus_leEq; apply shift_leEq_plus'.
    unfold cg_minus in |- *; apply shift_plus_leEq'.
    unfold x0 in |- *; elim (HNx NN); auto; unfold NN in |- *; eauto with arith.
   apply shift_minus_leEq.
   rstepr (z0[-]x0).
   apply shift_leEq_minus; astepl (x0[+]e3); apply less_leEq; auto.
  intro Hzx.
  right.
   NN; e6; auto.
  intros n Hn; simpl in |- ×.
  apply leEq_wdl with (e3[-] (e24[+]e24[+]e24[+]e24)).
   2: unfold e3, e6, e12, e24 in |- *; rational.
  apply leEq_transitive
    with (e3[-] (z_ Nz[-]z0[+] (z_ n[-]z_ Nz) [+] (y_ Ny[-]y_ n) [+] (y0[-]y_ Ny))).
   apply minus_resp_leEq_rht.
   repeat apply plus_resp_leEq_both.
      apply shift_minus_leEq; apply shift_leEq_plus'.
      unfold cg_minus in |- *; apply shift_plus_leEq'.
      unfold z0 in |- *; elim (HNz NN); auto; unfold NN in |- *; eauto with arith.
     elim (HNz n); auto; apply le_trans with NN; auto; unfold NN in |- *; eauto with arith.
    apply shift_minus_leEq; apply shift_leEq_plus'.
    unfold cg_minus in |- *; apply shift_plus_leEq'.
    elim (HNy n); auto; apply le_trans with NN; auto; unfold NN in |- *; eauto with arith.
   unfold y0 in |- *; elim (HNy NN); auto; unfold NN in |- *; eauto with arith.
  apply shift_minus_leEq.
  rstepr (y0[-]z0).
  apply shift_leEq_minus; apply shift_plus_leEq'; apply less_leEq; auto.
 apply shift_less_minus.
 astepl (x0[+] (e3[+]e3)); apply shift_plus_less'.
 apply less_leEq_trans with e.
  apply shift_plus_less.
  apply less_wdl with ((e[-]e3) [/]TwoNZ).
   2: unfold e3 in |- *; rational.
  apply pos_div_two'.
  apply shift_less_minus; astepl e3; unfold e3 in |- *; apply pos_div_three'; auto.
 unfold x0, y0, NN in |- *; apply HN; eauto with arith.
Qed.

Lemma R_ap_cotrans : cotransitive R_ap.
Proof.
 red in |- *; intros x y Hxy z.
 elim Hxy; intro H; elim (R_lt_cotrans _ _ H z); unfold R_ap in |- *; auto.
Qed.

Lemma R_ap_symmetric : Csymmetric R_ap.
Proof.
 red in |- *; intros x y Hxy.
 elim Hxy; unfold R_ap in |- *; auto.
Qed.

Lemma R_lt_irreflexive : irreflexive R_lt.
Proof.
 red in |- *; intros x Hx.
 elim Hx; intros N HN.
 elim HN; clear Hx HN; intros e He HN.
 apply (ap_irreflexive_unfolded _ (x N)).
 apply less_imp_ap.
 apply less_leEq_trans with (x N[+]e).
  astepl (x N[+][0]); apply plus_resp_less_lft; auto.
 apply shift_plus_leEq'; auto with arith.
Qed.

Lemma R_ap_irreflexive : irreflexive R_ap.
Proof.
 red in |- *; intros x Hx.
 elim (R_lt_irreflexive x).
 elim Hx; auto.
Qed.

Lemma R_ap_eq_tight : tight_apart R_eq R_ap.
Proof.
 split; auto.
Qed.

Definition R_CSetoid : CSetoid.
Proof.
 apply Build_CSetoid with R_Set R_eq R_ap.
 split.
    exact R_ap_irreflexive.
   exact R_ap_symmetric.
  exact R_ap_cotrans.
 exact R_ap_eq_tight.
Defined.

End CSetoid_Structure.

Section Group_Structure.

Group Structure

The group structure is just the expected one; the lemmas which are specifically proved are just the necessary ones to get the group axioms.

Definition R_plus (x y : R_CSetoid) : R_CSetoid :=
  Build_CauchySeq _ _ (CS_seq_plus F _ _ (CS_proof _ x) (CS_proof _ y)).

Definition R_zero := Build_CauchySeq _ _ (CS_seq_const F [0]).

Lemma R_plus_lft_ext : x y z, R_plus x z [#] R_plus y zx [#] y.
Proof.
 intros x y z Hxy.
 elim Hxy; clear Hxy; intro H; [ left | right ]; elim H; intros N HN; elim HN;
   clear H HN; intros e He HN; N; e; auto; intros n Hn; simpl in HN.
  rstepr (CS_seq _ y n[+]CS_seq _ z n[-] (CS_seq _ x n[+]CS_seq _ z n)); auto.
 rstepr (CS_seq _ x n[+]CS_seq _ z n[-] (CS_seq _ y n[+]CS_seq _ z n)); auto.
Qed.

Lemma R_plus_assoc : associative R_plus.
Proof.
 intros x y z Hap.
 elim Hap; clear Hap; intro H; elim H; intros N HN; elim HN; clear H HN;
   intros e He HN; simpl in HN; apply (less_irreflexive_unfolded _ e).
  apply leEq_less_trans with (CS_seq _ x N[+]CS_seq _ y N[+]CS_seq _ z N[-]
    (CS_seq _ x N[+] (CS_seq _ y N[+]CS_seq _ z N))); auto.
  rstepl ([0]:F); auto.
 apply leEq_less_trans with (CS_seq _ x N[+] (CS_seq _ y N[+]CS_seq _ z N) [-]
   (CS_seq _ x N[+]CS_seq _ y N[+]CS_seq _ z N)); auto.
 rstepl ([0]:F); auto.
Qed.

