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Abstract

Participating media, such as foggy atmosphere, �re, stained window glasses and smoke,
are widely used in modern �lms, games and related �elds for realistic synthesizing. Sat-
isfying the demand of rendering participating media accurately and e�ciently remains
challenging today. Previous work either solved the problem by using unbiased estimators
with low convergence rates, or by rendering e�ciently at the expense of adding bias. Our
work focuses on deriving robust photon density estimators for volume rendering that are
both accurate and e�cient.

We construct a new theory framework for the derivation of unbiased photon density es-
timators in participating media rendering. In this framework, we combine analytic inte-
gration of parts of the path integral in extended path space with Monte-Carlo estimators
to approximate intensity of pixels. Through speci�c choices of analytic integration vari-
ables, we then derive a group of unbiased density estimators, named “photon surfaces.”
We concentrate mainly on the distance sampling domain (“generalized photon planes”)
and the point sampling domain on an area light source (“single scattering photon sur-
faces”), which makes it possible to render a light-to-medium path with unbiased density
estimators.

The second contribution of our work relates to variance reduction. Due to the geomet-
ric nature of di�erent photon surfaces, each estimator introduces singularities in some
speci�c area. These singularities produce low frequency noise and slow down the con-
vergence rate. To address this, we further develop several robust density estimators by
applying multiple importance sampling (MIS) among our photon surfaces estimators to
combine their advantages. As a result, MIS’s estimators dramatically reduce the singu-
larities and improve the convergence rate. Moreover, we also show how we combine a
continuum of estimators with MIS, which helps to improve the robustness of single scat-
tering photon surfaces estimators.
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Purple mists rise from the Incense Burner Peak in the

sun; The waterfall seems to hang above the stream, seen

from far away. Straight down three thousand feet the

white spraying torrent does run. Descending from Ninth

Heaven, could this be the Milky Way?

— Bai Li (701-762), translated by Frank C Yu
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Chapter 1

Introduction

It can be observed from the visual e�ects of recent �lms and games that rendering tech-
niques have experienced rapid growth during the past couple of decades. However, that
growth of technique never satis�ed the great aspirations of �lms and games makers; the
demand in rendering realistic images pushes researchers to dive deeper into physically-
based simulation. Among those realistic visual e�ects, rendering participating media is
always a big topic, because we are actually living in participating media. Much appear-
ance modeling, including skin, fabric, snow, clouds, �re, water, fog and smoke, is closely
related to light transport within participating media.

Rendering participating media accurately and e�ciently remains a challenging problem
today due to the complexity of describing a volume and the limitations of current algo-
rithms. The earliest model of it is given by Kajiya (1986a), which formulates the problem
as solving a radioactive transfer equation. A popular Monte-Carlo algorithm named “path
tracing” was introduced at that time and has been used to solve rendering problems for
years because of its robustness, being an unbiased and solid theoretical foundation. A
statistical Monte-Carlo rendering algorithm is unbiased as it is guaranteed to converge to
exact answer and its only error is the variance. Nevertheless, path tracing can not simulate
some complex light paths, while su�ering from a low convergence rate. Some later unbi-
ased rendering techniques, including next event estimation and bidirectional path tracing
(Lafortune and Willems 1993; Veach and Guibas 1994; Lafortune and Willems 1996), were
proposed to compensate this problem. These approaches listed above are widely used,
even in the rendering of participating media, because of their generality and the ease of
supporting both surfaces and media. However, those approaches su�er from e�ciency
problems as they usually rely on a huge amount of samples to converge.
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Algorithms like photon mapping use density estimating methods along with Monte-Carlo
methods and improve the convergence rate performance. Similar to bidirectional path
tracing, those density estimators trace a subpath from camera and a subpath from light
source. Di�erent from bidirectional path tracing, photon mapping does not directly con-
nect two subpaths by shadow rays as BPT does; it uses a blurring kernel to couple the
subpaths. This allows the photon estimators to store photon samples �rst and reuse them
later in render passes, but introduces additional errors by blurring along some dimensions.
Researchers later discovered that the limitation on point sample is unnecessary, (Jarosz
et al. 2008b) developed 1D camera "query beams" to replace query points. Then (Jarosz
et al. 2011b) generalized this segment sample to photon subpath, and both on camera and
light subpath. The 1D segment sample requires less blurring dimensions and therefore re-
duces related error at a certain extent. Although the photon beam is still a biased method,
it provides insights for further research on developing unbiased density estimators by
taking higher dimension samples. (Bitterli and Jarosz 2017) �rst introduced the unbiased
density estimators "0D Photon Planes" as well as the "photon volume" which combines
two or three sampling dimension and stores the photon sample as planes and volumes.
Those photon planes and volumes do not ask for blurring along any dimension, and thus
are unbiased with sample noise being the only error.

