
Abstract
1

Recent years have seen a surge of interest in gossip protocols, with

proposals to apply them for purposes ranging from autonomic self-

management, repair of inconsistencies, reliable multicast and

distributed search. Yet the field of distributed computing is

littered with technologies that had initial promise, but were

ultimately rejected by the industry. Researchers who measure

their work through its impact need to ask some tough, basic

questions. What are the uses to which gossip is particularly well-

matched, and what are its limitations? What alternatives are there

to gossip-based solutions, and when would we be better-off using

a non-gossip protocol? When, in effect, is gossip the technology

of choice?

Gossip 101
In this white paper, we will consider a protocol to be a gossip

protocol if it satisfies the following conditions:

1. The core of the protocol involves periodic, pairwise, inter-

process interactions

2. The information exchanged during these interactions is of

(small) bounded size

3. When nodes interact, the state of one or both changes in a

way that reflects the state of the other. For example, if A

pings B just to measure the round-trip-time between them, it

isn’t a gossip interaction.

4. Reliable communication is not assumed

5. The frequency of the interactions is low compared to typical

message latencies, so that the protocol costs are negligible

6. There is some form of randomness in the peer selection. Peer

selection might occur within the full node set, or might be

performed in a smaller set of neighbors.

It is useful to distinguish three styles of gossip protocol [3].

1. Dissemination (rumor-mongering) protocols. These use

gossip to spread information; they basically work by flooding

nodes in the network, but in a manner that produces bounded

worst-case loads:

a) Event dissemination protocols use gossip to carry out

multicasts. They report events, but the events don’t

actually trigger the gossip (since gossip runs

periodically). One concern here is the potentially high

latency from when the event occurs until it is delivered.

b) Background data dissemination protocols continuously

gossip about information associated with the

participating nodes. Typically, propagation latency isn’t

a concern, perhaps because the information in question

changes slowly or there is no significant penalty for

acting upon slightly stale data.

2. Anti-entropy protocols for repairing replicated data, which

operate by comparing replicas and reconciling differences.

3. Protocols that compute aggregates, or that accomplish some

task as a side-effect of computing an aggregate. These

operate by sampling information at the nodes in the network

1

ken@cs.cornell.edu. This work was supported in part by

grants from AFRL/IFSE, AFOSR, NSF and Intel

Corporation.

and combining the values to arrive at a system-wide value –

for example, the worst case load on any node in the system,

or the best match with some search pattern [9].

Aggregation is a surprisingly complex topic. The key

requirement is that an aggregate must be computable by fixed-size

pairwise information exchanges; these typically terminate after a

number of rounds of information exchange logarithmic in the

system size, by which time an all-to-all information flow pattern

will have been established. Aggregators can be based on simple

operators such as max or union, but one can also design

probabilistic aggregators that converge rapidly towards average,

sum, etc [13], and will be exact provided that no failures occur

while the protocol is running. An interesting scenario arises in the

Astrolabe system [20], where gossip is used to construct an

overlay tree, and then aggregation is performed purely using

gossip, but with a pattern of peering determined by the tree.

Astrolabe can easily compute exact sums, count elements

satisfying conditions, etc. Many kinds of aggregators depend

upon having an estimate of the system size, but several protocols

Gossip protocols for size estimation include [14][15].

In some cases, the main reason for computing an aggregate is to

accomplish some form of side-effect. For example, many overlay

tree construction algorithms can be reformulated as gossip

aggregation algorithms (as in the T-Man project [8] [9]).

Similarly, there are gossip protocols that can arrange the nodes in

a gossip overlay into a list sorted by node-id (or some other

attribute) in logarithmic time using aggregation-style information

exchanges that effectively carry out a parallel exchange sort [10].

The use of an underlying gossip infrastructure to support higher-

level abstractions is further explored in [7] and [15].

This is a rather inclusive definition, and some might argue that it is

too broad. In particular:

1. Many protocols that predate the earliest use of the term

“gossip” fall within our definition. Many routing protocols

have an underlying gossip-like information exchange. In the

view of the author, the fact that the term “gossip” arose after

protocols were already using some of these ideas is not

particularly disturbing. Indeed, an interesting question arises:

what was the first use of gossip in a distributed system? The

answer is not apparent.