Lemma R_zero_lft_unit : x, R_plus R_zero x [=] x.
Proof.
 intro x; intro x_ap.
 apply (R_lt_irreflexive x).
 elim x_ap; clear x_ap; intro x_lt; elim x_lt; intros N H; elim H;
   clear x_lt H; intros e He HN; N; e; auto; simpl in HN; intros n Hn.
  astepr (CS_seq _ x n[-] ([0][+]CS_seq _ x n)); auto.
 astepr ([0][+]CS_seq _ x n[-]CS_seq _ x n); auto.
Qed.

Lemma R_plus_comm : x y, R_plus x y [=] R_plus y x.
Proof.
 intros x y Hxy.
 elim Hxy; clear Hxy; intro H; elim H; intros N HN; elim HN; clear H HN;
   intros e He HN; simpl in HN; apply (less_irreflexive_unfolded _ e).
  apply leEq_less_trans with (CS_seq _ y N[+]CS_seq _ x N[-] (CS_seq _ x N[+]CS_seq _ y N)); auto.
  rstepl ([0]:F); auto.
 apply leEq_less_trans with (CS_seq _ x N[+]CS_seq _ y N[-] (CS_seq _ y N[+]CS_seq _ x N)); auto.
 rstepl ([0]:F); auto.
Qed.

Definition R_inv (x : R_CSetoid) : R_CSetoid :=
  Build_CauchySeq _ _ (CS_seq_inv F _ (CS_proof _ x)).

Lemma R_inv_is_inv : x, R_plus x (R_inv x) [=] R_zero.
Proof.
 intro x; intro x_ap.
 apply (R_lt_irreflexive R_zero).
 elim x_ap; clear x_ap; intro x_lt; elim x_lt; intros N H; elim H;
   clear x_lt H; intros e He HN; N; e; auto; simpl in HN; intros n Hn.
  simpl in |- *; astepr ([0][-] (CS_seq _ x n[+][--] (CS_seq _ x n))); auto.
 simpl in |- *; astepr (CS_seq _ x n[+][--] (CS_seq _ x n) [-][0]); auto.
Qed.

Lemma R_inv_ext : un_op_strext _ R_inv.
Proof.
 intros x y Hxy.
 elim Hxy; clear Hxy; intro x_lt; [ right | left ]; elim x_lt; intros N H;
   elim H; clear x_lt H; intros e He HN; N; e; auto; simpl in HN; intros n Hn.
  rstepr ([--] (CS_seq _ y n) [-][--] (CS_seq _ x n)); auto.
 rstepr ([--] (CS_seq _ x n) [-][--] (CS_seq _ y n)); auto.
Qed.

Definition Rinv : CSetoid_un_op R_CSetoid.
Proof.
 red in |- ×.
 apply Build_CSetoid_un_op with R_inv.
 exact R_inv_ext.
Defined.

Definition R_CAbGroup : CAbGroup.
Proof.
 apply Build_CAbGroup' with R_CSetoid R_zero R_plus Rinv.
     exact R_plus_lft_ext.
    exact R_zero_lft_unit.
   exact R_plus_comm.
  exact R_plus_assoc.
 exact R_inv_is_inv.
Defined.

End Group_Structure.

Section Ring_Structure.

Ring Structure

Same comments as previously.

Definition R_mult (x y : R_CAbGroup) : R_CAbGroup :=
  Build_CauchySeq _ _ (CS_seq_mult F _ _ (CS_proof _ x) (CS_proof _ y)).
Definition R_one : R_CAbGroup := Build_CauchySeq _ _ (CS_seq_const F [1]).

Lemma R_one_ap_zero : R_one [#] [0].
Proof.
 right; 0; ([1]:F).
  apply pos_one.
 intros; simpl in |- *; astepr ([1]:F); apply leEq_reflexive.
Qed.

Lemma R_mult_dist_plus : x y z, R_mult x (y[+]z) [=] R_mult x y[+]R_mult x z.
Proof.
 intros x y z H.
 elim H; intro Hlt; elim Hlt; intros N HN; elim HN; clear H Hlt HN;
   intros e He HN; simpl in HN; apply (less_irreflexive_unfolded _ e).
  eapply leEq_less_trans.
   apply (HN N (le_n _)).
  rstepl ([0]:F); auto.
 eapply leEq_less_trans.
  apply (HN N (le_n _)).
 rstepl ([0]:F); auto.
Qed.

Lemma R_mult_dist_minus : x y z, R_mult x (y[-]z) [=] R_mult x y[-]R_mult x z.
Proof.
 intros x y z H.
 elim H; intro Hlt; elim Hlt; intros N HN; elim HN; clear H Hlt HN;
   intros e He HN; simpl in HN; apply (less_irreflexive_unfolded _ e).
  eapply leEq_less_trans.
   apply (HN N (le_n _)).
  rstepl ([0]:F); auto.
 eapply leEq_less_trans.
  apply (HN N (le_n _)).
 rstepl ([0]:F); auto.
Qed.

Lemma R_one_rht_unit : x, R_mult x R_one [=] x.
Proof.
 intro x; intro x_ap.
 apply (R_lt_irreflexive x).
 elim x_ap; clear x_ap; intro x_lt; elim x_lt; intros N H; elim H;
   clear x_lt H; intros e He HN; N; e; auto; simpl in HN; intros n Hn.
  astepr (CS_seq _ x n[-]CS_seq _ x n[*][1]); auto.
 astepr (CS_seq _ x n[*][1][-]CS_seq _ x n); auto.
Qed.

