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Recent years have seen a surge of interest in gossip protocols, with 

proposals to apply them for purposes ranging from autonomic self-

management, repair of inconsistencies, reliable multicast and 

distributed search.  Yet the field of distributed computing is 

littered with technologies that had initial promise, but were 

ultimately rejected by the industry.   Researchers who measure 

their work through its impact need to ask some tough, basic 

questions.  What are the uses to which gossip is particularly well-

matched, and what are its limitations?  What alternatives are there 

to gossip-based solutions, and when would we be better-off using 

a non-gossip protocol?  When, in effect, is gossip the technology 

of choice? 

Gossip 101 
In this white paper, we will consider a protocol to be a gossip 

protocol if it satisfies the following conditions: 

1. The core of the protocol involves periodic, pairwise, inter-

process interactions 

2. The information exchanged during these interactions is of 

(small) bounded size 

3. When nodes interact, the state of one or both changes in a 

way that reflects the state of the other.  For example, if A 

pings B just to measure the round-trip-time between them, it 

isn’t a gossip interaction. 

4. Reliable communication is not assumed  

5. The frequency of the interactions is low compared to typical 

message latencies, so that the protocol costs are negligible 

6. There is some form of randomness in the peer selection.  Peer 

selection might occur within the full node set, or might be 

performed in a smaller set of neighbors. 

It is useful to distinguish three styles of gossip protocol [3].   

1. Dissemination (rumor-mongering) protocols.  These use 

gossip to spread information; they basically work by flooding 

nodes in the network, but in a manner that produces bounded 

worst-case loads:   

a) Event dissemination protocols use gossip to carry out 

multicasts.  They report events, but the events don’t 

actually trigger the gossip (since gossip runs 

periodically).  One concern here is the potentially high 

latency from when the event occurs until it is delivered. 

b) Background data dissemination protocols continuously 

gossip about information associated with the 

participating nodes.  Typically, propagation latency isn’t 

a concern, perhaps because the information in question 

changes slowly or there is no significant penalty for 

acting upon slightly stale data.  

2. Anti-entropy protocols for repairing replicated data, which 

operate by comparing replicas and reconciling differences.  

3. Protocols that compute aggregates, or that accomplish some 

task as a side-effect of computing an aggregate.  These 

operate by sampling information at the nodes in the network 
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and combining the values to arrive at a system-wide value – 

for example, the worst case load on any node in the system, 

or the best match with some search pattern [9].  

Aggregation is a surprisingly complex topic.   The key 

requirement is that an aggregate must be computable by fixed-size 

pairwise information exchanges; these typically terminate after a 

number of rounds of information exchange logarithmic in the 

system size, by which time an all-to-all information flow pattern 

will have been established.  Aggregators can be based on simple 

operators such as max or union, but one can also design 

probabilistic aggregators that converge rapidly towards average, 

sum, etc [13], and will be exact provided that no failures occur 

while the protocol is running.  An interesting scenario arises in the 

Astrolabe system [20], where gossip is used to construct an 

overlay tree, and then aggregation is performed purely using 

gossip, but with a pattern of peering determined by the tree.  

Astrolabe can easily compute exact sums, count elements 

satisfying conditions, etc.  Many kinds of aggregators depend 

upon having an estimate of the system size, but several protocols 

Gossip protocols for size estimation include [14][15].

In some cases, the main reason for computing an aggregate is to 

accomplish some form of side-effect.  For example, many overlay 

tree construction algorithms can be reformulated as gossip 

aggregation algorithms (as in the T-Man project [8] [9]).  

Similarly, there are gossip protocols that can arrange the nodes in 

a gossip overlay into a list sorted by node-id (or some other 

attribute) in logarithmic time using aggregation-style information 

exchanges that effectively carry out a parallel exchange sort [10].  

The use of an underlying gossip infrastructure to support higher-

level abstractions is further explored in [7] and [15]. 

This is a rather inclusive definition, and some might argue that it is 

too broad.  In particular: 

1. Many protocols that predate the earliest use of the term 

“gossip” fall within our definition.  Many routing protocols 

have an underlying gossip-like information exchange.  In the 

view of the author, the fact that the term “gossip” arose after 

protocols were already using some of these ideas is not 

particularly disturbing.  Indeed, an interesting question arises: 

what was the first use of gossip in a distributed system?  The 

answer is not apparent. 

