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Abstract

Hardware-based mechanisms for software isolation are be-
coming increasingly popular, but implementing these mech-
anisms correctly has proved difficult, undermining the root
of security. This work introduces an effective way to for-
mally verify important properties of such hardware security
mechanisms. In our approach, hardware is developed using
a lightweight security-typed hardware description language
(HDL) that performs static information flow analysis. We
show the practicality of our approach by implementing and
verifying a simplified but realistic multi-core prototype of
the ARM TrustZone architecture. To make the security-typed
HDL expressive enough to verify a realistic processor, we de-
velop new type system features. Our experiments suggest that
information flow analysis is efficient, and programmer effort
is modest. We also show that information flow constraints are
an effective way to detect hardware vulnerabilities, including
several found in commercial processors.

1. Introduction

Modern computing systems increasingly rely on hardware-
level protection to provide secure environments for critical
software components. Protection rings are widely used in
practice to isolate supervisor processes from user processes.
Recent hardware security architectures such as ARM Trust-
Zone [21], Intel SGX [2], and IBM SecureBlue [[1] aim to
protect software even when the operating system is malicious
or compromised

The complexity of modern processors inevitably leads to
bugs and security vulnerabilities. Processor errata often in-
clude security bugs [[14]. Previous studies found vulnerabili-
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ties in implementations of Intel VT-d [41] and system man-
agement mode (SMM) [40]. Vulnerabilities are also found
in safety-critical hardware. For example, an exploitable bug
was found in the Actel ProASIC3 [31]], which was used in
medical, automotive, and military applications including a
Boeing 787 aircraft.

Since hardware design is error-prone, there is need for
approaches that provide formal guarantees about the security
properties enforced by hardware. Unfortunately, conventional
tools for formal verification have prohibitive costs for both
verification time and hardware-designer effort. As a result,
commercial hardware designers rely on code reviews and
best practices to attempt to avoid vulnerabilities.

This paper demonstrates that the security requirements of
complex hardware security architectures can be practically
verified with information flow control at the level of the
hardware description language (HDL). Information flow
control (IFC) is lightweight since checking happens statically
at design time, and it is comprehensive since it constrains the
movement of data throughout the system.

Using an IFC HDL, we design and verify a multi-core
processor which emulates the security features of ARM
TrustZone, a widely used commercial security architecture.
TrustZone aims to provide isolation between trusted and
untrusted security domains, which it calls the “secure world”
and the “normal world”. We show how to use static analysis
of information flow to check that the security goals of this
architecture are met. This is the first demonstration that
information flow can be used to verify complex processors
implementing commercial hardware security features. Since
other hardware security architectures [2, (1} 35] have similar
goals, we believe that the approach and findings of this paper
are applicable to a broader class of architectures.

Information flow is verified at design time by the security
type system of the HDL. Type systems offer some impor-
tant benefits. Type checking is fast and compositional, and
provides a formal guarantee that the HDL code enforces the
information flow policy specified by the designer. Because
HDL-level information flow verification is done statically, it



has negligible impact on chip area, run-time performance,
and power consumption. Verification time and programmer
effort are also small compared to model checking.

Recent efforts [19] [18] 42| [37]] have applied information
flow control to hardware security. However, these tools have
only been applied to single-core processors with simple se-
curity policies. We study a multicore architecture with both
confidentiality and integrity requirements. Applying static
information flow analysis to TrustZone is not a straightfor-
ward application of previously developed techniques. Three
significant technical challenges arise:

* Prior information flow type systems for HDLs offer im-
precise reasoning about packed data structures. We build
on the existing SecVerilog [42]] language, but improve the
precision of previous HDL-level information flow anal-
yses so that efficient designs can be verified. The new
features add precise reasoning about the security of indi-
vidual array elements and individual bits in packed struc-
tures such as network packets, whereas prior hardware-
level type systems [19, [18] 42] only allow one security
label for each variable.

Information flow analysis aims to entirely prevent cer-
tain flows of information, but like other hardware security
architectures, TrustZone has a more nuanced security pol-
icy: code running on a trusted secure-world core is allowed
to cause potentially dangerous flows. The TrustZone ar-
chitecture describes access control checks to enforce its
policy. Instead, we show that the main security goals of
TrustZone can be naturally expressed as information flow
constraints. Further, we extend SecVerilog with language-
based downgrading mechanisms for declassification and
endorsement, and show that these features permit local-
ization of design aspects that might enable dangerous
flows.

Despite the use of these downgrading mechanisms,
we obtain strong security assurance. In particular, our
implementation enforces the property that in the absence
of operations by secure-world cores, software running
on cores in the normal world cannot learn anything
about secure-world state or violate the integrity of the
secure world. Hence, information does not leak unless
trusted secure-world software performs operations that
leak information.

Prior studies have used information flow to verify sim-
ple secure processors, but this work is the first to verify
a multi-core processor with shared caches, on-chip in-
terconnects, and a memory interface. Architecture exten-
sions were necessary to statically verify these features. To
avoid checking complex invariants about the functionality
of the on-chip network, the memory response ports are
extended with low-overhead access controls. This exten-
sion prevents responses from being accepted unless they
originate from a trusted party. We also identify a poten-
tial extension to the instruction set architecture (ISA) that

would allow trusted software to control hardware-level
information flow downgrading.

Hardware designed with IFC HDLs is formally guaranteed
to enforce the security property noninterference. We demon-
strate that [FC HDLs are also capable of detecting security
vulnerabilities in practice. We emulate security bugs found
commercial hardware including the Actel ProAsic 3 [31], an
AMD processor [14], and several Intel processors [41]. We
detect all of these vulnerabilities with our approach. We also
implement a suite of six other security vulnerabilities to test
the limitations of HDL-level IFC. We find that only bugs
that affect downgrade expressions can go undetected. Our
TrustZone implementation uses downgrading sparingly.

We synthesized a multicore processor based on a com-
mercial security architecture and empirically show that HDL-
level information flow control has minimal overhead. The per-
formance, area, energy, and design-time productivity over-
heads of HDL-level IFC are low. Because verification is per-
formed statically at design time, the hardware overhead is
minimal; the clock frequency, area, and power consumption
of the verified design are almost identical to an unverified
one. The programming effort is also small. The secure HDL
requires annotations (security labels) for variable declara-
tions and other purely mechanical changes.

The rest of the paper is organized as follows. Section [2]
reviews the ARM TrustZone architecture. Using TrustZone
as an example platform, Section [3|describes how HDL-level
IFC can be used for security verification. Section ] describes
the language extensions needed for verification. Section [3|
describes architectural features that aid verification. Section[6]
presents the evaluation results. Finally, Section E] discusses
related work, and Section [§]concludes.

