CoRN.model.structures.Qpossec



Require Export QArith.
Require Import Qpower.
Require Import Qordfield.
Require Import COrdFields2.
Require Import Eqdep_dec.
Require Import CornTac.
Require Import Qround.
Require Import Qabs.
Require Import stdlib_omissions.Q.

Open Local Scope Q_scope.

Q+


Definition Q+: Set := sig (Qlt 0).

Program Definition QposMake (num den: positive): Q+ := num # den.
Next Obligation. auto with ×. Qed.

Notation "a # b" := (QposMake a b) (at level 55, no associativity) : Qpos_scope.

Bind Scope Qpos_scope with Q+.
Delimit Scope Qpos_scope with Q+.

Program Definition integral_Qpos (p: positive): Q+ := (p:Q).

Coercion integral_Qpos: positive >-> Q+.

There is an injection from Q+ to Q that we make into a coercion.

Definition QposAsQ: Q+Q := @proj1_sig _ _.

Coercion QposAsQ : Q+ >-> Q.

Basic properties about Q+
Definition Qpos_prf : a:Q+, 0 < a := @proj2_sig _ _.

Hint Immediate Qpos_prf.

Lemma Qpos_nonzero : x:Q+, (x:Q)[#]0.
Proof.
 intros ?.
 apply: pos_ap_zero.
 apply Qpos_prf.
Qed.

Lemma Qpos_nonzero' (q: Q+): ¬ q == 0.
Proof. apply Qpos_nonzero. Qed.

Hint Immediate Qpos_nonzero'.

Lemma Qpos_nonneg : a:Q+, 0 a.
Proof. intros [??]. auto with ×. Qed.

Hint Immediate Qpos_nonneg.

Lemma Qopp_Qpos_neg (x: Q+): -x < 0.
Proof. apply Qopp_Qlt_0_r. auto. Qed.

Hint Immediate Qopp_Qpos_neg.

Any positive rational number can be transformed into a Q+.
Definition mkQpos: (a:Q) (p:0 < a), Q+ := @exist Q (Qlt 0).

Lemma QposAsmkQpos : (a:Q) (p:0<a), (QposAsQ (mkQpos p))=a.
Proof.
 intros [[|an|an] ad] p.
   discriminate.
  reflexivity.
 discriminate.
Qed.

Lemma positive_Z (z: Z): Zlt 0 zsig (fun p: positiveZpos p = z).
 destruct z; intros.
   intros.
   elim (Zlt_irrefl _ H).
   p.
  reflexivity.
 exfalso.
 apply (Zlt_asym _ _ H).
 auto with ×.
Defined.

Require Eqdep_dec.
Definition comparison_eq_dec (a b: comparison): { a = b } + { a b}.
 destruct a, b; try (left; reflexivity); try (right; discriminate).
Defined.

Lemma Zlt_uniq (a b: Z) (p q: (a < b)%Z): p = q.
Proof.
 unfold Zlt in ×. destruct p. intros.
 apply (Eqdep_dec.K_dec_set comparison_eq_dec).
 reflexivity.
Qed.

Lemma Qlt_uniq (a b: Q) (p q: a < b): p = q.
Proof. intros. apply Zlt_uniq. Qed.

Program Definition Qpos_as_positive_ratio (q: Q+):
  sig (fun ps: positive × positiveq = QposMake (fst ps) (snd ps)) :=
  (positive_Z (Qnum q) _, Qden q).

Next Obligation.
 destruct q as [[??] ?]. unfold Qlt in ×. simpl in ×. auto with ×.
Qed.

Next Obligation.
 destruct q as [[??] ?]. simpl.
 destruct positive_Z. simpl.
 subst. unfold QposMake.
 f_equal. apply Qlt_uniq.
Qed.

Lemma Qpos_positive_numerator_rect (P: Q+Type):
  ( (a b: positive), P (a # b)%Q+) → q, P q.
Proof.
 intros H q.
 destruct (Qpos_as_positive_ratio q).
 subst.
 apply H.
Defined.

Lemma QposAsQposMake : a b, (QposAsQ (QposMake a b)) = (Zpos a)#b.
Proof.
 trivial.
Qed.


Equality

Definition QposEq (a b:Q+) := Qeq a b.
Instance Qpos_default : @DefaultRelation Q+ QposEq | 2.

Add Relation Q+ QposEq
 reflexivity proved by (fun (x:Q+) ⇒ Qeq_refl x)
 symmetry proved by (fun (x y:Q+) ⇒ Qeq_sym x y)
 transitivity proved by (fun (x y z:Q+) ⇒ Qeq_trans x y z) as QposSetoid.

Definition QposAp (a b:Q+) := Qap a b.

Definition Qpos_PI (a b: Q+): (a: Q) = ba = b.
Proof.
 destruct a, b.
 simpl. intros. subst.
 f_equal. apply Qlt_uniq.
Qed.

Addition

Program Definition Qpos_plus (x y:Q+) : Q+ := Qplus x y.

Next Obligation.
 apply: plus_resp_pos; apply Qpos_prf.
Qed.

Infix "+" := Qpos_plus : Qpos_scope.
Lemma Q_Qpos_plus : (x y:Q+), ((x + y)%Q+:Q)=(x:Q)+(y:Q).
Proof.
 trivial.
Qed.

One

Program Definition Qpos_one : Q+ := 1.
Next Obligation. auto with qarith. Qed.
Notation "1" := Qpos_one : Qpos_scope.

Lemma Q_Qpos_one : (1%Q+:Q)=(1:Q).
Proof. trivial. Qed.