2. We’ve used the term “gossip aggregation” in conjunction 

with ways of using a tree-like structure while computing 

aggregates.  Astrolabe doesn’t actually aggregate “on a tree”: 

in the system, the tree is purely an abstraction used to assign 

each node its role (or roles) in the the aggregation algorithm.  

The movement of data is purely by peer-to-peer gossip using 

random peer selection.  But one can also use gossip to 

construct an overlay tree, then aggregate within the tree, 

sending data from the leaves towards the root.  While this 

author believes that Astrolabe fits our definition, a case can 

be made that this second form of aggregation does not. 
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Notice that a gossip substrate can easily implement a standard 

routed network: nodes could “gossip” about traditional point-to-

point messages, effectively tunneling normal traffic through the 

gossip layer.  Bandwidth permitting, a gossip system can 

potentially support any classic protocol or implement any classical 

distributed service.  Nonetheless, when we talk of gossip 

protocols, we rarely intend such a broadly inclusive interpretation.  

More typically we have in mind protocols that run in a regular, 

periodic, relatively lazy, symmetric and decentralized manner; the 

high degree of symmetry among nodes is particularly 

characteristic.  Thus, to give a simple example, while one could 

run a 2-phase commit protocol over a gossip substrate, 

piggybacking the messages on gossip traffic, doing so would be at 

odds with the spirit, if not the wording, of the definition.    

Frequently, the most useful gossip protocols turn out to be those 

with exponentially rapid convergence towards a state that 

“emerges” with probability 1.0.  For example, a classic distributed 

computing problem involves building some form of tree whose 

inner nodes are the nodes in a network, and whose edges represent 

links between nodes (for routing, as a dissemination overlay, etc).    

Not all tree-building protocols are gossip protocols (for example, 

spanning tree constructions in which a leader initiates a flood), but 

gossip offers a good decentralized solution that can be useful in 

many situations. 

Some researchers have begun to use the term convergently 

consistent to describe protocols that achieve exponentially rapid 

spread of information and, therefore, converge exponentially 

quickly to a globally consistent state after a new event occurs, in 

the absence of additional events.  For this purpose, a protocol must 

propagate any new information to all nodes that will be affected 

by the information within time logarithmic in the size of the 

system (the “mixing time” must be O(log(N))).  

An interesting and apparently open question concerns the “need” 

for this form of exponential convergence.  When a gossip protocol 

becomes overloaded (by an excessive event rate), or experiences 

certain patterns of correlated failure, one can imagine an 

information mixing process that might be slower than O(log(N)).  

Indeed, one could imagine deliberately designing gossip protocols 

that have slow mixing rates.  Such a protocol would exhibit a 

slower than exponential convergence property, but is this 

necessarily a bad thing?  

The Limitations of Gossip 
The foregoing discussion should make it clear that gossip, in one 

sense, is no more or less limited than any other distributed 

computing paradigm.  Yet the stylized manner in which we 

normally use gossip introduces significant limitations. 

First, consider the implications of the small, bounded message 

sizes and the relatively slow periodic message exchanges.  These 

combine to severely limit the information carrying capacity of a 

gossip algorithm.  For example, if gossip is used to disseminate 

information (often, in a form of flooding), the system-wide 

capacity for new events will be limited simply because the 

aggregate “bandwidth” available is bounded.  If we consider that a 

typical gossip multicast resides in the system for O(log(n)) time, 

during which it keeps every infected node busy infecting other 

nodes the average rate at which new messages can be sent, 

system-wide, will be roughly the inverse of the residency time: 

1/log(n).  In typical protocols, a node gossips about any given 

piece of information for f rounds (the fanout of the gossip 

protocol), after which it becomes quiescent, at least with respect to 

that information.  Often f is set to log(N).   

Notice that because messages have a fixed maximum size, if the 

amount of information that a node needs to gossip exceeds the 

maximum carrying capacity of messages, the effective fanout will 

start to fall because nodes will be incapable of gossiping about 

some information items during the expected number of rounds.  