2. ARM TrustZone Prototype
2.1 TrustZone Overview

ARM TrustZone is a representative security architecture that
is used widely in practice. Its applications include embedded
systems and smartphones. TrustZone uses hardware mecha-
nisms to provide an execution environment that isolates high-
security software from low-security software. Other com-
mercial security architectures [2, [1]] also aim to provide an
isolated execution environment, so we believe the findings of
this study are applicable to other architectures as well.
TrustZone partitions the hardware and software into two
security domains, called the secure world and the normal
(non-secure) world. The high-security software executes in
the secure world, and the remaining software executes in the
normal world. The software executing in the normal world
is prevented from accessing data owned by the secure world.
Practical systems need to allow communication between
security domains. For this purpose, TrustZone assumes the
secure-world software is trustworthy, and allows it to access
data in either world. The threat-model of TrustZone does not
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Figure 1. TrustZone prototype implementation.

address timing channel attacks, and the only physical attacks
it addresses are simple ones that exploit debug interfaces.

TrustZone isolates the secure and normal worlds by
introducing a security tag, called the NS bit. TrustZone uses
control mechanisms in hardware that check the NS bit. Each
processing core stores the NS bit in a program status register
(PSR) to indicate which world is currently executing on the
core. Each bus master and slave that may be used in the
secure world is also extended with an NS bit. For example,
DMA engines and display controllers may have an NS bit.
A core can switch its security domain by executing trusted
software called the monitor mode which executes with secure
world privilige. The monitor mode is entered by an explicit
instruction or through interrupts. The normal world cannot
change any NS bits.

Access to resources is controlled based on the NS bit. The
system (AXI) bus appends the NS bit of the bus master to
each transaction. Bus slaves inspect the NS bit and prevent
the normal world from accessing secure-world resources. For
example, main memory (DRAM) is partitioned into secure
and normal based on address ranges, and the NS bit is checked
for accesses to the secure-world partition. TrustZone protects
debug interfaces by preventing normal-world debug requests
from affecting the secure world. Similarly, normal-world
accesses to secure-world interrupt configuration registers
are disallowed. In some implementations of TrustZone,
data from both worlds can coexist in caches. Coexistence
is permitted by extending each cache line with an NS bit
guarded by access control. Similarly, TLBs can be extended
to store address mappings from both worlds.

2.2 Prototype Implementation

TrustZone is an architectural specification that can be imple-
mented in many ways. Our prototype is designed to study the
practicality of verification with information flow. We imple-
mented key security features for multicore implementations
of TrustZone, but did not include non-essential functions.
Figure [I] shows a block diagram of our implementation
of TrustZone. Our implementation includes two five-stage
pipelined MIPS processing cores, private L1 caches, a shared
L2 cache, a DMA engine, a ring network, and a memory

module. Each core has private L1 instruction and data
caches, which are connected to a shared L2 cache through
a ring network. The L2 cache includes a prefetch buffer.
The system includes a DMA engine that can move data
between memory locations. The DMA engine takes requests
from processing cores through a memory-mapped interface
connected to the ring network. It also has an external debug
interface. The L2 cache and the DMA engine are connected
to the main memory controller through an arbiter. Our
processor was implemented in 16,234 lines of Verilog code.
This is comparable to other open-source processors such as
OpenRISC (31,944 lines) and RISC-V (14,206 lines).

The prototype implements the security features of Trust-
Zone that are necessary to isolate the secure world from the
normal world. The processing cores, the DMA engine, and
the debug interface include an NS bit to indicate the secu-
rity domain. The NS bits for the DMA engine and the debug
interface can be changed by a secure-world core through a
memory-mapped interface. All bus transactions, memory re-
quests, and memory response packets carry the NS bit of the
core or DMA engine that initiated the request.

The prototype supports world switches for cores through
an instruction. World-switching is implemented in a way
that ensures that the NS bits of in-flight instructions are
not corrupted. The pipeline is stalled until all in-flight
instructions have completed. Then, the NS bit of the core
is changed. When the NS bit changes, SecVerilog clears (sets
to 0) registers with security labels that depend on the NS
bit. This clearing prevents implicit downgrading [42]. For
example, register files and the PC register are cleared. In
this design, arguments between the two worlds are passed
via memory. A secure-world handler is located at Address 0.
The core changes the PC to the location storing a switch-to-
normal handler if the PC is 0 in the normal world.

The caches allow data from both worlds to coexist. Each
line of the L1 and L2 caches is extended with the NS bit to
indicate the world that owns the data. On a hit, the NS bit
of the access is compared to the NS bit of the cache line. If
there is a mismatch, the access is treated as a miss.

The bus slaves use access control. For example, normal-
world requests to the DMA engine are rejected when the
DMA engine is in the secure world. The main memory in-
cludes an access control module. A partition control register
in the module partitions the address space between worlds.
The partition control register is memory-mapped and can
only be modified by a secure-world request.

The prototype implements the security features of Trust-
Zone necessary to protect the confidentiality and integrity
of the secure world in a multi-core SoC. Protection includes
support for hardware IP modules (e.g., a DMA engine) and a
debug interface. However, the security worlds in TrustZone
are orthogonal to traditional privilege levels and virtual mem-
ory. Our processor does not include supervisor/user mode or
virtual address translation. Also, optional functions such as
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Figure 2. SecVerilog syntax of security labels.

reg {L} v, {L} 1, {H} h;
// LH(®) = L, LH(1) = H
wire {LH(v)} shared;

if (v == 0) 1 = shared;
else h = shared;

if (h==0) 1 =0;
else 1 = 1;
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Figure 3. SecVerilog code example.

additional peripherals, coherent accelerators, tightly coupled
memory, and protected interrupts are not implemented.

3. Verification Methodology
3.1 Background: SecVerilog

Our security verification methodology relies on information
flow control enforced at the hardware description language
(HDL) level. SecVerilog [42] extends Verilog with a syntax
for annotating variables (wires and regs) with security labels.
Security labels represent security levels such as H (high-
security) or L (low-security). In addition to the variable
annotations, the programmer defines a lattice of security
levels [7] to specify how information may flow among
security levels. For example, the lattice might specify that
variables labeled H cannot flow to variables labeled L, but
that variables labeled L can flow anywhere. More formally,
security levels ¢ € £ form a lattice with ordering relation
C.If L € H, information is permitted to flow from variables
labeled L to variables labeled H. However, information flow
is prevented from H to Lif H £ L. Thelevels L and T denote
the least and greatest security levels ordered by the relation
E. The variable annotations and lattice form an information
flow policy, which is enforced by the type system. Checking
is done statically at design time, and variable annotations
have no affect on the synthesized hardware.