Lemma R_mult_comm : x y, R_mult x y [=] R_mult y x.
Proof.
 intros x y Hxy.
 elim Hxy; clear Hxy; intro H; elim H; intros N HN; elim HN; clear H HN;
   intros e He HN; simpl in HN; apply (less_irreflexive_unfolded _ e).
  apply leEq_less_trans with (CS_seq _ y N[*]CS_seq _ x N[-]CS_seq _ x N[*]CS_seq _ y N); auto.
  rstepl ([0]:F); auto.
 apply leEq_less_trans with (CS_seq _ x N[*]CS_seq _ y N[-]CS_seq _ y N[*]CS_seq _ x N); auto.
 rstepl ([0]:F); auto.
Qed.

Lemma R_mult_ap_zero' : x y, R_mult x y [#] [0]x [#] [0].
Proof.
 intros x y Hxy.
 elim (CS_seq_bounded _ (CS_seq _ y) (CS_proof _ y)); intros K HK Hy; elim Hy;
   clear Hy; intros Ny HNY.
 set (z := Build_CauchySeq _ _ (CS_seq_mult _ _ _ (CS_seq_const _ (Two[*]K)) (CS_proof _ x))
   :R_CAbGroup) in ×.
 elim (ap_cotransitive_unfolded _ _ _ Hxy z); intro Hap; elim Hap; intro Hlt;
   elim Hlt; intros N HN; elim HN; clear Hap Hlt HN; intros e He HN.
    right.
    cut ( n : nat, Ny n[0] [<] Two[*]K[-]CS_seq _ y n); [ intro Hy' | intros n Hn ].
     set (KK := e[/] _[//]mult_resp_ap_zero _ _ _ (three_ap_zero _) (pos_ap_zero _ _ HK)) in ×.
      (max N Ny); KK.
      unfold KK in |- *; apply div_resp_pos; auto.
      apply mult_resp_pos; auto; apply pos_three.
     intros; simpl in |- *; unfold KK in |- ×.
     cut (N n); [ intro Hn | apply le_trans with (max N Ny); auto with arith ].
     cut (Ny n); [ intro Hn' | apply le_trans with (max N Ny); auto with arith ].
     apply leEq_transitive with (e[/] _[//]pos_ap_zero _ _ (Hy' n Hn')).
      apply mult_cancel_leEq with ([1][/] _[//]pos_ap_zero _ _ He).
       apply recip_resp_pos; auto.
      rstepl ([1][/] _[//]mult_resp_ap_zero _ _ _ (three_ap_zero _) (pos_ap_zero _ _ HK)).
      rstepr ([1][/] _[//]pos_ap_zero _ _ (Hy' n Hn')).
      apply recip_resp_leEq; auto.
      unfold cg_minus in |- *; apply shift_plus_leEq'; rstepr ([--][--]K).
      apply inv_resp_leEq; elim (HNY n); auto.
     apply shift_div_leEq; auto.
     eapply leEq_wdr.
      apply (HN n); auto.
     simpl in |- *; rational.
    apply shift_zero_less_minus; apply leEq_less_trans with K.
     elim (HNY n); auto.
    astepl ([0][+]K); astepr (K[+]K); apply plus_resp_less_rht; auto.
   left.
   cut ( n : nat, Ny n[0] [<] Two[*]K[-]CS_seq _ y n); [ intro Hy' | intros n Hn ].
    set (KK := e[/] _[//]mult_resp_ap_zero _ _ _ (three_ap_zero _) (pos_ap_zero _ _ HK)) in ×.
     (max N Ny); KK.
     unfold KK in |- *; apply div_resp_pos; auto.
     apply mult_resp_pos; auto; apply pos_three.
    intros; simpl in |- *; unfold KK in |- ×.
    cut (N n); [ intro Hn | apply le_trans with (max N Ny); auto with arith ].
    cut (Ny n); [ intro Hn' | apply le_trans with (max N Ny); auto with arith ].
    apply leEq_transitive with (e[/] _[//]pos_ap_zero _ _ (Hy' n Hn')).
     apply mult_cancel_leEq with ([1][/] _[//]pos_ap_zero _ _ He).
      apply recip_resp_pos; auto.
     rstepl ([1][/] _[//]mult_resp_ap_zero _ _ _ (three_ap_zero _) (pos_ap_zero _ _ HK)).
     rstepr ([1][/] _[//]pos_ap_zero _ _ (Hy' n Hn')).
     apply recip_resp_leEq; auto.
     unfold cg_minus in |- *; apply shift_plus_leEq'; rstepr ([--][--]K).
     apply inv_resp_leEq; elim (HNY n); auto.
    apply shift_div_leEq; auto.
    eapply leEq_wdr.
     apply (HN n); auto.
    simpl in |- *; rational.
   apply shift_zero_less_minus; apply leEq_less_trans with K.
    elim (HNY n); auto.
   astepl ([0][+]K); astepr (K[+]K); apply plus_resp_less_rht; auto.
  left.
  set (KK := e[/] _[//]mult_resp_ap_zero _ _ _ (two_ap_zero _) (pos_ap_zero _ _ HK)) in ×.
   N; KK.
   unfold KK in |- *; apply div_resp_pos; auto.
   apply mult_resp_pos; auto; apply pos_two.
  intros; simpl in |- *; unfold KK in |- ×.
  apply shift_div_leEq.
   apply mult_resp_pos; auto; apply pos_two.
  eapply leEq_wdr.
   apply (HN n H).
  simpl in |- *; rational.
 right.
 set (KK := e[/] _[//]mult_resp_ap_zero _ _ _ (two_ap_zero _) (pos_ap_zero _ _ HK)) in ×.
  N; KK.
  unfold KK in |- *; apply div_resp_pos; auto.
  apply mult_resp_pos; auto; apply pos_two.
 intros; simpl in |- *; unfold KK in |- ×.
 apply shift_div_leEq.
  apply mult_resp_pos; auto; apply pos_two.
 eapply leEq_wdr.
  apply (HN n H).
 simpl in |- *; rational.
Qed.