This illustrates a potentially subtle issue: while gossip protocols 

scale well in some dimensions, there are senses in which these 

protocols might not scale well at all.  In the case just described, we 

can see that a steadily increasing rate of events can exhaust the 

carrying capacity of the gossip information channel, and our 

protocol may then malfunction.  The precise point at which this 

saturation occurs depends on many factors: the rate at which 

events enter the system, event sizes, gossip fanout and message 

sizes, and the nature of the gossip protocol itself.  Aggregation, for 

example, should be relatively immune to such issues, while event 

dissemination may be highly sensitive to it.  

This should concern us, because it would be natural to assume that 

in a system of N nodes, the rate of new events will be proportional 

to N.  Our observation makes it clear that the rate at which new 

events can be introduced can only rise to some system-wide 

threshold, after which the rate of introducing new events will need 

to be reduced, potentially in proportion to N!  On the other hand, 

bursty event rates that briefly overwhelm a gossip protocol may 

not be a problem, provided that the fanout is large enough so that 

the protocol will still be gossiping about the excess events when 

the channel load finally starts to fall.  In this sense, we can see that 

the real issue is the information carrying capacity of gossip as a 

rate over time.  Quantification of this issue is clearly needed.  

The relatively slow rate of gossip can be an obstacle.  While it is 

common to claim that users need only tune the gossip rate to 

match their goals, requirement 5 complicates the picture. To a 

point, one can reduce the periodicity to speed the  spread of 

information at the cost of increased overheads.  However, 

eventually this tactic results in a gossip rate that approaches the 

network RTT.  Were one to go to such an extreme, resource 

contention effects at the network interface and within the network 

itself might distort the behavior of the protocol, and many of the 

most salient characteristics of gossip would be lost. 

In his talk at the Leiden workshop (the basis of this special issue 

of OSR), Van Renesse has observed that gossip is not a 

particularly robust protocol, particularly with respect to correlated 

loss patterns and to malicious behaviors (components that 

malfunction, for example by running the protocol incorrectly, 

disseminating incorrect data, and so forth).  For example, suppose 

that we are trying to find the five nodes in a system that are 

detecting the highest rate of “possible intrusion attempts”.  A 

natural approach would be to ask nodes to gossip about this rate, 

and also to use aggregation to gossip about the five highest rates 

that they have heard about.  Now, suppose that we implement this 

approach, but some malicious or malfunctioning nodes report 

falsely high rates, or retain the minimum rather than the maximum 

when comparing intrusion rates.  Such errors can delay or even 

defeat the protocol. Clearly, gossip is very much a community 

process: all the nodes are in some sense dependent upon the 

correct behavior of all other nodes.  Thus, while gossip is often 

characterized as being “highly robust”, this is really limited to 

certain classes of failures. 

Strengths of Gossip 
The limitations just cited are just one side of a complex picture.   

Gossip protocols also have substantial power.  Among the most 

cited strengths are these: 
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• Convergent consistency.  As mentioned earlier, this refers to 

the fact that properly designed gossip protocols, when not 

overwhelmed by a higher rate of incoming “events” than the 

information-carrying bandwidth of the underlying channels, 

should have a logarithmic mixing time.  Typically, this 

implies that if we compare the states of nodes with respect to 

information that entered the system at various times in the 

past, nodes will agree strongly on the set of events older than 

logarithmic time units in the past (the unit of time being the 

gossip round length), and that any inconsistencies 

(differences in the event sets) will be limited to recent events. 

Notice that because of the bounded gossip rates and bounded 

message sizes, most gossip protocols can “fall behind” if a 

system is exposed to a surge of incoming events.  Designers 

typically parameterize gossip protocols so that such situations 

will be rare and will not persist for long. 

• Emergent structure.  Earlier, we contrasted a classic 

deterministic protocol for building a spanning tree by leader-

initiated flooding with a decentralized way of building such a 

tree, for example as done in the T-Man system [8].  In the 

gossip style, the tree “emerges” from randomized pairwise 

interactions between peers.  An emergent structure is 

intended to evoke the image of a data structure that will be 

convergently consistent; although the structure would often 

have at best a probabilistic guarantee of satisfying the 

relevant structural invariant, it would often do so with 

probability 1.0 if one waits long enough while the system is 

quiescent.   The structure may then continue to evolve over 

time as further gossip occurs. 