In SecVerilog, security types 7 have the syntax shown in
Figure 2] Types may either be labels (£), the meet (1) or join
(L) of two types, or a dependent type f(v), where f is a
type-level function, and v is a variable name. The meet and
join represent the greatest lower bound and least upper bound
of their operands respectively. We later extend this syntax in
Section 4] to handle more practical hardware designs.

SecVerilog enforces the security policy by constraining
assignment statements. For example, Figure [3| shows a code
example for the policy that prevents flow from H to L. In the
example, explicit flows such as 1=h are disallowed, because
they directly violate the security policy. SecVerilog prevents
explicit flows with an assignment typing rule that requires
the expression on the right of the assignment to be less than
the variable on the left according to the ordering relation C.
Implicit flows such as the insecure assignments on lines §-9
leak information indirectly through control flow. To prevent

implicit flows, the type system associates a security level, pc,
with each node in the control flow graph. Assignments are
allowed only if the pc is lower than the level of the assigned
variable. The expression typing rules determine the least
upper bound of information contained in each expression.
For example, the expression 1 & h has type H since this is
the lowest type that is at least as restrictive as the types of
both 1 and h.

In the syntax, f(v) is a fully-applied function representing
a dependent type. Dependent types describe static types that
depend on the run-time values of variables. They are used to
describe hardware which is shared by different security levels
over time. In Figure[3] shared has a type which depends on
v. Here, LH is a function that is L when v is O and H when v is
1. To perform checking at design time, SecVerilog statically
generates predicates to reason about the run-time behavior
of dependent types. For example, to check the assignment
on line 5, it generates the invariant v = 0 = LH(v) C L.
These invariants are based on a conservative approximation
of strongest postcondition reasoning as described by Zhang
et al. [42], and are checked by an automated constraint
solver [6].

3.2 Approach

This paper studies the application of language-level informa-
tion flow control to formally verify secure isolation properties
of hardware designs. While security architectures in proces-
sors typically rely on access control mechanisms and are not
designed for information flow security, this study shows that
the key security goals of such processors can be naturally
captured by information flow policies.

To use HDL-level IFC, hardware designers first represent
the security goal of the hardware isolation mechanisms
with a set of information flow constraints. The designer
then annotates the HDL code along with a security lattice
to express the information flow constraints as a concrete
information flow policy. Because the goal is to remove
unintentional bugs, designers and the security policy that
they write are trusted. The design is then verified with
type checking. If the hardware design passes type checking,
the type system formally guarantees that the code enforces
noninterference [42, [12]] under the given policy.

The formulation of noninterference enforced by SecVer-
ilog is timing-sensitive (i.e., it prevents timing channels),
since timing-flows are indistinguishable from non-timing
flows at the gate level [38]. However, the threat model of
TrustZone does not restrict timing flows, perhaps because
preventing timing channels imposes performance overheads.
As we will see, a challenge is posed by this disparity be-
tween the language-level policy and the security goals of the
architecture.

3.3 TrustZone as an Information Flow Policy

This subsection uses TrustZone as an example to show how
HDL-level IFC can verify an isolated execution environment.



TrustZone Security Policy

\ Information Flow Policy Label

\ Downgrading

P1. Normal world core/IP cannot (C) read
or (I) write secure-world memory/IP

CT for secure world core/[P/memory
PU for normal world core/IP/memory
(dependent type based on the NS bit)

D1-1. Secure world reads/writes to normal-world
memory/IP
D1-2. Timing dependence (common for all)

P2. (I) Normal world cannot change NS | PT for NS bits

bits

D2-1. Secure world writes to an NS bit
D2.2. Legitimate normal-to-secure NS-bit switches

P3. (I) Normal world cannot change Trust-
Zone control registers

PT for TrustZone control registers

D3-1. Secure-world writes to TrustZone control
registers

Table 1. Core TrustZone policy expressed as information flow constraints with explicit exceptions (declassification/endorse-
ment). (C) and (I) represent policy for confidentiality and integrity, respectively. IP (Intellectual Property) is a hardware

module.
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Figure 4. Security lattice for TrustZone.

TrustZone isolates the secure world from the normal world
using access control policies and mechanisms that control
normal-world accesses. As shown in the first column of
Table[I] the goal of each access control policy is to protect
either the confidentiality (C) or the integrity (I) of security-
sensitive state.

The high-level security goal of TrustZone can be ex-
pressed as information flow constraints that address either
confidentiality or integrity requirements. The confidentiality
policies specify that no information can flow from secure-
world processing cores, memory, or hardware (IP) blocks to
normal-world modules. The integrity constraints ensure that
no information from a normal-world core/memory/IP can
affect a secure-world core/memory/IP or other trusted state
such as NS bits and TrustZone control registers.

The above information flow constraints can be translated
into an information flow policy expressed with a security
lattice and labels in HDL code. To express both confiden-
tiality and integrity levels, we define four security levels: CT,
CU, PT, and PU. The first letter represents the confidentiality
level (confidential or public) and the second letter represents
the integrity level (trusted or untrusted). Then, we define a
security lattice that prevents confidential information from
flowing to public and untrusted information from affecting
trusted as shown in Figure[d] In the figure, the arrows repre-
sent the direction of allowed information flow.

The second column in Table [I] shows how the TrustZone
implementation is labeled using the security levels in the lat-
tice. To protect both confidentiality and integrity of secure-
world state, variables in secure-world processing cores, mem-
ory, and hardware IP blocks are labeled CT while normal-
world ones are labeled PU. Signals that are statically allocated
to one world are annotated with fixed labels. Most hardware
resources (e.g., the processing cores) can be switched be-
tween the two worlds. The security labels of time-shared

modules use a dependent type and are expressed as a func-
tion (world) of the NS bit (ns) associated with that module.
Here, world(ns) maps the value of ns to a security label: 1
maps to PU and 0 maps to CT. Signals that must be trusted,
but are not confidential, are labeled PT. For example, NS bits
and TrustZone control registers, such as the one that parti-
tions memory among worlds, must be trustworthy. The clock
and reset variables are also labeled PT.

Unfortunately, strict noninterference is too restrictive for
practical systems like TrustZone because it does not allow
any communication between security levels. TrustZone pre-
vents the normal world from acting maliciously, but trusts the
secure world to release information to or accept information
from the normal world correctly. This permitted communi-
cation violates noninterference and causes type errors.