Multiplication


Program Definition Qpos_mult (x y:Q+) : Q+ := Qmult x y.

Infix "×" := Qpos_mult : Qpos_scope.
Lemma Q_Qpos_mult : (x y:Q+), ((x × y)%Q+:Q)=(x:Q)*(y:Q).
Proof.
 trivial.
Qed.

Inverse


Program Definition Qpos_inv (x:Q+): Q+ := / x.

Next Obligation.
 apply Qinv_lt_0_compat.
 destruct x.
 assumption.
Qed.

Lemma Q_Qpos_inv : (x:Q+), Qpos_inv x = / x :> Q.
Proof.
 trivial.
Qed.
Hint Rewrite Q_Qpos_inv : QposElim.

Notation "a / b" := (Qpos_mult a (Qpos_inv b)) : Qpos_scope.

Tactics

These tactics solve Ring and Field equations over Q+ by converting them to problems over Q.
Ltac QposRing :=
 unfold canonical_names.equiv, QposEq;
 autorewrite with QposElim;
 ring.

Ltac QposField :=
 unfold canonical_names.equiv, QposEq;
 autorewrite with QposElim;
 field.

This is a standard way of decomposing a rational b that is greater than a into a plus a positive value c.
Lemma Qpos_lt_plus : (a b:Q),
 a< b
 {c:Q+ | b==(a+c)}.
Proof.
 intros.
 assert (0<b-a).
  apply: shift_zero_less_minus.
  assumption.
  (mkQpos H0).
 QposRing.
Defined.

Power

Lemma Qpos_power_pos : (x:Q+) z, 0 < x^z.
Proof.
 intros x z.
 destruct (Qle_lt_or_eq _ _ (Qpower_pos x z (Qlt_le_weak _ _ (Qpos_prf x))));[assumption|].
 destruct z.
   discriminate H.
  elim (Qpower_not_0_positive x p).
   apply Qpos_nonzero.
  symmetry; assumption.
 elim (Qpower_not_0_positive (/x) p).
  change (¬(Qpos_inv x) == 0).
  apply Qpos_nonzero.
 change ((/x)^p==0).
 rewriteQinv_power.
 symmetry; assumption.
Qed.

Definition Qpos_power (x:Q+) (z:Z) : Q+.
Proof.
 apply mkQpos with (x^z).
 apply Qpos_power_pos.
Defined.

Infix "^" := Qpos_power : Qpos_scope.
Lemma Q_Qpos_power : (x:Q+) z, ((x^z)%Q+:Q)==(x:Q)^z.
Proof.
 intros.
 unfold Qpos_power.
 autorewrite with QposElim.
 reflexivity.
Qed.
Hint Rewrite Q_Qpos_power : QposElim.

Summing lists

Definition QposSum (l:list Q+) : Q := fold_right
(fun (x:Q+) (y:Q) ⇒ x+y) ([0]:Q) l.

Lemma QposSumNonNeg : l, 0 QposSum l.
Proof.
 induction l.
  apply: leEq_reflexive.
 simpl.
 apply: plus_resp_nonneg.
  apply: less_leEq.
  apply Qpos_prf.
 assumption.
Qed.

A version of Qred for Q+.
Lemma QposRed_prf : (a:Q), (0 < a) → (0 < Qred a).
Proof.
 intros a Ha.
 rewriteQred_correct.
 assumption.
Qed.

Definition QposRed (a:Q+) : Q+ := mkQpos (QposRed_prf a (Qpos_prf a)).

Instance QposRed_complete: Proper (QposEq ==> eq) QposRed.
Proof.
 intros p q H.
 unfold QposRed.
 generalize (QposRed_prf p (Qpos_prf p)).
 generalize (QposRed_prf q (Qpos_prf q)).
 rewrite (Qred_complete p q H).
 unfold Qlt, Zlt.
 intros A B.
 assert (X: x y : comparison, x = y x y).
  decide equality.
 rewrite (eq_proofs_unicity X A B).
 reflexivity.
Qed.

Lemma QposRed_correct : p, QposRed p == p.
Proof.
 unfold QposRed.
 intros p.
 simpl.
 apply Qred_correct.
Qed.


Definition QposCeiling (q: Q+): positive :=
  match Qceiling q with
  | Zpos pp
  | _ ⇒ 1%positive
  end.

Lemma QposCeiling_Qceiling (q: Q+): (QposCeiling q: Z) = Qceiling q.
Proof with auto with ×.
 unfold QposCeiling.
 pose proof Qle_ceiling q.
 destruct (Qceiling q); try reflexivity; exfalso; destruct q; simpl in ×.
  apply (Qlt_not_le 0 x q)...
 apply (Qlt_irrefl 0).
 apply Qlt_le_trans with x...
 apply Qle_trans with (Zneg p)...
Qed.

Definition QabsQpos (x : Q) : Q+ :=
  match x with
  | 0 # _ ⇒ (1%Q+)
  | (Zpos an) # ad ⇒ (an # ad)%Q+
  | (Zneg an) # ad ⇒ (an # ad)%Q+
  end.

Lemma QabsQpos_correct x : ¬x == 0 → QabsQpos x == Qabs x.
Proof with auto with qarith.
 intros E. destruct x as [n d]. simpl.
 destruct n...
 destruct E...
Qed.

Lemma QabsQpos_Qpos (x : Q+) : QposEq (QabsQpos x) x.
Proof with auto with qarith.
 unfold QposEq.
 rewrite QabsQpos_correct...
 apply Qabs_pos...
Qed.