• Simplicity.  Most (but not all) gossip protocols are extremely 

simple.  Often, gossip protocols require just a few lines of 

code and are completely symmetric: every node runs the 

identical code. 

• Bounded load on participants.  Many classic (non-gossip) 

distributed protocols are criticized because they can generate 

high surge loads that overload individual components.  

Gossip is normally used in ways that produce strictly 

bounded worst-case loads on each component, eliminating 

the risk of disruptive load surges.  In some situations, where 

network capacity is also a concern, peer-selection is further 

biased to control load imposed on network links.  Indeed, not 

only does a well-designed gossip protocol typically have 

bounded loads, these loads are often almost neglible – a tiny 

fraction of available bandwidth. 

• Topology independence.  If running on a sufficiently 

connected networking substrate, and with sufficient 

bandwidth, a gossip protocol will often operate correctly on a 

great variety of underlying topologies.  Of course, some 

topologies are inadequately connected (the theory of 

expander graphs is applicable here: to be “adequately” 

connected, a protocol should trace out an expander graph 

[18][19]); when gossip runs on one of these defective graphs, 

the outcome of the protocol may be affected, either by a 

longer running time or through the manifestation of 

erroneous outcomes, such as logical partitioning (see 

Allavena [1]).  Kempe has suggested that the theory of Small 

Worlds graphs might be used to design gossip overlays on 

which information will propagate at an optimal rate [12]. 

• Ease of local information discovery.  Many gossip protocols 

are used for purposes of discovery, for example to find a 

nearby resource (these are usually protocols in which gossip 

occurs between neighbors, not between arbitrarily distant 

peers).  Unlike local flooding, which scales poorly, gossip 

would typically find local information less quickly but with 

bounded costs: perhaps, a constant or a delay logarithmic in 

the system size. 

• Robustness to transient network disruptions.  As time 

elapses, there are exponentially many routes by which 

information can flow from its source to its destinations.  

However, as noted earlier, it is important to keep in mind that 

not all uses of gossip are robust in all ways.  For example, 

unless data is self-verifying, dissemination protocols are 

often vulnerable to data corruption.  Anti-entropy protocols 

may similarly be at risk of a replica becomes corrupted. 

Correlated failures can be an issue (network partitioning 

being the most extreme example); these can selectively delay 

the propagation of information, perhaps long enough so that 

nodes cease to gossip about it, leaving a persistent 

inconsistency. And aggregation protocols are vulnerable not 

just to the introduction of faulty information, but also to 

computational errors that result in a faulty computation of the 

aggregate.    

Appropriate roles for gossip 
Earlier we observed that gossip can be used to “do” anything one 

might wish to do in a distributed system: a gossip system can run a 

classical algorithm.  The converse also holds: a gossip solution to 

a problem will invariably be just one of several ways to solve that 

problem.  Before deciding to use gossip as the basis for an 

algorithm, we need to evaluate the options and should pick the 

best solution, or mixture of solutions. 

For example, a primary use of gossip is for information diffusion: 

some event occurs, and our goal is to spread the word.  Gossip 

offers a style of flooding that can reliably solve this problem with 

especially little needed code.  Moreover, the reliability level can 

be very high; unless malicious faults are considered, probability 

1.0 outcomes are common.  Yet a significant criticism of this type 

of protocol is that the running times can be slow and that the 

protocol is potentially costly in terms of messages used.  Gossip is 

a particularly bad way to implement a scalable event notification 

service, unless one cares little about efficiency or delay and places 

an exceptionally high value on some other attribute of the gossip 

solution, such as its ability to operate in networks with irregular 

and unknown connectivity. 

If we compare a gossip diffusion multicast with a classical reliable 

multicast protocol, the latter will often approximate an ideal 

pattern in which each message reaches destination nodes exactly 

once.  If properly designed, the reliability mechanisms can be 

extremely fast, and it is often possible to aggregate multiple small 

messages into larger ones for higher efficiency, and to exploit IP 

multicast or other technologies if available.  A classical reliable 

multicast could potentially send millions of similarly sized 

messages in the same amount of time as it might take a gossip-

flooding algorithm to propagate just a small fraction of those 

number of messages.   