To bridge the gap between noninterference and practical
security policies, we introduce declassification and endorse-
ment so that designers can explicitly allow exceptions to
noninterference. Declassification releases confidential infor-
mation to the public. Endorsement changes the security level
of untrusted information so that it is considered trusted. The
term downgrading refers to both.

The third column in Table [T| shows how downgrading is
used to express the security policy of TrustZone. TrustZone
allows the secure world to access the normal world (D1-1).
The TrustZone threat model does not include timing-channel
attacks, so information flows through timing (D1-2) are
allowed. Secure-world writes to NS bits (D2-1) and control
registers (D3-1) are allowed even though their values may
be read by the normal world. TrustZone allows the normal
world to trigger a world switch through a special instruction
(D2-2) even though this causes a flow from the normal world
to the NS bit. Section[6.1|discusses how downgrading is used
in the prototype in more detail.

3.4 Security Assurance with Downgrading

Static information flow analysis with SecVerilog provides
a formal security guarantee that the described hardware
enforces noninterference [42]]. This guarantee is independent
of functional correctness. If there is no downgrading, type
checking ensures that the security policy specified by the
labels is enforced even if there is a functional bug.




Therefore, our verification methodology ensures that the
only possible violations to the security policy are through
downgrading. This improves security assurance in two ways.
First, all potentially dangerous information flows are made
explicit and designers must explicitly allow each of them in
the source code. Second, the size of the code that can cause
vulnerabilities is significantly reduced; only code that affects
downgrading expressions can lead to vulnerabilities. Without
information flow analysis, bugs in any part of the code may
break security.

We argue that our use of downgrading policies permits in-
formation to be downgraded only under the authority of the
secure-world software and that downgrading cannot be con-
trolled by the normal-world software. We substantiate this
claim by an analysis of the conditions under which down-
grading expressions may be removed (see Section [6.). For
example, the downgrading expressions for memory accesses
can be removed if there is no access from the secure world.
Explicit communication between security levels is only per-
mitted if initiated by the secure world; data is downgraded
only if the NS bit of the request is secure. Our analysis shows
that these downgrading expressions can be removed if the se-
cure world never executes. This suggests that only the secure
world may affect information release.

3.5 Security Labeling Errors

The security labels specify the security policy that is verified
by type checking. As aresult, a security vulnerability may not
be detected if the security labels are incorrect. For example, if
an entire processing core is labeled CT when it is in the normal
world, the information flow analysis will not detect a violation
which permits that core to read secure memory. However, we
found that errors in security labels can be detected as long
as labels are correct at sources and sinks. Labels must be
consistent along all possible paths of an information flow to
pass the type check. Unintentional mistakes are unlikely to
be consistent with other labels.

4. Language Extensions

We introduce SecVerilogBL, which extends the SecVerilog
hardware description language with three significant features
needed to verify practical systems. These extensions include
new type declarations that can specify distinct security labels
for each bit of a vector and for each element of an array
and a syntax for declassification and endorsement. We prove
that SecVerilogBL enforces the same security guarantee as
SecVerilog [42], namely, that well-typed programs enforce
observational determinism [32]].

4.1 Downgrading

As described earlier, the security policy of TrustZone is de-
scribed using an integrity/confidentiality diamond lattice.
This lattice policy is more conservative than the TrustZone
policy, which assumes secure-world software is written cor-
rectly and makes no mistakes when reading from or writing to

wire [0:31] {world(ns)} data;

wire [32:41] {PT} addr;

wire {PT} ns;

wire [0:42] {i -> if (i <= 31) world(ns) PT} packet;
assign packet = {ns, addr, data};

Figure 5. A packet concatenation example.
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Figure 6. Syntax of SecVerilogBL labels.
normal world data. To relax the lattice policy, we use down-
grading, which lowers the type of the downgraded expression
within the security lattice.

Downgrading expressions are used only to allow the
secure world to read and write normal-world data and to
avoid timing channel protection. Since downgrading is used
sparingly, SecVerilogBL includes a downgrading syntax,
downgrade(e, ) adopted from Sabelfeld et al. [27]. This
syntax is used for both declassification and endorsement.
Downgrading expressions take two arguments, an expression
e and a type 7. The downgrading expression then behaves
semantically like e, except that during type checking, its type
is treated as if it were 7.

This syntax allows the designer to precisely control where
information is released. The type of a downgraded expression
is modified only in the context in which it is downgraded. For
example, if x has type CT and y has type PU, the assignment
y = x would be rejected even if z = downgrade(x, PU)
appears elsewhere in the same HDL code. The downgrading
syntax also permits precise control over what information is
released. For example, the expression downgrade(x > 3,
PU) reveals whether or not x is greater than 3, but it does not
reveal the value of x.

4.2 Per-Bit Types

Hardware designs often use sequences of bits to describe
data structures. For example, a packet in our TrustZone
implementation is a collection of bits describing data, an
address, and possibly other metadata. SecVerilog reasons
imprecisely about individual fields of a packet, since the
whole packet must share a single label. Information about
the labels of individual wires is lost once they are grouped.
Figure 5] shows an example that creates a packet by
concatenating data with an address and the NS bit. For now,
ignore the security label on line 4, which uses a new syntax
explained later in this section. Grouping variables in this
way makes code clearer and more compact. Unfortunately,
SecVerilog cannot precisely capture the desired label for the
resulting packet. In this example, the address is public, but
depending on the value of the ns bit, the data could be
confidential. Thus, the (static) security levels of some of the
bits in the packet depend on the run-time value of other bits.
A dependent type is a natural way to describe a situation
like this one, in which a static type depends on run-time
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Figure 7. Typing rules for SecVerilogBL expressions.

values. But the prior dependently-typed HDL, SecVerilog,
does not have enough expressive power to describe the
example just given. The upper 11 bits of the packet have
a different label than the rest of the packet, but SecVerilog
applies the same label to all bits in a bit vector. Lowering
the type of the entire packet is not a solution. The non-data
bits are used for routing decisions which affect both worlds,
so this type change would cause SecVerilog to variable an
insecure flow.

Our solution is to enrich what can be expressed using
dependent labels, as shown in braces on line 4. The label
expression specifies that the security class of the i bit
depends both on i and on the value of the ns bit. The type of
packet is a function that takes an integer, i, representing an
index to the bit vector. If the index is less than 31, the data is
accessed, so it returns a type that depends on the MSB of the
packet that corresponds to the ns bit. Otherwise, the address
or the ns bit is accessed, so the returned type is PT.

Figure [6] shows the formal type syntax of SecVerilogBL.
Crucially, the type system is extended with types of higher
kinds. Kinds, written &, can either be levels £ € L or partial
functions from integers to other kinds. In the SecVerilog
syntax, all types, including dependent types (which are
functions that are fully applied to variables) are of the kind
L.