2. We’ve used the term “gossip aggregation” in conjunction

with ways of using a tree-like structure while computing

aggregates. Astrolabe doesn’t actually aggregate “on a tree”:

in the system, the tree is purely an abstraction used to assign

each node its role (or roles) in the the aggregation algorithm.

The movement of data is purely by peer-to-peer gossip using

random peer selection. But one can also use gossip to

construct an overlay tree, then aggregate within the tree,

sending data from the leaves towards the root. While this

author believes that Astrolabe fits our definition, a case can

be made that this second form of aggregation does not.

The Promise, and Limitations, of Gossip Protocols

Ken Birman (ken@cs.cornell.edu)

Dept. of Computer Science, Cornell University

8

Notice that a gossip substrate can easily implement a standard

routed network: nodes could “gossip” about traditional point-to-

point messages, effectively tunneling normal traffic through the

gossip layer. Bandwidth permitting, a gossip system can

potentially support any classic protocol or implement any classical

distributed service. Nonetheless, when we talk of gossip

protocols, we rarely intend such a broadly inclusive interpretation.

More typically we have in mind protocols that run in a regular,

periodic, relatively lazy, symmetric and decentralized manner; the

high degree of symmetry among nodes is particularly

characteristic. Thus, to give a simple example, while one could

run a 2-phase commit protocol over a gossip substrate,

piggybacking the messages on gossip traffic, doing so would be at

odds with the spirit, if not the wording, of the definition.

Frequently, the most useful gossip protocols turn out to be those

with exponentially rapid convergence towards a state that

“emerges” with probability 1.0. For example, a classic distributed

computing problem involves building some form of tree whose

inner nodes are the nodes in a network, and whose edges represent

links between nodes (for routing, as a dissemination overlay, etc).

Not all tree-building protocols are gossip protocols (for example,

spanning tree constructions in which a leader initiates a flood), but

gossip offers a good decentralized solution that can be useful in

many situations.

Some researchers have begun to use the term convergently

consistent to describe protocols that achieve exponentially rapid

spread of information and, therefore, converge exponentially

quickly to a globally consistent state after a new event occurs, in

the absence of additional events. For this purpose, a protocol must

propagate any new information to all nodes that will be affected

by the information within time logarithmic in the size of the

system (the “mixing time” must be O(log(N))).

An interesting and apparently open question concerns the “need”

for this form of exponential convergence. When a gossip protocol

becomes overloaded (by an excessive event rate), or experiences

certain patterns of correlated failure, one can imagine an

information mixing process that might be slower than O(log(N)).

Indeed, one could imagine deliberately designing gossip protocols

that have slow mixing rates. Such a protocol would exhibit a

slower than exponential convergence property, but is this

necessarily a bad thing?

The Limitations of Gossip
The foregoing discussion should make it clear that gossip, in one

sense, is no more or less limited than any other distributed

computing paradigm. Yet the stylized manner in which we

normally use gossip introduces significant limitations.

First, consider the implications of the small, bounded message

sizes and the relatively slow periodic message exchanges. These

combine to severely limit the information carrying capacity of a

gossip algorithm. For example, if gossip is used to disseminate

information (often, in a form of flooding), the system-wide

capacity for new events will be limited simply because the

aggregate “bandwidth” available is bounded. If we consider that a

typical gossip multicast resides in the system for O(log(n)) time,

during which it keeps every infected node busy infecting other

nodes the average rate at which new messages can be sent,

system-wide, will be roughly the inverse of the residency time:

1/log(n). In typical protocols, a node gossips about any given

piece of information for f rounds (the fanout of the gossip

protocol), after which it becomes quiescent, at least with respect to

that information. Often f is set to log(N).

Notice that because messages have a fixed maximum size, if the

amount of information that a node needs to gossip exceeds the

maximum carrying capacity of messages, the effective fanout will

start to fall because nodes will be incapable of gossiping about

some information items during the expected number of rounds.