We need to be careful when making such comparisons: the 

classical algorithm can potentially use all the bandwidth in the 

network, while the gossip algorithm has a very small and bounded 

communication cost.  But even if the classical algorithm was 
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constrained to use identical bandwidth to the gossip version, the 

classical algorithm will outperform gossip.  The gossip protocol 

has no “urgency” and  much of its bandwidth is consumed by 

redundant information.   

This overhead, and the delay associated with the periodicity of 

gossip rounds, ensures that no matter how fast we run a gossip 

protocol, it won’t compete favorably if latency or “goodput” is 

compared with the best reliable multicast options.   

The foregoing observation isn’t necessarily damning. The classical 

algorithm may require careful configuration; the gossip solution 

potentially avoids this.  Classical reliable multicast protocols can 

be complex, hence one might favor a gossip solution for its 

simplicity.  But once a protocol is coded and debugged, it is just a 

tool, like any other tool.  Once a protocol is installed and running, 

configuration may not seem like such an issue.  The fact that 

gossip can be coded easily doesn’t make it a fundamentally better 

tool than some other protocol that can’t be coded quite so easily. 

Moreover, the randomness inherent in many gossip protocols can 

make it hard to reproduce and debug unexpected problems that 

arise at runtime, whereas many multicast protocols support strong 

models (virtual synchrony, state-machine styles of consensus, 

transactional 1SR) that can be helpful both as design tools and 

debugging aides.   

Thus one should be wary of arguing that simpler protocols are 

better than more complex ones.  As Einstein famously remarked, a 

thing should be as simple as possible – but no simpler.  If the user 

actually needs a strong consistency model such as the ones cited, it 

would be unfortunate to instead offer a weaker probabilistic tool.  

Simplicity is a virtue, but not an overriding one. 

One could offer similar comments about aggregation or anti-

entropy applications.  Gossip is certainly a convenient 

communication pattern for certain kinds of aggregation, but if we 

have a suitable overlay tree available, it will often be far faster to 

aggregate by sending a request to start the process down the tree, 

and then collecting a wave of data up the tree from leaves to root, 

aggregating at inner nodes.  Gossip can be used to reconcile 

divergence between replicas, but just one of many possible options 

– and as mentioned in our discussion of faults, one must also 

pause to ask why replicas might become inconsistent in the first 

place.  An anti-entropy repair mechanism can only help if some 

form of omission is at the heart of the inconsistencies we’re trying 

to remedy.   If the problem is actually some form of malicious 

fault, gossip is not helpful: it may actually provide a route 

whereby an intruder who has compromised one node can 

indirectly compromise others by tricking the gossip protocol into 

copying incorrect data to correct nodes. 

The Road Ahead 

What should be the uses of gossip in future systems?  In the 

foregoing, we touched upon (some) merits and weaknesses of 

gossip.  In the remainder of this short essay, our hope is to draw 

some conclusions based on the observations made above.  At the 

risk of overgeneralizing, gossip stands out as the “best” solution 

for at least some purposes, each of which raises interesting 

opportunities for future study. 

• Gossip can be a powerful adjunct to a classical protocol, for 

example when a gossip mechanism is “married” to some 

other technology that suffers from infrequent defects of its 

own.  For example, suppose that we implement a classic style 

of information replication or configuration management as 

part of a data center, optimizing the protocols to squeeze 

every last cycle out of the hardware.  It is common for 

systems built this way to exhibit various forms of fragility.  A 

gossip solution could be constructed to run side-by-side with 

the high speed solution.  This gossip mechanism may be slow 

but will also be predictable and reliable, and can be used to 

monitor the underlying infrastructure.  The extreme 

robustness against communication disruptions, coupled with 

the certainty that the technology will never produce any kind 

of disruptive load bursts of its own (and hence won’t 

exacerbate whatever problem we’re trying to detect and 

repair) makes gossip a good choice.  The gossip mechanism 

can give the application developer confidence that if a 

problem does arise, it can be corrected and repair initiated 

within a fairly short delay – here, a few seconds may seem 

like an appealingly rapid reaction time.  Moreover, the 

simplicity of the gossip solution avoids the classic dilemma 

of a failure handling mechanism that turns out to malfunction 

in ways that introduce additional failure modes.  