Types (i.e., labels) in the extended syntax, written 7, are
pure (side-effect-free) expressions signifying security levels.
The syntax v +— 1 specifies a mapping from a position in the
bit vector to the type of the bit at that position, and is used to
specify the type of packet in Figure[5] Since v - 7 is a form
of function abstraction, types written with this syntax are
higher-kinded. Dependent types may be written by referring
to program variables in the type expression. The syntax
ife" 1, 7y and case e’ 1y ...7; describe conditional selection
between security labels. The syntax of e’ describes pure
expressions and is omitted because it is standard. However,

notably e” may contain variables declared in the program,
and therefore, can be used to write dependent types.

At a high level, the type system is extended to track the
bit-width of each variable in addition to its type. Types
of kind ¢ are lifted in the obvious way to int — ¢, so
that all types become functions from bit indices to labels.
During assignment checking, the bit-width of both sides of
the assignment is used as a range for quantification.

The type rules of SecVerilogBL are shown in Figure[7] In
addition to a standard type environment I', a width environ-
ment ‘W maps variables to their bit-widths. The width envi-
ronment is populated with the declared widths of variables.
Bit-widths are static, finite, and specified with integer con-
stants. Since Verilog does not support dynamically-sized bit
vectors, ranges are easily determined at compile time. Typing
judgments for expressions have the form @; ;W + e : T,w
meaning that under context @; I'; ‘W, expression e has type
7 and bit-width w. A kind environment, ®, is used to make
kind judgments of the form ® + 7 : k.

The rule T-LocicaL for logical binary operators checks
that the widths of both expressions are the same and that both
expressions have int — ¢ types. The type of the resulting
expression is the bitwise join of the types of the operands.
The rule T-AriTH must track the bits that are propagated by
carry bits. The i*" bit of the result is affected by all bits
below i from both inputs. The rule for concatenations (T-
Concar) selects between the type functions of the original
subexpressions, shifting the upper expression as needed. The
rules for shifting by constants (T-LSn1rT and T-RSHIFT) select
the bottom type for the bits of the resulting expression that
are constant. For the remaining parts, the type function of the
non-constant subexpression is shifted. The rule for indexed
arrays (T-ARRINDEX) is discussed in Section[4.3]

Per-bit checking is done in the type-checking rule for
assignments. The check verifies that the type of each bit of the
right side of the assignment (joined with the program counter)



reg [0:31] {world(mns)} read;
reg [0:31] { i -> j -> world(reg_ns[i]) } mem[0:1023];
reg {PT} reg_ns [0:1023];

if(ns == 1) begin
read = (reg_ns[read_addr] == 1) ?
mem[read_addr] : 32’b0;
end else begin

D WO NO UV WN =

—_

Figure 8. A register file code segment.

is lower than the corresponding bit on the left. To type-check
an assignment of some expression with type 7, to a variable
x, with type 77, both of these types are applied to each integer
within (0, W (x)). If the condition Yi € (0, W (x)).7-(i) U
pc(i) T 17(i) holds, the check succeeds. We omit the rules
for commands since they are straightforward. Notably, pc
is a bitwise label that is determined by commands in a
straightforward way. Using a bitwise label for pc is more
permissive than alternative rules which might compute the
join over the bitwise labels of expressions, for example, used
as conditionals in if-statements.

4.3 Per-Element Types

Arrays are commonly used in hardware descriptions and
are important for our TrustZone implementation. However,
SecVerilog has minimal support for labeling arrays; all
elements must have the same type. The code segment shown
in Figure([8|describes part of the memory array of a cache that
implements reads. The input ns is the NS-bit of the device
originating the read request. The output read is the output
data, which has a type that depends on read_ns. This code
is secure, but cannot be written in SecVerilog.

Following common practice, the cache is implemented as
an array of memory cells, mem. Another array reg_ns stores
the NS bit of the last device to write to each address of the
array. Therefore, the label of a particular memory cell at array
position i should depend on reg_ns. With support for fine-
grained array labels, the memory cells can be implemented
conveniently as an array of bit vectors.

To support arrays in which each element has a distinct
type, array variables must have kind int — int — ¢ when
they are declared. In the rule for indexed arrays (T-Arr-
INDEX), the type of the array, 7y, is applied as a function to
the expression that indexes the array, e. Doing so produces
the security label of the selected element of the array. The
requirement imposed on the kind of 7, ensures that 7, e
is int — ¢, which is a mapping from the bit position to
the label of that bit. Arrays in Verilog may only be indexed
by variables and constants rather than arbitrary expressions,
and therefore e can be substituted into 7, at compile time.
If e is a variable, this forms a dependent type. Constraints
for these dependent types are generated using a conservative
approximation of strongest postcondition analysis as in [42].
The label 7, is the (bitwise) join over the int — ¢ label
of e. Since the value of e determines which element of x is
selected, each bit of e affects the value of x[e]. So 7, is used

to elevate the label of x[e] to reflect that each bit of e has
influenced x[e]

On line 3 of Figure[§] mem has an array type that maps the
index of the array to a type that depends on the value stored
in reg_ns at the corresponding index. Although the function
does not depend on j, it is still written as a type function
of kind int — int — ¢, so that when the array index is
applied, the type can serve as a mapping from bits to types.
To support arrays of bit vectors where each element has a
different mapping from indices to types, the type function
can be written to depend on both i and j.

Per-bit and per-element type declarations enable better
component designs that are not otherwise possible and reduce
programmer effort. For example, without per-element types
there is no way to describe a queue that is dynamically shared
among security domains. With per-element types, a securely
shared queue can be described with an array of queue data
entries and a queue of security tags that correspond to the
data. A prior implementation without shared queues required
separate queues for each security domain and for each port.
The improved design with shared queues has six fewer
queues, three fewer arbiters, and four fewer demultiplexers
than the other design. The improved design required 392
fewer lines of code. Per-bit types also made the description
of network packets clearer and more compact.

4.4 Soundness

Any well-typed SecVerilogBL program without downgrad-
ing obeys observational determinism [42| 32], a generaliza-
tion of noninterference [12] for nondeterministic systems.
The formulation of observational determinism enforced is
the timing-sensitive one presented by Zheng et al. [42]. In-
formally, it states that if the hardware begins execution from
two states which are indistinguishable to an attacker, then on
each clock cycle and beginning from either initial state, the
hardware will produce states which are also indistinguishable
to the attacker.

