CoRN.util.Qdlog

Require Import
  ZArith QArith Qround stdlib_omissions.Q
  abstract_algebra additional_operations interfaces.orders
  int_pow orders.rationals stdlib_rationals positive_semiring_elements.

Definition Qdlog2 (x : Q) : Z :=
  match decide_rel (≤) x 1 with
  | left _-Z.log2_up (Qround.Qceiling (/x))
  | right _Z.log2 (Qround.Qfloor x)
  end.

Instance: Proper (=) Qdlog2.
Proof.
  intros ? ? E. unfold Qdlog2.
  do 2 case (decide_rel _); rewrite E; intros; easy.
Qed.

Lemma Qdlog2_spec (x : Q) :
  0 < x 2 ^ Qdlog2 x x x < 2 ^ (1 + Qdlog2 x).
Proof.
  intros E1. unfold Qdlog2.
  case (decide_rel _); intros E2.
   destruct (decide (x = 1)) as [E3|E3].
    rewrite E3. compute; repeat split; discriminate.
   assert (1 < Qceiling (/x))%Z.
    apply (strictly_order_reflecting (cast Z Q)).
    apply orders.lt_le_trans with (/x).
     apply dec_fields.flip_lt_dec_recip_r; trivial.
     apply orders.lt_iff_le_ne. tauto.
    now apply Qle_ceiling.
   split.
    rewrite int_pow_negate.
    apply dec_fields.flip_le_dec_recip_l; trivial.
    transitivity ('Qceiling (/x)).
     now apply Qle_ceiling.
    change 2 with ('(2 : Z)). rewrite <-Qpower.Zpower_Qpower.
     apply (order_preserving _).
     now apply Z.log2_up_spec.
    now apply Z.log2_up_nonneg.
   mc_setoid_replace (1 - Z.log2_up (Qceiling (/x))) with (-Zpred (Z.log2_up (Qceiling (/x)))).
    rewrite int_pow_negate.
    apply dec_fields.flip_lt_dec_recip_r.
     solve_propholds.
    apply orders.le_lt_trans with ('Zpred (Qceiling (/x))).
     change 2 with ('(2 : Z)). rewrite <-Qpower.Zpower_Qpower.
      apply (order_preserving _).
      now apply Z.lt_le_pred, Z.log2_up_spec.
     now apply Z.lt_le_pred, Z.log2_up_pos.
    rewrite <-Z.sub_1_r.
    now apply Qceiling_lt.
   rewrite <-Z.sub_1_r.
   change (1 - Z.log2_up (Qceiling (/ x)) = -(Z.log2_up (Qceiling (/ x)) - 1)).
   now rewrite <-rings.negate_swap_l, commutativity.
  apply orders.le_flip in E2.
  split.
   transitivity ('Qfloor x).
    change 2 with ('(2 : Z)).
    rewrite <-Qpower.Zpower_Qpower.
     apply (order_preserving _).
     now apply Z.log2_spec, Qfloor_pos.
    now apply Z.log2_nonneg.
   now apply Qfloor_le.
  apply orders.lt_le_trans with ('Zsucc (Qfloor x)).
   rewrite <-Z.add_1_r.
   now apply Qlt_floor.
  rewrite Z.add_1_l.
  change 2 with ('(2 : Z)).
  rewrite <-Qpower.Zpower_Qpower.
   apply (order_preserving _).
   now apply Zle_succ_l, Z.log2_spec, Qfloor_pos.
  now apply Zle_le_succ, Z.log2_nonneg.
Qed.

Lemma Qdlog2_nonneg (x : Q) :
  1 x 0 Qdlog2 x.
Proof.
  intros E. unfold Qdlog2.
  case (decide_rel _); intros.
   now mc_setoid_replace x with (1:Q) by now apply (antisymmetry (≤)).
  apply Z.log2_nonneg.
Qed.

Lemma Qdlog2_nonpos (x : Q) :
  x 1 Qdlog2 x 0.
Proof.
  intros E. unfold Qdlog2.
  case (decide_rel _); intros.
   apply Z.opp_nonpos_nonneg.
   now apply Z.log2_up_nonneg.
  contradiction.
Qed.

Lemma Qdlog2_0 (x : Q) :
  0 < x Qdlog2 x = 0 x < 2.
Proof.
  intros E1 E2. pose proof (Qdlog2_spec x E1) as E3.
  now rewrite E2 in E3.
Qed.