This illustrates a potentially subtle issue: while gossip protocols

scale well in some dimensions, there are senses in which these

protocols might not scale well at all. In the case just described, we

can see that a steadily increasing rate of events can exhaust the

carrying capacity of the gossip information channel, and our

protocol may then malfunction. The precise point at which this

saturation occurs depends on many factors: the rate at which

events enter the system, event sizes, gossip fanout and message

sizes, and the nature of the gossip protocol itself. Aggregation, for

example, should be relatively immune to such issues, while event

dissemination may be highly sensitive to it.

This should concern us, because it would be natural to assume that

in a system of N nodes, the rate of new events will be proportional

to N. Our observation makes it clear that the rate at which new

events can be introduced can only rise to some system-wide

threshold, after which the rate of introducing new events will need

to be reduced, potentially in proportion to N! On the other hand,

bursty event rates that briefly overwhelm a gossip protocol may

not be a problem, provided that the fanout is large enough so that

the protocol will still be gossiping about the excess events when

the channel load finally starts to fall. In this sense, we can see that

the real issue is the information carrying capacity of gossip as a

rate over time. Quantification of this issue is clearly needed.

The relatively slow rate of gossip can be an obstacle. While it is

common to claim that users need only tune the gossip rate to

match their goals, requirement 5 complicates the picture. To a

point, one can reduce the periodicity to speed the spread of

information at the cost of increased overheads. However,

eventually this tactic results in a gossip rate that approaches the

network RTT. Were one to go to such an extreme, resource

contention effects at the network interface and within the network

itself might distort the behavior of the protocol, and many of the

most salient characteristics of gossip would be lost.

In his talk at the Leiden workshop (the basis of this special issue

of OSR), Van Renesse has observed that gossip is not a

particularly robust protocol, particularly with respect to correlated

loss patterns and to malicious behaviors (components that

malfunction, for example by running the protocol incorrectly,

disseminating incorrect data, and so forth). For example, suppose

that we are trying to find the five nodes in a system that are

detecting the highest rate of “possible intrusion attempts”. A

natural approach would be to ask nodes to gossip about this rate,

and also to use aggregation to gossip about the five highest rates

that they have heard about. Now, suppose that we implement this

approach, but some malicious or malfunctioning nodes report

falsely high rates, or retain the minimum rather than the maximum

when comparing intrusion rates. Such errors can delay or even

defeat the protocol. Clearly, gossip is very much a community

process: all the nodes are in some sense dependent upon the

correct behavior of all other nodes. Thus, while gossip is often

characterized as being “highly robust”, this is really limited to

certain classes of failures.

Strengths of Gossip
The limitations just cited are just one side of a complex picture.

Gossip protocols also have substantial power. Among the most

cited strengths are these:

9

• Convergent consistency. As mentioned earlier, this refers to

the fact that properly designed gossip protocols, when not

overwhelmed by a higher rate of incoming “events” than the

information-carrying bandwidth of the underlying channels,

should have a logarithmic mixing time. Typically, this

implies that if we compare the states of nodes with respect to

information that entered the system at various times in the

past, nodes will agree strongly on the set of events older than

logarithmic time units in the past (the unit of time being the

gossip round length), and that any inconsistencies

(differences in the event sets) will be limited to recent events.

Notice that because of the bounded gossip rates and bounded

message sizes, most gossip protocols can “fall behind” if a

system is exposed to a surge of incoming events. Designers

typically parameterize gossip protocols so that such situations

will be rare and will not persist for long.

• Emergent structure. Earlier, we contrasted a classic

deterministic protocol for building a spanning tree by leader-

initiated flooding with a decentralized way of building such a

tree, for example as done in the T-Man system [8]. In the

gossip style, the tree “emerges” from randomized pairwise

interactions between peers. An emergent structure is

intended to evoke the image of a data structure that will be

convergently consistent; although the structure would often

have at best a probabilistic guarantee of satisfying the

relevant structural invariant, it would often do so with

probability 1.0 if one waits long enough while the system is

quiescent. The structure may then continue to evolve over

time as further gossip occurs.