We provide a formal definition and proof of this theorem in
an accompanying technical report [[10]]. The proof is accom-
plished by a translation from well-typed SecVerilogBL pro-
grams into well-typed SecVerilog programs. SecVerilogBL
bit vectors are simulated with 1-bit SecVerilog variables and
a corresponding translation of SecVerilogBL environments
into SecVerilog environments. SecVerilogBL expressions of
width w translate into a vector of w SecVerilog expressions.
Assignments of w-bit expressions are unrolled into w assign-
ments. The translation of commands other than assignment
statements merely propagate the translation of assignments.
The translation is clearly semantics-preserving, and the secu-
rity result is obtained by showing that the translation is also
type-preserving.



5. Architecture Extensions
5.1 Return Response Access Controls

In the baseline TrustZone prototype, memory transactions
are controlled with access control checks on requests but not
on responses. This design is secure if the processor’s memory
hierarchy is functionally correct; normal-world cores should
never receive a response containing secure-world data be-
cause the corresponding request would have been denied.
Unfortunately, such functional correctness is difficult to prove
statically, especially for the complex memory hierarchies of
modern processors.

To address this challenge, the prototype is extended with
run-time access control checks that ensure the NS bit of
each memory response matches the NS bit of the receiving
core. The added access control checks enforce the invariant
that secure-world responses cannot be read by normal-world
cores, and enable the type system to statically prove the
security of the processor. Note that type checking fails if
the response check is functionally incorrect and does not
enforce the invariant.

5.2 Potential ISA Extensions

In TrustZone, secure-world programs are trusted and allowed
to access both secure-world and normal-world memory. The
secure-world software’s intention to access either secure-
world or normal-world memory is communicated implicitly
through the physical memory address. Existing TrustZone
implementations assume that secure-world software intends
to downgrade the accessed data if the memory address points
to the normal-world memory. As aresult, abug in the memory
address calculation may cause information flow to/from
normal-world memory even when secure-world software did
not intend to downgrade information.

Such incorrect downgrading can be avoided by extend-
ing the ISA with loads and stores that explicitly indicate
whether the software intends to access normal-world mem-
ory or secure-world memory. Indicating the intended world
requires a single bit. This extension allows downgrading to
be performed based on explicit information provided by the
software rather than relying on information implicit in the
possibly erroneous memory address. These new instructions
would remove a functional correctness assumption about the
hardware.

6. Evaluation
6.1 Verification with No Bugs

Here, we discuss the results of the information flow analy-
sis for our TrustZone implementation when no security vul-
nerabilities are introduced. Later, we introduce bugs into
the processor to evaluate the effectiveness of information
flow at detecting vulnerabilities. Our TrustZone implemen-
tation passes type checking when analyzed by SecVerilogBL.
Typechecking formally guarantees that, aside from variables

Component Name | C — P \ U->T

AddrCtrl — NSB (1)

Core Pipeline AddrCtrl — AddrCtrl (1)

Data — CReg (1) |

L2 Cache AddrCtrl — AddrCtrl (2)
AddrCtrl - NSB (12)
Network AddrCtrl — AddrCtrl (4)
AddrCrtrl - NSB (1)
DMA Engine AddrCtrl - NSB (1)
Debug Interface AddrCtrl - NSB (1)
Memory Arbiter AddrCtrl — AddrCtrl (2)

Memory Access Data — CReg (1) \

Control Module AddrCtrl - NSB (4)

Main Memory Data — Data (1) ‘ Data — Data (1)

AddrCtrl — AddrCtrl (2)

Table 2. Downgrading expressions in our prototype.

which affect downgraded expressions, there is no violation
of the information flow policy expressed in the code. Down-
graded expressions explicitly permit exceptions to the policy

Table 2] summarizes the uses of downgrading in each mi-
croarchitecture component of our implementation of Trust-
Zone. The table categorizes these downgrading expressions
as confidentiality exceptions (C — P), integrity exceptions
(U — T), or both. The downgrade expressions are fur-
ther classified by the type of variable — data (Data), ad-
dress or control (AddrCtrl), NS-bit (NS), or control register
(CReg) — at the source and destination using the notation
source —destination. Address or control variables in-
clude valid/ready variables in the network, and instruction
decode outputs and stall variables in the cores. The numbers
in parenthesis indicate the number of downgrade expressions
of that form.

SecverilogBL enforces a timing-sensitive security prop-
erty; however, the threat model of the architecture under
study does not address timing channels. Timing channels
will cause type errors even though they are not considered
threats. Therefore, timing channels must be distinguished
from other kinds of illegal information flows. Categorizing
flows based on variable type is useful for doing so; timing
channels in hardware typically originate from an address or
control variable, but are not directly derived from data.

The following paragraphs summarize why downgrading
was needed based on the variable type categorization.

Data — Data TrustZone allows the secure world (CT)
to read or write normal-world (PU) memory, contrary to the
lattice policy. When secure world writes to normal-world
memory, confidentiality is violated. Similarly, secure-world
reads from normal-world could violate integrity. The data
must be downgraded to permit the intended behavior. This use
of downgrading is safe because the secure world is trusted.

Data — CReg Control registers are labeled PT, because
they are used to control both secure-world and normal-world
operations. However, control registers can also be modified
by the secure-world. This is a violation of the confidentiality
policy (since it is a flow from CT to PT), and must be explicitly



1 input {world(nsl1)} cpul_valid;
2 input {world(ns2)} cpu2_valid;
3 input {PT} nsl;

4 input {PT} ns2;

5 output {PT} ns_out;

6 .

7 if (cpul_valid == 1) ns_out <= nsl;
8 else if (cpu2_valid == 1) ns_out <= ns2;
9

Figure 9. A flow from control signals to the NS bit due to
resource arbitration.

permitted with downgrading. Note that normal world is still
prevented from setting control registers since downgrading
is performed only for a write from the secure world.

AddrCtrl — Data, AddrCtrl — AddrCtrl Illegal flows
from address/control variables to address, control, and data
variables are caused by timing interference between security
levels. Timing interference leaks information from address/-
control variables (AddrCtrl) but not data variables (Data).

AddrCtrl — NSB Resources which are used by both
worlds cause flows from control variables to the NS bit.
Figure [9]shows a representative example of this type of flow.
It shows a bus arbiter that accepts requests from both cores
that could be executing in either world. The output NS bit
becomes the NS bit of the core that is granted access. Here,
the NS bit is labeled PT because its integrity needs to be
protected from the normal world, leading to information
flow from CT/PU to PT. In the core, the NS bit is changed
by an instruction with label world(ns), similarly requiring
downgrading. Here, downgrading affects the timing of the
NS bit change, but does not introduce a vulnerability.