An example of a gossip-based system that operates in this 

manner, as an adjunct to other technologies, arises at one of 

the major e-tailers in the context of their data centers.  That 

company uses the Astrolabe [20] system for self-

configuration, problem detection and repair. 

A second example of this sort of pairing arose in designing 

the Bimodal Multicast protocol and the closely related 

lpbcast protocol [2][4].  In these cases, an unreliable 

multicast protocol is paired with an out-of-band gossip 

mechanism to achieve high reliability and very good 

scalability.  

• As a simple and rapidly adaptive way to construct overlay 

structures (see, for example, [8][17]).  Many classical 

algorithms for building non-trivial structures (such as the 

trees used in certain DHTs) have later been found to have 

difficulty coping with churn or transient partitioning, high 

overheads, poor scalability, and so forth.  Moreover, proving 

them correct is often very hard.  A probabilistic proof that a 

gossip-based algorithm for discovery of an emergent data 

structure will quickly converge (with probability 1.0) is 

frequently almost trivial. 

• Gossip opens the door to a variety of self-organizing and self-

adaptive (autonomic) behaviors.  In organizations concerned 

about the total cost of owning and operating a system, these 

properties are attractive.  For example, Montressor has shown 

that gossip can be used to place servers or other sorts of 

super-peers in a manner that will situate a server close to each 

client, and will create enough servers to balance load [11], a 

problem related to utility placement.  While Montressor’s 

scheme is heuristic, it does suggest a path whereby results 

from the optimization community might be imported into 

distributed systems and architected to operate in an 

autonomous manner. 

• Gossip can sometimes pair in a convenient way with some 

underlying physical form of locality (e.g. when nodes gossip 

with neighbors to discover nearby information).  See, for 

example [21].  The ability to write topology-indifferent code 

that will be slow but robust can be extremely appealing if the 

discovery of the topology might otherwise be difficult or 

require some form of manual “help” in the form of a hand-

coded configuration aid. 
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• Gossip offers an extremely decentralized form of information 

discovery, and its latencies are often acceptable if the 

information won’t actually be used immediately.  For 

example, in settings where one wants to support decentralized 

search without collecting information into any form of 

centralized store, a gossip protocol may be a good solution.  

On the negative side, humans expect snappy response, and 

any situation in which the end-user might experience a delay 

until logarithmically many rounds of a gossip protocol have 

run will probably be unacceptably slow, even if rounds are 

executed fairly quickly.   

This is a good context to recall that gossip is often 

dramatically outperformed by simple classical techniques, 

such as aggregation on a tree – the same observation applies 

to search, which can be understood as a directed form of 

aggregation.  As we observed earlier, using gossip to build an 

overlay tree, within which we could run a 2-phase search or 

aggregation algorithm, may yield a far better solution than 

trying to rely upon gossip as the sole story.  In particular, 

notice that if we use log(N) time to build an overlay tree and 

then use the tree to compute a function such as sum, median, 

or even the number of nodes, we obtain an accurate answer in 

log time.  In contrast, we noted earlier that a pure gossip 

algorithm for solving such problems will typically yield only 

a probabilistic approximation to the correct answer. 

• Gossip has interesting parallels to all sorts of social 

structures.  For example, as individuals carrying wireless 

devices move about and interact, there may be opportunities 

to pass information among the devices (we have in mind 

examples such as a rapidly responsive traffic monitoring 

application, for example, that might exchange gossip between 

automobiles).  Humans make heavy use of physical forms of 

peer-to-peer interaction technologies (cell phones, chat, 

automobiles that share the same roadways) and gossip is a 

natural technical substrate for building applications that 

might have a structure “mirroring” the physical one.   Indeed, 

if the relevant data could be captured, gossip could be used to 

pursue some questions of great contemporary interest.  This 

connection, and the connection to work on so-called Delay 

Tolerant Networks, would be well worth exploring. 