• Simplicity. Most (but not all) gossip protocols are extremely

simple. Often, gossip protocols require just a few lines of

code and are completely symmetric: every node runs the

identical code.

• Bounded load on participants. Many classic (non-gossip)

distributed protocols are criticized because they can generate

high surge loads that overload individual components.

Gossip is normally used in ways that produce strictly

bounded worst-case loads on each component, eliminating

the risk of disruptive load surges. In some situations, where

network capacity is also a concern, peer-selection is further

biased to control load imposed on network links. Indeed, not

only does a well-designed gossip protocol typically have

bounded loads, these loads are often almost neglible – a tiny

fraction of available bandwidth.

• Topology independence. If running on a sufficiently

connected networking substrate, and with sufficient

bandwidth, a gossip protocol will often operate correctly on a

great variety of underlying topologies. Of course, some

topologies are inadequately connected (the theory of

expander graphs is applicable here: to be “adequately”

connected, a protocol should trace out an expander graph

[18][19]); when gossip runs on one of these defective graphs,

the outcome of the protocol may be affected, either by a

longer running time or through the manifestation of

erroneous outcomes, such as logical partitioning (see

Allavena [1]). Kempe has suggested that the theory of Small

Worlds graphs might be used to design gossip overlays on

which information will propagate at an optimal rate [12].

• Ease of local information discovery. Many gossip protocols

are used for purposes of discovery, for example to find a

nearby resource (these are usually protocols in which gossip

occurs between neighbors, not between arbitrarily distant

peers). Unlike local flooding, which scales poorly, gossip

would typically find local information less quickly but with

bounded costs: perhaps, a constant or a delay logarithmic in

the system size.

• Robustness to transient network disruptions. As time

elapses, there are exponentially many routes by which

information can flow from its source to its destinations.

However, as noted earlier, it is important to keep in mind that

not all uses of gossip are robust in all ways. For example,

unless data is self-verifying, dissemination protocols are

often vulnerable to data corruption. Anti-entropy protocols

may similarly be at risk of a replica becomes corrupted.

Correlated failures can be an issue (network partitioning

being the most extreme example); these can selectively delay

the propagation of information, perhaps long enough so that

nodes cease to gossip about it, leaving a persistent

inconsistency. And aggregation protocols are vulnerable not

just to the introduction of faulty information, but also to

computational errors that result in a faulty computation of the

aggregate.

Appropriate roles for gossip
Earlier we observed that gossip can be used to “do” anything one

might wish to do in a distributed system: a gossip system can run a

classical algorithm. The converse also holds: a gossip solution to

a problem will invariably be just one of several ways to solve that

problem. Before deciding to use gossip as the basis for an

algorithm, we need to evaluate the options and should pick the

best solution, or mixture of solutions.

For example, a primary use of gossip is for information diffusion:

some event occurs, and our goal is to spread the word. Gossip

offers a style of flooding that can reliably solve this problem with

especially little needed code. Moreover, the reliability level can

be very high; unless malicious faults are considered, probability

1.0 outcomes are common. Yet a significant criticism of this type

of protocol is that the running times can be slow and that the

protocol is potentially costly in terms of messages used. Gossip is

a particularly bad way to implement a scalable event notification

service, unless one cares little about efficiency or delay and places

an exceptionally high value on some other attribute of the gossip

solution, such as its ability to operate in networks with irregular

and unknown connectivity.

If we compare a gossip diffusion multicast with a classical reliable

multicast protocol, the latter will often approximate an ideal

pattern in which each message reaches destination nodes exactly

once. If properly designed, the reliability mechanisms can be

extremely fast, and it is often possible to aggregate multiple small

messages into larger ones for higher efficiency, and to exploit IP

multicast or other technologies if available. A classical reliable

multicast could potentially send millions of similarly sized

messages in the same amount of time as it might take a gossip-

flooding algorithm to propagate just a small fraction of those

number of messages.

We need to be careful when making such comparisons: the

classical algorithm can potentially use all the bandwidth in the

network, while the gossip algorithm has a very small and bounded

communication cost. But even if the classical algorithm was

10

constrained to use identical bandwidth to the gossip version, the

classical algorithm will outperform gossip. The gossip protocol

has no “urgency” and much of its bandwidth is consumed by

redundant information.