The information flow analysis in SecVerilogBL formally
proves timing-sensitive noninterference. However, explicit
uses of downgrading expressions are used to weaken non-
interference. We argue that in our implementation, down-
grading is used only under the authority of the secure world,
and therefore that information release cannot be controlled
by the normal world. To show that this is true, we note that
information is never downgraded if the secure world never
performs an operation. In other words, downgrading can be
removed if the secure world is hard-coded to not execute.
Both Data — Data (secure-world reads/writes to memory)
and Data — Creg (secure-world writes to control regis-
ters) flows happen under an if condition that checks if an
access is from the secure world. These downgraded informa-
tion flows never happen if there is no secure-world access.
The flows from AddrCtrl variables cause timing contention.
Downgrading is unnecessary if there is no secure-world ac-
cess because ns_out will always be 1 (normal world). Since
information is never downgraded when the secure world is
inactive, this suggests that information release cannot be con-
trolled by the normal world.

6.2 Security Bug Detection

Here, we study the effectiveness of the proposed information
flow analysis at detecting security bugs. We developed a set of

1 input {PT} ns;

2 input [dw-1:0] {world(mns)} data_in;
3

4 reg [dw-1:0] {PT} part_reg;
5 .

6 // Detected bug.

7 part_reg <= data_in;

8 -

9 // Correct code.

0 if (ns == 0) part_reg <= downgrade(data_in, PT);
1

Figure 10. A detected access control omission.

security bugs based on reported vulnerabilities in commercial
products [40, 41] as well as possible mistakes.

Bugs 1-5: Access Control Omission In TrustZone, access
control checks ensure that trusted/confidential state can only
be accessed by the secure world. If access control checks are
left out, security is violated. We model five bugs, which
omit an access control check for 1) the control register
that partitions main memory between worlds, 2) the main
memory, 3) the debug interface, 4) the L2 cache prefetch
buffer, and 5) the L2 cache blocks. Bug 3 is inspired by
a back door in the Actel ProASIC3 [31], Bug 4 models
a vulnerability found in an AMD processor [14], and Bug
5 models a privilege escalation attack in Intel processors
that support SMM mode [41]. Figure [I0]shows how omitted
access control checks for the partition register are detected.
data_in has the label CT when ns is ® and PU when ns is
1. The code on line 7 is detected as a bug because the type
system cannot prove that data_in is trusted. The correct
code on line 10 adds a check to ensure that the ns bit is 0,
implying that data_in is trusted in this context. Bugs 2-4
are detected and fixed similarly.

Bug 5: Cache Poisoning We emulate and detect a subtle
vulnerability found in Intel processors [41]. The vulnerability
allows a user-mode process to execute arbitrary code in
System Management Mode (SMM), the highest privilege
level. SMM mode is only used to execute SMM handlers
— interrupt handlers requiring such high privilige. In the
vulnerable processor, the region of physical memory which
stores SMM handlers is protected by access control in the
memory interface. A control register can mark this region as
uncacheable, and it does so by default. However, the control
register can be modified without SMM privilege, allowing
an attacker to make the SMM memory cacheable. Then,
the attacker can write to the address of an SMM interrupt
handler, and change the handler code in a cache. Subsequent
executions of the handler address will hit in the cache and
execute the attacker’s code. We modeled this vulnerability in
our processor by removing the NS-bit tags and access control
from the L2 cache while keeping checks at the memory
interface. We added a control register that sets cacheability
for the secure world, which can be modified by either world.
The bug is detected because the cache lines can receive data
that is from either world, but no access control is present.

Bug 6: NS-bit Flip Memory requests are transmitted with
an NS bit that indicates the security level of the request. This



bug inverts the NS bit so that a memory request from a
normal-world core is interpreted as a secure-world access.
This bug is detected because flipping an NS bit changes the
type of dependently typed variables. In the network, the input
and output data variables both have types that depend on the
NS bit. If the input and output NS bits do not match, the
security labels of the input and output data will also not match
causing an error. Even if the bit is flipped in multiple places,
the error will be detected because eventually the input and
output types will not match. This demonstrates the benefit
of information flow analysis, which tracks the propagation of
data throughout the design.

Bug 7: Network Routing Bug This bug models a network
implementation that leaks secrets by incorrectly routing a
response from the secure-world memory to a normal-world
core. In our TrustZone implementation, the bug is prevented
by the memory response access control checks and the L1
cache tags. To test the bug, we removed the access checks
and used an L1 cache that keeps data from only one security
domain at a time. This bug is detected at the interface between
the L1 caches and the on-chip network. Without the checks
at the response ports, the type system cannot prove that the
NS bit of a response matches the NS bit of a cache.

Bug 8: World Switch Bug For a world switch (i.e.,
context switch) from normal world to secure world, the
processor pipeline must complete all in-flight instructions
before changing the NS bit. Otherwise, in-flight normal-
world instructions will execute with escalated privilege. We
model a vulnerable mode switch by omitting the pipeline
drain step. This bug is detected because changing the NS
bit causes the labels of the dependently typed registers to
change. SecVerilogBL prevents label changes from leaking
information by dynamically clearing register contents.

Bug 9: Memory Address Change Bug To understand
the limitations of HDL-level IFC, we constructed two bugs
that change the memory address at the memory interface.
Figure [IT]illustrates the bugs. In both cases, the address is
changed from the secure-world region to the normal-world
region so that a write into secure-world memory gets stored in
normal-world memory. This allows the normal world to read
data that should be stored in the secure-world memory. Bug
9-1 is not detected, because downgrading allows the secure-
world access to write data into the normal-world memory. On
the other hand, Bug 9-2 is detected, because the change in
the secure-world memory address is triggered by a normal-
world variable (normal_world_trigger). The examples
show that functional bugs in the secure world may lead to
undetected bugs through downgrading, but only if there is no
influence from the normal world. Vulnerabilities that do not
affect downgraded variables are always detected.

Other Bugs Hicks et al. [14] proposed SPECS, a run-
time bug detector. They evaluated it by implementing 14
bugs in the OpenRISC processor. The bugs included privi-
lege escalation, register target/source redirection, interrupt-

1 // 0x0000-0x8000 is the secure-world memory.
2 // the rest is the normal -world memory.

3

4 // Code common to both bugs

5 wire [0:31] {world(ns)} addrout, addrin;

6 wire [0:31] {world(ns)} datain;

7 reg [0:31] {CT} data_sec;

8 reg [0:31] {PU} data_norm;

9 always@(*) begin

10 if((ns == 0) && (addrout > 'h8000))

11 data_norm = downgrade(datain, PU);
12 else

13 data_sec = datain;

14 end

15 // Bug 9-1: not detected

16 assign addrout = (addrin <= 'h8000) ?