Lemma R_mult_lft_ext : x y z, R_mult x z [#] R_mult y zx [#] y.
Proof.
 intros x y z Hxy.
 apply zero_minus_apart.
 apply R_mult_ap_zero' with z.
 apply ap_wdl_unfolded with (R_mult x z[-]R_mult y z).
  apply minus_ap_zero; auto.
 apply eq_symmetric_unfolded.
 eapply eq_transitive_unfolded.
  apply R_mult_comm.
 eapply eq_transitive_unfolded.
  apply R_mult_dist_minus.
 apply cg_minus_wd; apply R_mult_comm.
Qed.

Lemma R_mult_rht_ext : x y z, R_mult x y [#] R_mult x zy [#] z.
Proof.
 intros x y z Hxy.
 apply R_mult_lft_ext with x.
 eapply ap_wdl_unfolded.
  eapply ap_wdr_unfolded.
   apply Hxy.
  apply R_mult_comm.
 apply R_mult_comm.
Qed.

Lemma R_mult_strext : bin_op_strext _ R_mult.
Proof.
 red in |- *; red in |- ×.
 intros x y a b Hap.
 elim (ap_cotransitive_unfolded _ _ _ Hap (R_mult x b)); intro H.
  right; apply R_mult_rht_ext with x; auto.
 left; apply R_mult_lft_ext with b; auto.
Qed.

Definition Rmult : CSetoid_bin_op R_CAbGroup.
Proof.
 red in |- ×.
 apply Build_CSetoid_bin_fun with R_mult.
 apply R_mult_strext.
Defined.

Lemma R_mult_assoc : associative Rmult.
Proof.
 intros x y z Hap.
 elim Hap; clear Hap; intro H; elim H; intros N HN; elim HN; clear H HN;
   intros e He HN; simpl in HN; apply (less_irreflexive_unfolded _ e).
  apply leEq_less_trans with (CS_seq _ x N[*]CS_seq _ y N[*]CS_seq _ z N[-]
    CS_seq _ x N[*] (CS_seq _ y N[*]CS_seq _ z N)); auto.
  rstepl ([0]:F); auto.
 apply leEq_less_trans with (CS_seq _ x N[*] (CS_seq _ y N[*]CS_seq _ z N) [-]
   CS_seq _ x N[*]CS_seq _ y N[*]CS_seq _ z N); auto.
 rstepl ([0]:F); auto.
Qed.

Lemma R_one_lft_unit : x, R_mult R_one x [=] x.
Proof.
 intro.
 eapply eq_transitive_unfolded.
  apply R_mult_comm.
 apply R_one_rht_unit.
Qed.

Definition R_CRing : CRing.
Proof.
 apply Build_CRing with R_CAbGroup R_one Rmult.
 apply Build_is_CRing with R_mult_assoc.
    apply Build_is_CMonoid.
     exact R_one_rht_unit.
    exact R_one_lft_unit.
   exact R_mult_comm.
  exact R_mult_dist_plus.
 exact R_one_ap_zero.
Defined.

End Ring_Structure.

Add Ring R_CRing: (CRing_Ring R_CRing).

Section Field_Structure.

Field Structure

For the field structure, it is technically easier to first prove that our ring is actually an integral domain. The rest then follows quite straightforwardly.

Lemma R_integral_domain :
  x y : R_CRing, x [#] [0]y [#] [0]x[*]y [#] [0].
Proof.
 intros x y Hx Hy.
 elim Hx; intro Hlt; elim Hlt; intros Nx HN; elim HN; clear Hx Hlt HN;
   intros ex Hex HNx; simpl in HNx; elim Hy; intro Hlt;
     elim Hlt; intros Ny HN; elim HN; clear Hy Hlt HN; intros ey Hey HNy; simpl in HNy.
    right.
     (max Nx Ny); (ex[*]ey).
     apply mult_resp_pos; auto.
    intros; simpl in |- *; rstepr ([--] (CS_seq _ x n) [*][--] (CS_seq _ y n)).
    apply mult_resp_leEq_both; try (apply less_leEq; assumption).
     astepr ([0][-]CS_seq _ x n); eauto with arith.
    astepr ([0][-]CS_seq _ y n); eauto with arith.
   left.
    (max Nx Ny); (ex[*]ey).
    apply mult_resp_pos; auto.
   intros; simpl in |- *; rstepr ([--] (CS_seq _ x n) [*]CS_seq _ y n).
   apply mult_resp_leEq_both; try (apply less_leEq; assumption).
    astepr ([0][-]CS_seq _ x n); eauto with arith.
   astepr (CS_seq _ y n[-][0]); eauto with arith.
  left.
   (max Nx Ny); (ex[*]ey).
   apply mult_resp_pos; auto.
  intros; simpl in |- *; rstepr (CS_seq _ x n[*][--] (CS_seq _ y n)).
  apply mult_resp_leEq_both; try (apply less_leEq; assumption).
   astepr (CS_seq _ x n[-][0]); eauto with arith.
  astepr ([0][-]CS_seq _ y n); eauto with arith.
 right.
  (max Nx Ny); (ex[*]ey).
  apply mult_resp_pos; auto.
 intros; simpl in |- *; astepr (CS_seq _ x n[*]CS_seq _ y n).
 apply mult_resp_leEq_both; try (apply less_leEq; assumption).
  astepr (CS_seq _ x n[-][0]); eauto with arith.
 astepr (CS_seq _ y n[-][0]); eauto with arith.
Qed.