This overhead, and the delay associated with the periodicity of

gossip rounds, ensures that no matter how fast we run a gossip

protocol, it won’t compete favorably if latency or “goodput” is

compared with the best reliable multicast options.

The foregoing observation isn’t necessarily damning. The classical

algorithm may require careful configuration; the gossip solution

potentially avoids this. Classical reliable multicast protocols can

be complex, hence one might favor a gossip solution for its

simplicity. But once a protocol is coded and debugged, it is just a

tool, like any other tool. Once a protocol is installed and running,

configuration may not seem like such an issue. The fact that

gossip can be coded easily doesn’t make it a fundamentally better

tool than some other protocol that can’t be coded quite so easily.

Moreover, the randomness inherent in many gossip protocols can

make it hard to reproduce and debug unexpected problems that

arise at runtime, whereas many multicast protocols support strong

models (virtual synchrony, state-machine styles of consensus,

transactional 1SR) that can be helpful both as design tools and

debugging aides.

Thus one should be wary of arguing that simpler protocols are

better than more complex ones. As Einstein famously remarked, a

thing should be as simple as possible – but no simpler. If the user

actually needs a strong consistency model such as the ones cited, it

would be unfortunate to instead offer a weaker probabilistic tool.

Simplicity is a virtue, but not an overriding one.

One could offer similar comments about aggregation or anti-

entropy applications. Gossip is certainly a convenient

communication pattern for certain kinds of aggregation, but if we

have a suitable overlay tree available, it will often be far faster to

aggregate by sending a request to start the process down the tree,

and then collecting a wave of data up the tree from leaves to root,

aggregating at inner nodes. Gossip can be used to reconcile

divergence between replicas, but just one of many possible options

– and as mentioned in our discussion of faults, one must also

pause to ask why replicas might become inconsistent in the first

place. An anti-entropy repair mechanism can only help if some

form of omission is at the heart of the inconsistencies we’re trying

to remedy. If the problem is actually some form of malicious

fault, gossip is not helpful: it may actually provide a route

whereby an intruder who has compromised one node can

indirectly compromise others by tricking the gossip protocol into

copying incorrect data to correct nodes.

The Road Ahead

What should be the uses of gossip in future systems? In the

foregoing, we touched upon (some) merits and weaknesses of

gossip. In the remainder of this short essay, our hope is to draw

some conclusions based on the observations made above. At the

risk of overgeneralizing, gossip stands out as the “best” solution

for at least some purposes, each of which raises interesting

opportunities for future study.

• Gossip can be a powerful adjunct to a classical protocol, for

example when a gossip mechanism is “married” to some

other technology that suffers from infrequent defects of its

own. For example, suppose that we implement a classic style

of information replication or configuration management as

part of a data center, optimizing the protocols to squeeze

every last cycle out of the hardware. It is common for

systems built this way to exhibit various forms of fragility. A

gossip solution could be constructed to run side-by-side with

the high speed solution. This gossip mechanism may be slow

but will also be predictable and reliable, and can be used to

monitor the underlying infrastructure. The extreme

robustness against communication disruptions, coupled with

the certainty that the technology will never produce any kind

of disruptive load bursts of its own (and hence won’t

exacerbate whatever problem we’re trying to detect and

repair) makes gossip a good choice. The gossip mechanism

can give the application developer confidence that if a

problem does arise, it can be corrected and repair initiated

within a fairly short delay – here, a few seconds may seem

like an appealingly rapid reaction time. Moreover, the

simplicity of the gossip solution avoids the classic dilemma

of a failure handling mechanism that turns out to malfunction

in ways that introduce additional failure modes.

An example of a gossip-based system that operates in this

manner, as an adjunct to other technologies, arises at one of

the major e-tailers in the context of their data centers. That

company uses the Astrolabe [20] system for self-

configuration, problem detection and repair.

A second example of this sort of pairing arose in designing

the Bimodal Multicast protocol and the closely related

lpbcast protocol [2][4]. In these cases, an unreliable

multicast protocol is paired with an out-of-band gossip

mechanism to achieve high reliability and very good

scalability.