1.1 Motivation

Though the previous photon planes method provides unbiased estimators for simulating
light transport in participating medium, it is not practical since photon planes su�er from
singularities when viewed from glancing angles. It usually takes large amount of sam-
ples to smooth out those singularities. Moreover, a photon plane takes two propagation
distance-sampling dimensions, so it can be used for the path that has at least two prop-
agation distance in medium. However, this can not support the �rst bounce o� surface
and light source (single scattering event). Unfortunately, the single scattering event usu-
ally has signi�cant impact on rendering images, thus it matters to extend the theory to
support single scattering events.

Our initial goal is to generalize the photon plane theory to construct high dimensional
photon samples so that we can render the single scattering event with unbiased density
estimators. Then, we want to mitigate the singularities of those high dimensional photon
samples by utilizing multiple importance sampling to combine their advantages.
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1.2 Contribution

Solving the problems mentioned in section 1.1, There are two main contribution in this
thesis.

We build up our theory based on photon mapping and the path integral framework in
extended path space. Instead of directly applying Monte-Carlo methods to estimate the
path integral, we separate the integral into numeric part and analytic part. The analytic
part always takes three sampling dimensions and will be replaced by an analytically-
preintegrated value. The remaining numeric part of the path integral is then estimated by
Monte-Carlo methods. We re-derived the original photon plane estimator in our frame-
work and generalized it to a boarder family of unbiased density estimators named "pho-
ton surfaces" through choosing di�erent combination of analytic integral dimensions. By
utilizing two dimensions of point sampling on light source as the analytic integration
domain, we procure single scattering photon surfaces including ut-/vt-/uv-planes for pla-
nar light and uv-surfaces for area light, which solved single scattering problems for area
light sources. It also provides insights for us to construct unbiased single scattering pho-
ton surfaces for points light by employing the directional sampling variables as analytic
integration domains.

Furthermore, we interpreted our unbiased density estimators as path sampling strategies
so that we can apply multiple importance sampling among them. By doing this, we can
also combine our photon surfaces with previous path sampling strategies to create new,
robust density estimators that signi�cantly reduce noise.

1.3 Structure Overview

Among the seven chapters of this thesis, Chapter 2 brie�y goes through related research
of the problem and the solution we used in this paper.

Chapter 3 introduces the basic concepts of light transport simulation, reviews the render-
ing equations in both vacuum and participating medium, and presents the standard path
integral that we aim at solving.

Chapter 4 reviews the Monte-Carlo algorithms that are widely used in solving the path
integral, describes each algorithms from the point of interpreting them as path sampling
strategies, introduces the path integral in extended path space, and builds our theory
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framework.

Chapter 5 shows how we re-derive the photon planes estimator in our framework, goes
through the process of deriving photon surfaces in a general form and gives the deriva-
tions of each photon surfaces estimators including generalized photon planes (ti t j -planes),
uv-surface, uv-planes, ut-planes, vt-planes and randomly-oriented ut-/vt-planes.