The above are all examples that contemplate the use of gossip as a 

tool in what might be characterized as “classic” distributed 

systems – systems of the sort we are familiar with from the 

Internet and Web.  But one can also speculate more ambitiously. 

For example, For example, consider the difficulty epidemiologists 

have tracking outbreaks of viruses such as SARS, e-coli or avian 

flu.  If we could build simple gossip-based mechanisms to track 

the patterns of interactions and contact between residents of a city, 

or a rural community (by watching for peering opportunities when 

their cell telephones come within range), it might be possible to 

create much better models for use in predicting the way that future 

pandemics will spread.  Indeed (flipping the question around), one 

could use gossip between small applets of this sort to “mimic” the 

spread of a virus, and then compare the outcomes with what would 

be predicted by current models, as a way of validating the models.  

Here the value of gossip is that the technology is so extremely 

simple, and after all, is out there in the field with peering 

opportunities in very much the same situations where humans 

could potentially infect one-another.  The domain of gossip as a 

research tool for experimental sociology thus strikes us a 

particularly promising one (provided that such issues as privacy 

could be addressed). 

It is easy to imagine a future in which these kinds of completely 

novel uses of gossip could turn out to be the “killer applications” 

for the technology.  After all, despite the obstacles involved in 

doing so, classical ways of building classical styles of distributed 

computing system are well accepted within the field.  Applications 

such as the one just described, in contrast, are completely outside 

of current day-to-day experience. 

Towards real systems 
Developers of real systems face basic choices as to the technology 

they will use to build higher level abstractions.  These choices 

have very basic implications when the developer constructs the 

lowest layers of a system: a system that will communicate over 

TCP links leads to a completely different internal architecture than 

one that will employ home-brew protocols that use gossip-style 

interactions over UDP, or one that will make use of an outboard 

reliable multicast protocol running in a library or a separate 

daemon.    Our analysis makes it clear that gossip could be an 

ideal choice for some purposes, and for systems designed (only) 

for those purposes, the developer’s path is relatively clear. 

But what should developers do if they confront a complex 

problem, for which some mixture of technologies will be needed?  

Today, there is no obvious answer to such a question.  Scalability 

makes this more than just a software engineering and systems 

architecture question: if a collection of applications shares a 

platform and will run over a common communication substrate, 

there may be many simultaneous but quasi-independent uses of 

gossip, of multicast, or of TCP.  Should a platform treat these 

separately, or might there be strong reasons to aggregate traffic or 

other functionality at the operating systems communication layer?  

The author sees these as pressing problems that could reveal a 

completely unnoticed scalability “landscape” for the gossip 

research community to explore. 

Indeed, the broader question implied by these musings seems to be 

perhaps the most interesting one of all.  How should 

communication solutions be embedded into modern platforms, to 

maximize utility in such dimensions as scalability, but also ease of 

application development, efficient sharing of the platform among 

multiple applications that happen to be running on it, ease of 

debugging, of system deployment, and of long term aspects such 

as management, problem diagnosis and repair?  How, in effect, 

can tools such as gossip be made part of the standard repertoire of 

technologies available to developers?  The gossip community has 

enjoyed a period of relatively low-hanging fruit, during which all 

sorts of clever uses of gossip were demonstrated.  But now the 

technology faces a basic problem of maturity: to have impact, 

gossip needs to learn to integrate with alternatives, and with the 

prevailing operating systems and development architectures.  

Happily, doing so exposes a fascinating research agenda. 

Conclusions 

Our discussion can be summarized in a few rules of thumb: 

• Gossip is a tool, not an end in itself.  It should be used 

selectively, in settings where gossip is the best choice. 

• This implies that gossip needs to “learn” to coexist with other 

solutions in the context of general-purpose platforms.  

• Gossip-based algorithms that discover structures are an area 

of particularly high value. 

• Gossip is necessarily slow and shouldn’t try to compete 

where speed is the goal. 
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• Some of the most exciting future opportunities arise where 

gossip is employed in a setting that has some sort of inherent 

resonance with a peer-to-peer style of communication, and 

that can’t even be approached with classical protocols. 
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