• As a simple and rapidly adaptive way to construct overlay

structures (see, for example, [8][17]). Many classical

algorithms for building non-trivial structures (such as the

trees used in certain DHTs) have later been found to have

difficulty coping with churn or transient partitioning, high

overheads, poor scalability, and so forth. Moreover, proving

them correct is often very hard. A probabilistic proof that a

gossip-based algorithm for discovery of an emergent data

structure will quickly converge (with probability 1.0) is

frequently almost trivial.

• Gossip opens the door to a variety of self-organizing and self-

adaptive (autonomic) behaviors. In organizations concerned

about the total cost of owning and operating a system, these

properties are attractive. For example, Montressor has shown

that gossip can be used to place servers or other sorts of

super-peers in a manner that will situate a server close to each

client, and will create enough servers to balance load [11], a

problem related to utility placement. While Montressor’s

scheme is heuristic, it does suggest a path whereby results

from the optimization community might be imported into

distributed systems and architected to operate in an

autonomous manner.

• Gossip can sometimes pair in a convenient way with some

underlying physical form of locality (e.g. when nodes gossip

with neighbors to discover nearby information). See, for

example [21]. The ability to write topology-indifferent code

that will be slow but robust can be extremely appealing if the

discovery of the topology might otherwise be difficult or

require some form of manual “help” in the form of a hand-

coded configuration aid.

11

• Gossip offers an extremely decentralized form of information

discovery, and its latencies are often acceptable if the

information won’t actually be used immediately. For

example, in settings where one wants to support decentralized

search without collecting information into any form of

centralized store, a gossip protocol may be a good solution.

On the negative side, humans expect snappy response, and

any situation in which the end-user might experience a delay

until logarithmically many rounds of a gossip protocol have

run will probably be unacceptably slow, even if rounds are

executed fairly quickly.

This is a good context to recall that gossip is often

dramatically outperformed by simple classical techniques,

such as aggregation on a tree – the same observation applies

to search, which can be understood as a directed form of

aggregation. As we observed earlier, using gossip to build an

overlay tree, within which we could run a 2-phase search or

aggregation algorithm, may yield a far better solution than

trying to rely upon gossip as the sole story. In particular,

notice that if we use log(N) time to build an overlay tree and

then use the tree to compute a function such as sum, median,

or even the number of nodes, we obtain an accurate answer in

log time. In contrast, we noted earlier that a pure gossip

algorithm for solving such problems will typically yield only

a probabilistic approximation to the correct answer.

• Gossip has interesting parallels to all sorts of social

structures. For example, as individuals carrying wireless

devices move about and interact, there may be opportunities

to pass information among the devices (we have in mind

examples such as a rapidly responsive traffic monitoring

application, for example, that might exchange gossip between

automobiles). Humans make heavy use of physical forms of

peer-to-peer interaction technologies (cell phones, chat,

automobiles that share the same roadways) and gossip is a

natural technical substrate for building applications that

might have a structure “mirroring” the physical one. Indeed,

if the relevant data could be captured, gossip could be used to

pursue some questions of great contemporary interest. This

connection, and the connection to work on so-called Delay

Tolerant Networks, would be well worth exploring.

The above are all examples that contemplate the use of gossip as a

tool in what might be characterized as “classic” distributed

systems – systems of the sort we are familiar with from the

Internet and Web. But one can also speculate more ambitiously.

For example, For example, consider the difficulty epidemiologists

have tracking outbreaks of viruses such as SARS, e-coli or avian

flu. If we could build simple gossip-based mechanisms to track

the patterns of interactions and contact between residents of a city,

or a rural community (by watching for peering opportunities when

their cell telephones come within range), it might be possible to

create much better models for use in predicting the way that future

pandemics will spread. Indeed (flipping the question around), one

could use gossip between small applets of this sort to “mimic” the

spread of a virus, and then compare the outcomes with what would

be predicted by current models, as a way of validating the models.