Lemma Qpos_dlog2_spec (x : Q) :
  '(2 ^ Qdlog2 ('x)) ('x : Q) 'x < '(2 ^ (1 + Qdlog2 ('x))).
Proof. unfold cast. simpl. split; apply Qdlog2_spec; now destruct x. Qed.

Lemma Qdlog2_unique (x : Q) (y : Z) :
  0 < x 2 ^ y x x < 2 ^ (1 + y) y = Qdlog2 x.
Proof.
  intros.
  apply (antisymmetry (≤)).
   apply nat_int.le_iff_lt_plus_1.
   rewrite commutativity.
   apply int_pow_exp_lt_back with (2 : Q); [ apply semirings.lt_1_2 |].
   apply orders.le_lt_trans with x; [ intuition |].
   now apply Qdlog2_spec.
  apply nat_int.le_iff_lt_plus_1.
  rewrite commutativity.
  apply int_pow_exp_lt_back with (2 : Q); [ apply semirings.lt_1_2 |].
  apply orders.le_lt_trans with x; [|intuition].
  now apply Qdlog2_spec.
Qed.

Lemma Qdlog2_mult_pow2 (x : Q) (n : Z) :
  0 < x Qdlog2 x + n = Qdlog2 (mult x (2 ^ n)).
Proof.
  intros E. apply Qdlog2_unique.
   apply pos_mult_compat; [easy | solve_propholds].
  split.
   rewrite int_pow_exp_plus by solve_propholds.
   apply (order_preserving (.* 2 ^ n)).
   now apply Qdlog2_spec.
  rewrite associativity.
  rewrite int_pow_exp_plus by solve_propholds.
  apply (strictly_order_preserving (.* 2 ^ n)).
  now apply Qdlog2_spec.
Qed.

Lemma Qdlog2_half (x : Q) :
  0 < x Qdlog2 x - 1 = Qdlog2 (mult x (/2)).
Proof. intros E. now rewrite Qdlog2_mult_pow2. Qed.

Lemma Qdlog2_double (x : Q) :
  0 < x Qdlog2 x + 1 = Qdlog2 (mult x 2).
Proof. intros E. now rewrite Qdlog2_mult_pow2. Qed.

Lemma Qdlog2_preserving (x y : Q) :
  0 < x x y Qdlog2 x Qdlog2 y.
Proof.
  intros E1 E2.
  apply nat_int.le_iff_lt_plus_1. rewrite commutativity.
  apply int_pow_exp_lt_back with (2:Q); [ apply semirings.lt_1_2 |].
  apply orders.le_lt_trans with x; [now apply Qdlog2_spec | ].
  apply orders.le_lt_trans with y; [assumption |].
  apply Qdlog2_spec.
  now apply orders.lt_le_trans with x.
Qed.

Fixpoint Qdlog_bounded (b : nat) (n : Z) (x : Q) : Z :=
  match b with
  | O ⇒ 0
  | S cif (decide_rel (<) x ('n:Q))
    then 0
    else 1 + Qdlog_bounded c n (x / ('n:Q))
  end.

Definition Qdlog (n : Z) (x : Q) : Z := Qdlog_bounded (Zabs_nat (Qdlog2 x)) n x.

Lemma Qdlog_bounded_nonneg (b : nat) (n : Z) (x : Q) :
  0 Qdlog_bounded b n x.
Proof.
  revert x. induction b; simpl; [reflexivity |].
  intros. case (decide_rel _); intros; [reflexivity |].
  apply semirings.nonneg_plus_compat; [easy | apply IHb].
Qed.

Lemma Qdlog2_le1 (n : Z) (x : Q) :
  2 n x 1 Qdlog n x = 0.
Proof.
  intros En Ex. unfold Qdlog.
  generalize (Zabs_nat (Qdlog2 x)).
  intros b. induction b; simpl; [reflexivity |].
  case (decide_rel _); intros E; [reflexivity |].
  destruct E.
  apply orders.le_lt_trans with 1; try assumption.
  apply orders.lt_le_trans with 2.
   now apply semirings.lt_1_2.
  now apply (order_preserving (cast Z Q)) in En.
Qed.

Instance: Proper ((=) ==> (=)) Qdlog_bounded.
Proof.
  intros b1 b2 Eb n1 n2 En x1 x2 Ex.
  change (b1 b2) in Eb. change (n1 n2) in En. subst.
  revert x1 x2 Ex. induction b2; simpl; [reflexivity |].
  intros x1 x2 Ex.
  case (decide_rel _); case (decide_rel _); intros E1 E2.
     reflexivity.
    destruct E1. now rewrite <-Ex.
   destruct E2. now rewrite Ex.
  rewrite IHb2; [reflexivity| now rewrite Ex].
Qed.

