MathClasses.varieties.groups

Require
  categories.varieties categories.product forget_algebra forget_variety theory.groups.
Require Import
  abstract_algebra universal_algebra ua_homomorphisms workaround_tactics.

Inductive op := mult | inv | one.

Definition sig: Signature := single_sorted_signature
  (λ o, match o with oneO | inv ⇒ 1%nat | mult ⇒ 2%nat end).

Section laws.
  Global Instance: SgOp (Term0 sig nat tt) :=
    λ x, App sig _ _ _ (App sig _ _ _ (Op sig nat mult) x).
  Global Instance: MonUnit (Term0 sig nat tt) := Op sig nat one.
  Global Instance: Negate (Term0 sig nat tt) :=
    λ x, App sig _ _ _ (Op sig nat inv) x.

  Local Notation x := (Var sig nat 0%nat tt).
  Local Notation y := (Var sig nat 1%nat tt).
  Local Notation z := (Var sig nat 2%nat tt).

  Import notations.

  Inductive Laws: EqEntailment sig Prop :=
    | e_mult_assoc: Laws (x & (y & z) === (x & y) & z)
    | e_mult_1_l: Laws (mon_unit & x === x)
    | e_mult_1_r: Laws (x & mon_unit === x)
    | e_recip_l: Laws (-x & x === mon_unit)
    | e_recip_r: Laws (x & -x === mon_unit).
End laws.

Definition theory: EquationalTheory := Build_EquationalTheory sig Laws.
Definition Object := varieties.Object theory.

Definition forget: Object setoids.Object :=
  @product.project unit
    (λ _, setoids.Object)
    (λ _, _: Arrows setoids.Object) _
    (λ _, _: CatId setoids.Object)
    (λ _, _: CatComp setoids.Object)
    (λ _, _: Category setoids.Object) tt
      forget_algebra.object theory forget_variety.forget theory.


Instance encode_operations A `{!SgOp A} `(Negate A) `{!MonUnit A}: AlgebraOps sig (λ _, A) :=
  λ o, match o with mult(&) | inv(-) | onemon_unit: A end.

Section decode_operations.
  Context `{AlgebraOps theory A}.

  Global Instance: MonUnit (A tt) := algebra_op one.
  Global Instance: SgOp (A tt) := algebra_op mult.
  Global Instance: Negate (A tt) := algebra_op inv.
End decode_operations.

Section encode_variety_and_ops.
  Context A `{Group A}.

  Global Instance encode_algebra_and_ops: Algebra sig _.
  Proof. constructor. intro. apply _. intro o. destruct o; simpl; try apply _; unfold Proper; reflexivity. Qed.

  Global Instance encode_variety_and_ops: InVariety theory (λ _, A).
  Proof.
   constructor. apply _.
   intros ? [] ?; simpl; unfold algebra_op; simpl.
       apply associativity.
      apply left_identity.
     apply right_identity.
    eapply left_inverse.
   eapply right_inverse.
  Qed.

  Definition object: Object := varieties.object theory (λ _, A).
End encode_variety_and_ops.

Lemma encode_algebra_only `{!AlgebraOps theory A} `{ u, Equiv (A u)} `{!Group (A tt)}: Algebra theory A .
Proof. constructor; intros []; simpl in *; try apply _. Qed.

Global Instance decode_variety_and_ops `{InVariety theory A}: Group (A tt).
Proof with simpl; auto.
 pose proof (λ law lawgood x y z, variety_laws law lawgood (λ s n,
  match s with ttmatch n with 0 ⇒ x | 1 ⇒ y | _z end end)) as laws.
 repeat constructor; try apply _.
       intro. apply_simplified (laws _ e_mult_assoc).
      apply (algebra_propers mult)...
     intro. apply_simplified (laws _ e_mult_1_l)...
    intro. apply_simplified (laws _ e_mult_1_r)...
   apply (algebra_propers inv).
  intro. apply_simplified (laws _ e_recip_l)...
 intro. apply_simplified (laws _ e_recip_r)...
Qed.

Lemma encode_morphism_only
  `{AlgebraOps theory A} `{ u, Equiv (A u)}
  `{AlgebraOps theory B} `{ u, Equiv (B u)}
  (f: u, A u B u) `{!Group (A tt)} `{!Group (B tt)} `{!Monoid_Morphism (f tt)}: HomoMorphism sig A B f.
Proof.
 pose proof (monmor_a (f:=f tt)).
 pose proof (monmor_b (f:=f tt)).
 constructor.
    intros []. apply _.
   intros []; simpl.
     apply preserves_sg_op.
    apply groups.preserves_negate.
   rapply preserves_mon_unit.
  eapply encode_algebra_only.
 eapply encode_algebra_only.
Qed.

Lemma encode_morphism_and_ops `{Group A} `{Group B} `{!Monoid_Morphism (f: A B)}:
  @HomoMorphism sig (λ _, A) (λ _, B) _ _ ( _) ( _) (λ _, f).
Proof. intros. apply encode_morphism_only; assumption. Qed.

Lemma decode_morphism_and_ops
  `{InVariety theory x} `{InVariety theory y} `{!HomoMorphism theory x y f}:
    Monoid_Morphism (f tt).
Proof.
 constructor; try apply _.
  constructor; try apply _.
  apply (preserves theory x y f mult).
 apply (preserves theory x y f one).
Qed.