Definition R_recip : x : R_CRing, x [#] [0]R_CRing.
 intros x Hx; elim Hx; intro Hlt; elim Hlt; intros N HN; elim HN; clear Hx Hlt HN; intros e He HN.
Proof.
  cut ( n : nat, N ne [<=] [--] (CS_seq _ x n)); intros.
   apply (Build_CauchySeq _ _ (CS_seq_inv _ _
     (CS_seq_recip _ _ (CS_seq_inv _ _ (CS_proof _ x)) e He N H))).
  astepr ([0][-]CS_seq _ x n); simpl in HN; auto.
 cut ( n : nat, N ne [<=] CS_seq _ x n); intros.
  apply (Build_CauchySeq _ _ (CS_seq_recip _ _ (CS_proof _ x) e He N H)).
 astepr (CS_seq _ x n[-][0]); simpl in HN; auto.
Defined.

Lemma R_recip_inverse : x x_, x[*]R_recip x x_ [=] [1].
Proof.
 intros x Hx; elim Hx; intro Hlt; elim Hlt; intros N HN; elim HN;
   clear Hx Hlt HN; simpl in |- *; intros e He HN Hap;
     elim Hap; intro Hlt; elim Hlt; intros K HK; elim HK;
       clear Hap Hlt HK; intros d Hd HM; simpl in HM.
    apply (less_irreflexive_unfolded _ d).
    apply leEq_less_trans with ([0]:F); auto.
    simpl in HM.
    eapply leEq_wdr.
     apply (HM (max K N)); auto with arith.
    unfold CS_seq_recip_seq in |- *; elim lt_le_dec; intro.
     elimtype False; apply le_not_lt with N (max K N); auto with arith.
    simpl in |- *; rational.
   apply (less_irreflexive_unfolded _ d).
   apply leEq_less_trans with ([0]:F); auto.
   simpl in HM.
   eapply leEq_wdr.
    apply (HM (max K N)); auto with arith.
   unfold CS_seq_recip_seq in |- *; elim lt_le_dec; intro.
    elimtype False; apply le_not_lt with N (max K N); auto with arith.
   simpl in |- *; rational.
  apply (less_irreflexive_unfolded _ d).
  apply leEq_less_trans with ([0]:F); auto.
  simpl in HM.
  eapply leEq_wdr.
   apply (HM (max K N)); auto with arith.
  unfold CS_seq_recip_seq in |- *; elim lt_le_dec; intro.
   elimtype False; apply le_not_lt with N (max K N); auto with arith.
  simpl in |- *; rational.
 apply (less_irreflexive_unfolded _ d).
 apply leEq_less_trans with ([0]:F); auto.
 simpl in HM.
 eapply leEq_wdr.
  apply (HM (max K N)); auto with arith.
 unfold CS_seq_recip_seq in |- *; elim lt_le_dec; intro.
  elimtype False; apply le_not_lt with N (max K N); auto with arith.
 simpl in |- *; rational.
Qed.

Lemma R_recip_strext : x y x_ y_, R_recip x x_ [#] R_recip y y_x [#] y.
Proof.
 intros.
 apply zero_minus_apart.
 apply ap_wdl with (x[*]y[*] (R_recip y y_[-]R_recip x x_)).
  apply R_integral_domain.
   apply R_integral_domain; auto.
  apply minus_ap_zero; apply ap_symmetric_unfolded; auto.
 stepl (y[*]R_recip y y_[*]x[-]x[*]R_recip x x_[*]y). 2: unfold cg_minus; ring.
 stepr ([1][*]x[-][1][*]y). 2: unfold cg_minus; ring.
 apply cg_minus_wd; apply mult_wdl; apply R_recip_inverse.
Qed.

Lemma R_recip_inverse' : x x_, R_recip x x_[*]x [=] [1].
Proof.
 intros.
 astepl (x[*]R_recip x x_).
 apply R_recip_inverse.
Qed.

Definition R_CField : CField.
Proof.
 apply Build_CField with R_CRing R_recip.
  split.
   apply R_recip_inverse.
  apply R_recip_inverse'.
 exact R_recip_strext.
Defined.

End Field_Structure.

Section Order.

Order Structure

Finally, we extend the field structure with the ordering we defined at the beginning.

Lemma R_lt_strext : Crel_strext R_CSetoid R_lt.
Proof.
 intros x a y b Hxy.
 elim (R_lt_cotrans x y Hxy a); intro H.
  right; left; left; auto.
 elim (R_lt_cotrans a y H b); intro H'.
  left; auto.
 right; right; right; auto.
Qed.

Definition Rlt : CCSetoid_relation R_CField.
Proof.
 apply Build_CCSetoid_relation with R_lt.
 exact R_lt_strext.
Defined.

Lemma Rlt_transitive : Ctransitive Rlt.
Proof.
 intros x y z H H'.
 simpl in H, H'.
 elim H; intros N1 HN1; elim HN1; clear H HN1; intros e1 He1 HN1.
 elim H'; intros N2 HN2; elim HN2; clear H' HN2; intros e2 He2 HN2.
  (max N1 N2); (e1[+]e2).
  apply plus_resp_pos; auto.
 intros; rstepr (CS_seq _ y n[-]CS_seq _ x n[+] (CS_seq _ z n[-]CS_seq _ y n)).
 apply plus_resp_leEq_both; eauto with arith.
Qed.