Instance: Proper ((=) ==> (=)) Qdlog.
Proof. unfold Qdlog. intros ? ? E1 ? ? E2. now rewrite E1, E2. Qed.

Lemma Qdlog_spec_bounded (b : nat) (n : Z) (x : Q) :
  2 n Qdlog2 x ('b) 1 x 'n ^ Qdlog_bounded b n x x x < 'n ^ (1 + Qdlog_bounded b n x).
Proof.
  intros En Eb Ex.
  apply (order_preserving (cast Z Q)) in En.
  assert (0 < ('n : Q))
    by (apply orders.lt_le_trans with 2; [solve_propholds | assumption]).
  revert x Eb Ex.
  induction b; simpl.
   intros x Eb Ex.
   split; [assumption|].
   apply orders.lt_le_trans with 2; try assumption.
   apply Qdlog2_0.
    apply orders.lt_le_trans with 1; [ solve_propholds | easy].
   apply (antisymmetry (≤)); try assumption.
   now apply Qdlog2_nonneg.
  intros x Eb Ex.
  case (decide_rel _); [intuition |]; intros E.
  apply orders.not_lt_le_flip in E.
  assert (x = 'n × (x / 'n)) as Ex2.
   rewrite (commutativity x), associativity.
   rewrite dec_recip_inverse, rings.mult_1_l; [reflexivity |].
   now apply orders.lt_ne_flip.
  rewrite peano_naturals.S_nat_plus_1, rings.preserves_plus, rings.preserves_1 in Eb.
  assert (1 x / 'n).
   apply (order_reflecting (('n:Q) *.)).
   now rewrite <-Ex2, rings.mult_1_r.
  destruct (IHb (x / 'n)); trivial.
   transitivity (Qdlog2 (x /2)%mc).
    apply Qdlog2_preserving.
     apply orders.lt_le_trans with 1; [solve_propholds | assumption].
    apply (maps.order_preserving_nonneg (.*.) x).
     now transitivity (1:Q).
    apply dec_fields.flip_le_dec_recip; [solve_propholds | assumption].
   rewrite <-Qdlog2_half.
    now apply rings.flip_le_minus_l.
   now apply orders.lt_le_trans with 1; [solve_propholds | assumption].
  rewrite int_pow_S_nonneg by (now apply Qdlog_bounded_nonneg).
  rewrite int_pow_S_nonneg by (apply semirings.nonneg_plus_compat; [easy | now apply Qdlog_bounded_nonneg]).
  setoid_rewrite Ex2 at 2 3.
  split.
   now apply (order_preserving (('n:Q) *.)).
  now apply (strictly_order_preserving (('n:Q) *.)).
Qed.

Lemma Qdlog_spec (n : Z) (x : Q) :
  2 n 1 x 'n ^ Qdlog n x x x < 'n ^ (1 + Qdlog n x).
Proof.
  intros. apply Qdlog_spec_bounded; trivial.
  rewrite inj_Zabs_nat, Zabs_eq; [reflexivity |].
  now apply Qdlog2_nonneg.
Qed.

Definition Qdlog4 (x : Q) : Z := Zdiv (Qdlog2 x) 2.

Instance: Proper (=) Qdlog4.
Proof. unfold Qdlog4. intros ? ? E. now rewrite E. Qed.

Lemma Qdlog4_spec (x : Q) :
  0 < x 4 ^ Qdlog4 x x x < 4 ^ (1 + Qdlog4 x).
Proof.
  intros E1. unfold Qdlog4.
  change (4:Q) with ((2:Q) ^ (2:Z))%mc.
  rewrite <-2!int_pow_exp_mult.
  split.
   etransitivity.
    2: now apply Qdlog2_spec.
   apply int_pow_exp_le; [easy|].
   now apply Z.mul_div_le.
  eapply orders.lt_le_trans.
   now apply Qdlog2_spec.
  apply int_pow_exp_le; [apply semirings.le_1_2 |].
  apply nat_int.le_iff_lt_plus_1.
  rewrite commutativity.
  apply (strictly_order_preserving (+1)).
  change (1 + (Qdlog2 x / 2)%Z) with (1 + Zdiv (Qdlog2 x) 2)%Z.
  rewrite (Z.add_1_l (Zdiv (Qdlog2 x) 2)).
  now apply Z.mul_succ_div_gt.
Qed.