17 addrin + ’'h8000 : addrin;
18 // Bug 9-2: detected

19 wire {PU} normal_world_trigger;

20 assign addrout = (normal_world_trigger ?
21 addrin + ’'h8000 : addrin;

Figure 11. Bug 9: memory address change bugs.

] Component [ Unverified [ Verified [ Percentage [
Top-Level Module | 1391 1412 1.5%
Processor 3474 3504 0.86%
L1 Cache 1250 1308 4.6%
Access Control 0 75 N/A
On-chip Network 2122 2557 1.7%
L2 Cache 2976 3093 3.9%
DMA controller 525 549 4.6%
Debug interface 350 369 5.4%
Main memory 974 1015 4.2%
Library Modules 2780 2818 1.4%
Total 16234 16700 2.9%

Table 3. Programming overhead (lines of code).

register contamination, interrupt disabling, code injection,
jump instruction disabling, and others. While we could not
implement those bugs in our processor architecture (e.g.,
our prototype does not have protection rings or an MMU),
we reviewed the HDL code studied for SPECS. These bugs
all allow a user-mode process to change supervisor-mode
variables. Therefore, these bugs should all be detected by
information flow analysis if user-mode variables are labeled
PU and supervisor-mode variables are labeled CT.

6.3 Overhead

Programming Overhead Table [3] shows the number of
lines of code for the unverified version of our processor
(Unverified) and the verified version with security labels
(Verified). We emphasize that the verification procedure is
purely static and performed at compile time. However, the
implementation changes slightly 1) to add extra variables
specifically for encoding dependent types and 2) to aid the
program analysis phase that estimates the run-time values of
dependent types. The code increases by 2.9%.

Area, Power, and Performance Overheads The proces-
sor was synthesized using Cadence Design Compiler using
a standard 90nm library to obtain performance, area, and
power results. The clock frequency and CPI were identical
for the verified and unverified versions. The area and power
overheads are negligible (0.37% and 0.32%).



7. Related Work

Secure Hardware Architecture Though this work studied
an implementation of TrustZone [21]], we believe our method-
ology is also applicable to other secure architectures pro-
posed in industry [2} 1 13] and academia [34} 9,11} 5]]. These
architectures are similar to TrustZone since they also aim
to isolate critical software. Information flow checking can
identify violations of strict isolation.

Sinha et al. [30}29] verify the security of programs which
use SGX enclaves to ensure that hardware security features
are used correctly. Gollamudi et al. [[13]] use information flow
in software to partition programs into TrustZone worlds or
SGX enclaves. This work is complementary to ours, which
verifies the hardware security features.

Information Flow Tracking in Hardware. DIFT [33] is
the earliest use of information flow tracking in hardware. It
applies information flow tracking coarsely at the architecture
level. GLIFT [38, 24} 25} 36, 137, [15]] performs information
flow analysis on hardware at the gate level. The earliest
GLIFT [38] approach incurs high performance, area, and
energy overheads by inserting additional logic. Later work
applies GLIFT to simulated circuits [24, 25]] and avoids
overhead in synthesized hardware. Because simulating every
possible state in large designs is infeasible, the approach is
used to check either small designs or only a set of states
reachable by particular software that is designed together
with hardware [37]. Oberg et al. [26] propose a technique
to separate timing flows from non-timing flows. Sapper [18]],
Caisson [[19]], and SecVerilog [42] all apply information flow
type systems at the hardware description language level.
SecVerilog is used in this work, but our methodology can
also be applied to other secure HDLs.

This study is the first to use information flow at the HDL
level to verify a multi-core security architecture. The proces-
sor includes a shared cache, pipelines, a shared network, a
DMA engine, and a debug interface. Other studies have used
information flow to verify simpler hardware. Oberg et al. use
GLIFT to verify an I2C hub and USB controller [25]. Tiwari
et al. [37] identify a small, security-critical portion of a CPU
and use StarLogic to verify it. However, the authors do not
include shared un-core components. Previous studies verified
hardware designs that enforce strict noninterference. In con-
trast, this work solves challenges in enforcing relaxed policies
used in practice. For example, commercial architectures are
seldom concerned with timing attacks [2, {1} [21]].

Hardware Security Bugs Countless vulnerabilities have
been found in real hardware designs. Manufacturers release
errata documents enumerating known bugs [4} [8]. Hicks et
al. [14] analyzed 301 bugs from commercial errata docu-
ments and found that 28 were security-critical. Wojtczuk et
al. [40] found a software-exploitable hardware vulnerability
that allows an attacker to escalate from user-space privilege
to a privilege level above the kernel in an Intel processor. The
same authors [41] use faulty DMA transaction messages to

escape VM-isolation in processors that support Intel VT-d.
Lee et al. [16]] used uninitialized data vulnerabilities in GPUs
to leak data from co-resident users. Several of these vulnera-
bilities formed the basis for bugs that we demonstrate can be
detected by SecVerilog.

Language-Level Information Flow Control Language-
based information flow control is a widely studied area [28]].
Yet, applying information flow type systems to hardware de-
scription languages is a relatively new research direction,
only studied by a few papers [42] [18, [19]. One important
question in IFC HDL designs is how to allow security do-
mains to share hardware. Sapper [18] inserts dynamic checks
that securely permit sharing, but may induce functional errors
at run time. To permit sharing with purely static checking,
SecVerilog [42] uses a dependent type system.

The use of dependent types for accurate tracking of in-
formation flow started with JFlow [22], which uses value-
indexed labels. Later systems [39} 143} 117, 123 20] have intro-
duced more expressive forms of dependent labels, exploring
trade-offs between needed expressive power and tractability
of analysis. For expressive type systems to be useful in prac-
tice, type checking must be tractable and efficient for real-
world code. The per-bit and per-element dependent labels we
add to SecVerilog are not supported by previous dependent
type systems for imperative languages. They are an impor-
tant feature for future security-typed HDLs because they offer
valuable expressive power while remaining tractable: a sweet
spot in the trade-off space. The proposed type system exten-
sions are also non-trivial because they need to statically and
precisely propagate bit vector labels through bit-level opera-
tions that may combine or shift bits.

8. Conclusion

This work shows that the security of an ARM TrustZone
implementation on a multi-core processor can be verified
at design time using information flow analysis. This study
is the first to verify a complex security architecture with
information flow. We found that static verification of practical
security policies on a multi-core introduces new technical
challenges, and show how to solve them through novel type
system extensions and the addition of simple, inexpensive
run-time hardware checks. This verification methodology
provides strong assurance that the processor provides secure
isolation for critical software.
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