Lemma Rlt_strict : strictorder Rlt.
Proof.
 apply Build_strictorder.
  exact Rlt_transitive.
 intros x y H H'.
 apply R_lt_irreflexive with x.
 apply Rlt_transitive with y; auto.
Qed.

Lemma R_plus_resp_lt : x y, Rlt x y z, Rlt (x[+]z) (y[+]z).
Proof.
 intros x y Hxy z.
 elim Hxy; intros N HN; elim HN; clear Hxy HN; intros e He HN; N; e; auto; intros n Hn.
 simpl in |- *; rstepr (CS_seq _ y n[-]CS_seq _ x n); auto.
Qed.

Lemma R_mult_resp_lt : x y, Rlt [0] xRlt [0] yRlt [0] (x[*]y).
Proof.
 intros x y Hx Hy.
 elim Hx; intros Nx HN; elim HN; clear Hx HN; intros ex Hex HNx; simpl in HNx;
   elim Hy; intros Ny HN; elim HN; clear Hy HN; intros ey Hey HNy; simpl in HNy.
  (max Nx Ny); (ex[*]ey).
  apply mult_resp_pos; auto.
 intros; simpl in |- *; astepr (CS_seq _ x n[*]CS_seq _ y n).
 apply mult_resp_leEq_both; try (apply less_leEq; assumption).
  astepr (CS_seq _ x n[-][0]); eauto with arith.
 astepr (CS_seq _ y n[-][0]); eauto with arith.
Qed.

Definition R_COrdField : COrdField.
Proof.
 apply Build_COrdField with R_CField Rlt (default_leEq _ Rlt) (default_greater _ Rlt) (default_grEq _ (default_leEq _ Rlt)).
 apply Build_is_COrdField; try solve [unfold Iff; tauto].
    exact Rlt_strict.
   exact R_plus_resp_lt.
  exact R_mult_resp_lt.
 split; auto.
Defined.

End Order.

Other Results

Auxiliary characterizations of the main relations on R_Set.

Section Auxiliary.

Lemma Rlt_alt_1 : x y : R_Set, {e : F | [0] [<] e |
 {N : nat | m, N me [<=] CS_seq F y m[-]CS_seq F x m}}Rlt x y.
Proof.
 intros x y H.
 case H.
 intro e1.
 intros H1 H2.
 case H2.
 intro N1.
 intros H3.
 unfold Rlt in |- ×.
  N1.
  (e1 [/]TwoNZ).
  apply pos_div_two.
  assumption.
 intros.
 apply leEq_transitive with e1.
  apply mult_cancel_leEq with (Two:F).
   apply pos_two.
  rstepl (e1[+] ([0]:F)).
  rstepr (e1[+]e1).
  apply plus_resp_leEq_lft.
  apply less_leEq; assumption.
 apply H3.
 assumption.
Qed.

Lemma Rlt_alt_2 : x y : R_Set, Rlt x y{e : F | [0] [<] e |
 {N : nat | m, N me [<=] CS_seq F y m[-]CS_seq F x m}}.
Proof.
 intros x y H.
 unfold Rlt in H.
 case H.
 intros N H2.
 case H2.
 intros e H1 H0.
  e.
  assumption.
  N.
 auto.
Qed.

Lemma R_ap_alt_1 : x y : R_CSetoid, x [#] y{e : F | [0] [<] e |
 {N : nat | m, N mAbsBig e (CS_seq F x m[-]CS_seq F y m)}}.
Proof.
 intros x y H.
 case H; intros H0.
  case H0; intros N1 HN1.
  case HN1; intros e1 H2 H31.
   e1.
   assumption.
   N1.
  split.
   assumption.
  right.
  apply inv_cancel_leEq.
  rstepl e1.
  rstepr (CS_seq F y m[-]CS_seq F x m).
  apply H31.
  assumption.
 case H0; intros N1 HN1.
 case HN1; intros e1 H2 H31.
  e1.
  assumption.
  N1.
 split; try left; auto.
Qed.