Here the value of gossip is that the technology is so extremely

simple, and after all, is out there in the field with peering

opportunities in very much the same situations where humans

could potentially infect one-another. The domain of gossip as a

research tool for experimental sociology thus strikes us a

particularly promising one (provided that such issues as privacy

could be addressed).

It is easy to imagine a future in which these kinds of completely

novel uses of gossip could turn out to be the “killer applications”

for the technology. After all, despite the obstacles involved in

doing so, classical ways of building classical styles of distributed

computing system are well accepted within the field. Applications

such as the one just described, in contrast, are completely outside

of current day-to-day experience.

Towards real systems
Developers of real systems face basic choices as to the technology

they will use to build higher level abstractions. These choices

have very basic implications when the developer constructs the

lowest layers of a system: a system that will communicate over

TCP links leads to a completely different internal architecture than

one that will employ home-brew protocols that use gossip-style

interactions over UDP, or one that will make use of an outboard

reliable multicast protocol running in a library or a separate

daemon. Our analysis makes it clear that gossip could be an

ideal choice for some purposes, and for systems designed (only)

for those purposes, the developer’s path is relatively clear.

But what should developers do if they confront a complex

problem, for which some mixture of technologies will be needed?

Today, there is no obvious answer to such a question. Scalability

makes this more than just a software engineering and systems

architecture question: if a collection of applications shares a

platform and will run over a common communication substrate,

there may be many simultaneous but quasi-independent uses of

gossip, of multicast, or of TCP. Should a platform treat these

separately, or might there be strong reasons to aggregate traffic or

other functionality at the operating systems communication layer?

The author sees these as pressing problems that could reveal a

completely unnoticed scalability “landscape” for the gossip

research community to explore.

Indeed, the broader question implied by these musings seems to be

perhaps the most interesting one of all. How should

communication solutions be embedded into modern platforms, to

maximize utility in such dimensions as scalability, but also ease of

application development, efficient sharing of the platform among

multiple applications that happen to be running on it, ease of

debugging, of system deployment, and of long term aspects such

as management, problem diagnosis and repair? How, in effect,

can tools such as gossip be made part of the standard repertoire of

technologies available to developers? The gossip community has

enjoyed a period of relatively low-hanging fruit, during which all

sorts of clever uses of gossip were demonstrated. But now the

technology faces a basic problem of maturity: to have impact,

gossip needs to learn to integrate with alternatives, and with the

prevailing operating systems and development architectures.

Happily, doing so exposes a fascinating research agenda.

Conclusions

Our discussion can be summarized in a few rules of thumb:

• Gossip is a tool, not an end in itself. It should be used

selectively, in settings where gossip is the best choice.

• This implies that gossip needs to “learn” to coexist with other

solutions in the context of general-purpose platforms.

• Gossip-based algorithms that discover structures are an area

of particularly high value.

• Gossip is necessarily slow and shouldn’t try to compete

where speed is the goal.

12

• Some of the most exciting future opportunities arise where

gossip is employed in a setting that has some sort of inherent

resonance with a peer-to-peer style of communication, and

that can’t even be approached with classical protocols.

Acknowledgements
The author wishes to acknowledge the suggestions of the

anonymous referees, Anne-Marie Kermarrec, Robbert van

Renesse, Einar Vollset and Ingrid Jansch-Porto.

References

[1] Correctness of a Gossip-based Membership Protocol.

André Allavena, Alan Demers and John Hopcroft. Proc. 24th

ACM Symposium on the Principle of Distributed Computing

(PODC 2005).

[2] Bimodal Multicast. Kenneth P. Birman, Mark Hayden,

Oznur Ozkasap, Zhen Xiao, Mihai Budiu and Yaron Minsky.

ACM Transactions on Computer Systems, Vol. 17, No. 2, pp

41-88, May, 1999.

[3] Epidemic algorithms for replicated database
management. Alan Demers, et. al. Proc. 6th ACM PODC,

Vancouver BC, 1987.

[4] Lightweight probabilistic broadcast. Patrick Eugster,

Rashid Guerraoui, S. B. Handurukande, Petr Kouznetsov,

Anne-Marie Kermarrec. ACM Transactions on Computer

Systems (TOCS) 21:4, Nov 2003.