Lemma Eq_alt_1 : (x y : R_Set) (e : F), [0] [<] e
 Not {N : nat | m, N mAbsBig (e [/]FourNZ) (CS_seq F x m[-]CS_seq F y m)}
 {N : nat | m, N mAbsSmall e (CS_seq F x m[-]CS_seq F y m)}.
Proof.
 intros x y e H.
 set (e2 := e [/]TwoNZ) in ×.
 set (e4 := e [/]FourNZ) in ×.
 set (e8 := e [/]EightNZ) in ×.
 set (e16 := e [/]SixteenNZ) in ×.
 assert (He2 : [0] [<] e2).
  unfold e2 in |- *; apply pos_div_two; assumption.
 assert (He4 : [0] [<] e4).
  unfold e4 in |- *; apply pos_div_four; assumption.
 assert (He8 : [0] [<] e8).
  unfold e8 in |- *; apply pos_div_eight; assumption.
 assert (He16 : [0] [<] e16).
  unfold e16 in |- *; apply pos_div_sixteen; assumption.
 case x; intros x_ px.
 case y; intros y_ py.
 unfold CS_seq in |- *; intro.
 case (px e16 He16); intros N1 px2.
 case (py e16 He16); intros N2 py2.
 set (NN := max N1 N2) in ×.
 assert (N1_NN : N1 NN).
  unfold NN in |- *; auto with arith.
 assert (N2_NN : N2 NN).
  unfold NN in |- *; auto with arith.
  NN.
 cut ( m : nat, Not (NN m and AbsBig e2 (x_ m[-]y_ m))).
  intros.
  unfold AbsSmall in |- ×.
  assert (H3 : Not (AbsBig e2 (x_ m[-]y_ m))).
   intro; elim (H1 m); split; assumption.
  assert (H4 : ¬ e2 [<=] x_ m[-]y_ m).
   intro; apply H3; split; try left; assumption.
  assert (H5 : ¬ x_ m[-]y_ m [<=] [--]e2).
   intro; apply H3; split; try right; assumption.
  split; rewriteleEq_def; intro.
   apply H5.
   apply leEq_transitive with ([--]e).
    apply less_leEq; assumption.
   apply less_leEq; apply inv_resp_less.
   unfold e2 in |- *; apply pos_div_two'; assumption.
  apply H4.
  apply leEq_transitive with e.
   apply less_leEq; unfold e2 in |- *; apply pos_div_two'; auto.
  apply less_leEq; assumption.
 intro.
 intro H1.
 elim H1; intros X Y.
 elim H0.
  NN.
 intros.
 apply AbsBig_wdl with (e2[-]e8[-]e8).
  2: unfold e2, e4, e8 in |- *; rational.
 apply AbsBig_wdr with (x_ m[-]y_ m[-] (x_ m[-]x_ m0) [-] (y_ m0[-]y_ m)).
  2: rational.
 assert (e8 [<] e2).
  unfold e2, e8 in |- ×.
  rstepl ((e [/]TwoNZ) [/]FourNZ).
  rstepr (e [/]TwoNZ).
  apply pos_div_four'.
  assumption.
 assert ([0] [<] e2[-]e8).
  apply plus_cancel_less with e8.
  rstepl e8.
  rstepr e2.
  assumption.
 assert (e8 [<] e2[-]e8).
  apply plus_cancel_less with e8.
  rstepr e2.
  unfold e2, e8 in |- *; rstepl (e [/]FourNZ).
  rstepl ((e [/]TwoNZ) [/]TwoNZ).
  apply pos_div_two'.
  assumption.
 apply AbsBigSmall_minus; auto.
  apply AbsBigSmall_minus; auto.
  unfold e8 in |- ×.
  rstepl (e [/]SixteenNZ[+]e [/]SixteenNZ).
  rstepr (x_ m[-]x_ N1[+] (x_ N1[-]x_ m0)).
  apply AbsSmall_plus.
   apply px2.
   apply le_trans with NN; assumption.
  apply AbsSmall_minus.
  apply px2.
  apply le_trans with NN; assumption.
 unfold e8 in |- ×.
 rstepl (e [/]SixteenNZ[+]e [/]SixteenNZ).
 rstepr (y_ m0[-]y_ N2[+] (y_ N2[-]y_ m)).
 apply AbsSmall_plus.
  apply py2.
  apply le_trans with NN; assumption.
 apply AbsSmall_minus.
 apply py2.
 apply le_trans with NN; assumption.
Qed.