[5] Kelips: Building an Efficient and Stable P2P DHT

Through Increased Memory and Background Overhead.
Indranil Gupta, Ken Birman, Prakash Linga, Al Demers,

Robbert van Renesse. Proc. 2nd International Workshop on

Peer-to-Peer Systems (IPTPS '03)

[6] Systematic Design of P2P Technologies for Distributed
Systems. Indranil Gupta, Global Data Management, eds: R.

Baldoni, G. Cortese, F. Davide and A. Melpignano, 2006.

[7] Efficient and Adaptive Epidemic-Style Protocols for
Reliable and Scalable Multicast. Indranil Gupta, Ayalvadi

J. Ganesh, Anne-Marie Kermarrec. IEEE Transactions on

Parallel and Distributed Systems, vol. 17, no. 7, pp. 593-605,

July, 2006.

[8] T-Man: Gossip-based overlay topology management.
Márk Jelasity and Ozalp Babaoglu. Engineering Self-

Organising Systems: Third International Workshop (ESOA

2005), Springer-Verlag LNCS 3910 (2006).

[9] Gossip-based aggregation in large dynamic networks.
Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu.

ACM Transactions on Computer Systems, 23(3):219–252,

August 2005.

[10] Ordered slicing of very large overlay networks. Márk

Jelasity and Anne-Marie Kermarrec. IEEE P2P, 2006.

[11] Proximity-aware superpeer overlay topologies. Gian Paolo

Jesi, Alberto Montresor, and Ozalp Babaoglu. Proc SelfMan

06. Spinger-Verlag LNCS 399, Dublin, Ireland, June 2006.

[12] Spatial gossip and resource location protocols. David

Kempe, Jon Kleinberg, Alan Demers. Journal of the ACM

(JACM) 51: 6 (Nov 2004).

[13] Gossip-Based Computation of Aggregate Information.
David Kempe, Alin Dobra, Johannes Gehrke. Proc. 44th

Annual IEEE Symposium on Foundations of Computer

Science (FOCS). 2003.

[14] Active and Passive Techniques for Group Size Estimation

in Large-Scale and Dynamic Distributed Systems.
Dionysios Kostoulas , Dimitrios Psaltoulis, Indranil Gupta,

Ken Birman, Al Demers. Elsevier Journal of Systems and

Software, 2007.

[15] Build One, Get One Free: Leveraging the Coexistence of
Multiple P2P Overlay Networks. Balasubramaneyam

Maniymaran, Marin Bertier and Anne-Marie Kermarrec.

Proc. ICDCS, June 2007.

[16] Peer counting and sampling in overlay networks: random
walk methods. Laurent Massoulié, Erwan Le Merrer, nne-

Marie Kermarrec, Ayalvadi Ganesh. Proc. 25th ACM PODC.

Denver, 2006.

[17] Chord on Demand. Alberto Montresor, Márk Jelasity, and

Ozalp Babaoglu. Proc. 5th Conference on Peer-to-Peer

Computing (P2P), Konstanz, Germany, August 2005.

[18] Introduction to Expander Graphs. Michael Nielsen.

http://www.qinfo.org/people/nielsen/blog/archive/notes/expa

nder_graphs.pdf. Technical report, June 2005.

[19] Building low-diameter P2P networks. G. Pandurangan, P.

Raghavan, Eli Upfal. In Proceedings of the 42nd Symposium

on Foundations of Computer Science (FOCS), 2001.

[20] Astrolabe: A Robust and Scalable Technology for

Distributed System Monitoring, Management, and Data

Mining. Robbert van Renesse, Kenneth Birman and Werner

Vogels. ACM Transactions on Computer Systems (TOCS)

21:2, May 2003.

[21] Exploiting Semantic Proximity in Peer-to-peer Content

Searching. S. Voulgaris, A.-M. Kermarrec, L. Massoulie,

M. van Steen. Proc. 10th Int'l Workshop on Future Trends in

Distributed Computing Systems (FTDCS 2004), Suzhou,

China, May 2004.

13