Lemma R_ap_alt_2 : x y : R_CSetoid, {e : F | [0] [<] e |
 {N : nat | m, N mAbsBig e (CS_seq F x m[-]CS_seq F y m)}}x [#] y.
Proof.
 intros x y H.
 case H.
 intros e H0.
 set (e2 := e [/]TwoNZ) in ×.
 set (e4 := e [/]FourNZ) in ×.
 set (e8 := e [/]EightNZ) in ×.
 set (e16 := e [/]SixteenNZ) in ×.
 assert (He2 : [0] [<] e2).
  unfold e2 in |- *; apply pos_div_two; assumption.
 assert (He4 : [0] [<] e4).
  unfold e4 in |- *; apply pos_div_four; assumption.
 assert (He8 : [0] [<] e8).
  unfold e8 in |- *; apply pos_div_eight; assumption.
 assert (He16 : [0] [<] e16).
  unfold e16 in |- *; apply pos_div_sixteen; assumption.
 case x; intros x_ px.
 case y; intros y_ py.
 case (px e16 He16); intros N1 H31.
 case (py e16 He16); intros N2 H41.
 simpl in |- *; intro H2; case H2; intros N H21.
 set (NN := max N (max N1 N2)) in ×.
 assert (N_NN : N NN).
  unfold NN in |- *; auto with arith.
 assert (N1_NN : N1 NN).
  unfold NN in |- *; apply le_trans with (max N1 N2); auto with arith.
 assert (N2_NN : N2 NN).
  unfold NN in |- *; apply le_trans with (max N1 N2); auto with arith.
 set (x0 := x_ NN) in ×.
 set (y0 := y_ NN) in ×.
 simpl in |- ×.
 unfold R_ap in |- ×.
 unfold R_lt in |- ×.
 simpl in |- ×.
 assert (H5 : AbsBig e2 (x0[-]y0)).
  assert (e2 [<=] e).
   unfold e2 in |- *; apply less_leEq; apply pos_div_two'; auto.
  split; auto.
  elim (H21 NN).
   intros H' Haux; elim Haux; intros; [ left | right ].
    apply leEq_transitive with e; auto.
   apply leEq_transitive with ([--]e); auto; apply inv_resp_leEq; auto.
  unfold NN in |- *; auto with arith.
 case H5; intros Hx s; case s; intro H6.
  right.
   NN.
   e4.
   assumption.
  intro m; intros.
  astepl ([--]e8[+]e2[+][--]e8).
   2: unfold e2, e8, e4 in |- *; rational.
  rstepr (x_ m[-]x0[+] (x0[-]y0) [+] (y0[-]y_ m)).
  apply plus_resp_leEq_both.
   apply plus_resp_leEq_both.
    astepl ([--]e16[+][--]e16).
     2: unfold e16, e8 in |- *; rational.
    rstepr (x_ m[-]x_ N1[+] (x_ N1[-]x0)).
    apply plus_resp_leEq_both.
     assert (H7 : AbsSmall e16 (x_ m[-]x_ N1)).
      apply H31; apply le_trans with NN; auto.
     elim H7; intros.
     rstepl ([--]e16).
     assumption.
    assert (H7 : AbsSmall e16 (x_ N1[-]x0)).
     apply AbsSmall_minus.
     unfold x0 in |- *; auto.
    elim H7; intros.
    rstepl ([--]e16).
    assumption.
   assumption.
  astepl ([--]e16[+][--]e16).
   2: unfold e16, e8 in |- *; rational.
  rstepr (y0[-]y_ N2[+] (y_ N2[-]y_ m)).
  apply plus_resp_leEq_both.
   assert (H7 : AbsSmall e16 (y0[-]y_ N2)).
    unfold y0 in |- *; auto.
   elim H7; intros.
   rstepl ([--]e16).
   assumption.
  assert (H7 : AbsSmall e16 (y_ N2[-]y_ m)).
   apply AbsSmall_minus.
   apply H41.
   apply le_trans with NN; auto.
  elim H7; intros.
  rstepl ([--]e16).
  assumption.
 left.
  NN.
  e4.
  assumption.
 intro m; intros.
 astepl ([--]e8[+]e2[+][--]e8).
  2: unfold e8, e2, e4 in |- *; rational.
 rstepr (y_ m[-]y0[+] (y0[-]x0) [+] (x0[-]x_ m)).
 apply plus_resp_leEq_both.
  apply plus_resp_leEq_both.
   astepl ([--]e16[+][--]e16).
    2: unfold e16, e8 in |- *; rational.
   rstepr (y_ m[-]y_ N2[+] (y_ N2[-]y0)).
   apply plus_resp_leEq_both.
    assert (H8 : AbsSmall e16 (y_ m[-]y_ N2)).
     apply H41.
     apply le_trans with NN; auto.
    elim H8; intros.
    rstepl ([--]e16).
    assumption.
   assert (H8 : AbsSmall e16 (y_ N2[-]y0)).
    apply AbsSmall_minus.
    unfold y0 in |- *; auto.
   elim H8; intros.
   rstepl ([--]e16).
   assumption.
  apply inv_cancel_leEq.
  rstepl (x0[-]y0).
  assumption.
 astepl ([--]e16[+][--]e16).
  2: unfold e16, e8 in |- *; rational.
 rstepr (x0[-]x_ N1[+] (x_ N1[-]x_ m)).
 apply plus_resp_leEq_both.
  assert (H8 : AbsSmall e16 (x0[-]x_ N1)).
   unfold x0 in |- *; auto.
  elim H8; intros.
  rstepl ([--]e16).
  assumption.
 assert (H8 : AbsSmall e16 (x_ N1[-]x_ m)).
  apply AbsSmall_minus.
  apply H31.
  apply le_trans with NN; auto.
 elim H8; intros.
 rstepl ([--]e16).
 assumption.
Qed.

Lemma Eq_alt_2_1 : x y : R_Set, Not (R_ap x y) → e : F, [0] [<] e
 {N : nat | m, N mAbsSmall e (CS_seq F x m[-]CS_seq F y m)}.
Proof.
 intros.
 apply Eq_alt_1.
  assumption.
 intro.
 apply H.
 apply R_ap_alt_2.
  (e [/]FourNZ).
  apply pos_div_four; auto.
 assumption.
Qed.

Lemma Eq_alt_2_2 : x y : R_Set, ( e : F, [0] [<] e
 {N : nat | m, N mAbsSmall e (CS_seq F x m[-]CS_seq F y m)}) → Not (R_ap x y).
Proof.
 intros x y.
 case x; intros x_ px.
 case y; intros y_ py.
 simpl in |- ×.
 intros H. intro H0.
 assert (H1 : {e : F | [0] [<] e |
   {N : nat | m : nat, N mAbsBig (Two[*]e) (x_ m[-]y_ m)}}).
  elim (R_ap_alt_1 _ _ H0).
  intros e H1 H2.
   (e [/]TwoNZ).
   apply pos_div_two; assumption.
  elim H2; intros N HN.
   N. intros.
  apply AbsBig_wdl with e; [ auto | rational ].
 case H1.
 intros e H2 H3.
 case H3; intros N1 A.
 case (H e H2); intros N2 B.
 set (NN := max N1 N2) in ×.
 assert (N1_NN : N1 NN).
  unfold NN in |- *; auto with arith.
 assert (N2_NN : N2 NN).
  unfold NN in |- *; auto with arith.
 assert (H4 := A NN N1_NN).
 assert (H5 := B NN N2_NN).
 unfold AbsSmall in H5.
 rewriteleEq_def in H5.
 elim H5; intros.
 elim H4; intros.
 elim b; intros.
  rewriteleEq_def in H7; apply H7.
  apply less_leEq_trans with (Two[*]e).
   astepl ([0][+]e). rstepr (e[+]e).
   apply plus_resp_less_rht; auto.
  assumption.
 apply H6.
 apply leEq_less_trans with ([--] (Two[*]e)).
  auto.
 apply inv_resp_less.
 astepl ([0][+]e); rstepr (e[+]e).
 apply plus_resp_less_rht; auto.
Qed.

End Auxiliary.

End Structure.