Chapter 6 lists di�erent ways of combining the photon surface estimators yielded in Chap-
ter 5 by multiple importance sampling. In this chapter, we describe how we combine
discrete strategies as well as give an idea of combining a continuum of strategies using
multiple importance sampling.

We illustrate in Chapter 7 how we implement and validate our theory in both real-time
visualization and a physically-based renderer, and then present the rendering results.

Finally, in Chapter 8, we discuss further on our algorithms and the potential problems and
solutions. We also look forward to some future research.
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Chapter 2

Related Works

In this chapter, we review some prior works on density estimators, refer to several cases
in graphics that have been solved by utilizing partial analytic integration and describe
broadly on recent techniques that related to our theory. We will also discuss in this chapter
how our work relates to these works.

2.1 Density Estimators & High Dimensional Samples

Density estimators have been used in rendering for years because of its ability to ren-
der tricky light paths like caustics. However, because of the additional blurring process,
there exists a sacri�ce of accuracy when utilizing density estimators with Monte-Carlo
methods to render volume. To keep the advantage of rendering hard light paths as well as
reducing unwanted bias, high dimensional samples are gradually used to develop robust
volume density estimators. Based on photon mapping, (Havran et al. 2005) introduced
ray map which stores a whole photon path as a sample instead of photon points for global
illuminations. (Jarosz et al. 2008a) presented camera query beam, which is a line sam-
ple on camera subpath, to replace multiple point-queries with beam query. Then (Jarosz
et al. 2011a) generalized the theory to compact line samples on photon subpaths( “photon
beams”). They later presented nine density estimators deduced from di�erent combina-
tion of “beams” and “points” on camera and photon subpaths to further reduce the blurring
bias. At the same time, to take the bene�ts of the convergence guarantees and memory
e�ciency which provided by progressive photon mapping from (Hachisuka et al. 2008),
the “photon beams” was extended by (Jarosz et al. 2011c) as progressive photon beams.
More recently, (Bitterli and Jarosz 2017) successfully made the density estimator unbi-
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ased through developing higher dimensional photon samples named “photon planes” and
“photon volumes”.

Previous work usually interprets these multi-dimensional photon samples by marching
and taking limits, while this paper reformulates it from the view of integration. Our work
provides a framework that allows us to derive a variety of high dimensional photon sam-
ples for density estimators. We pre-integrate part of the path integral over some integra-
tion domains, which we refer as “analytic variables”, before Monte-Carlo process. This
pre-integrated part sweeps out high dimensional photon samples as well as reduces the
blurring dimensions. Prior density estimators can be also explained in this framework,
where “photon beams” are expressed as pre-integrating one distance sampling domain
on photon subpath while “camera beams” corresponds to one-dimensional integration on
camera subpath. Likewise, the “photon plane” can be interpreted as pre-integrating over
two conjunction distances on photon subpath and the last distance on sensor subpath.
Thinking in our theory framework, the “photon planes” from (Bitterli and Jarosz 2017) is
actually a special case of a family of “photon plane” estimators which the pre-integrated
distance sampling domain could be any two segments on the photon subpath instead of
only using the last two segments. We also developed single scattering photon surfaces
for area light source by employing point sampling domains on area light. The variety of
choices for pre-integration domains produce a group of unbiased density estimator and
make it possible for us to further construct robust density estimator by multiple impor-
tance sampling among them.

2.2 Analytic Integration

As mentioned in previous section, one key of our framework is the analytic integration
of parts of the path integral. Indeed, analytic integration of part of the integral has been
applied in solving a wide range of problems in graphics. (Gribel et al. 2010, 2011; Barringer
et al. 2012; Nowrouzezahrai et al. 2014; Billen and Dutré 2016) applied analytic integration
in solving visibility problems. (Jones and Perry 2000) used the analytic nature of line
sample to approximate antialiasing integral, while (Tzeng et al. 2012) utilized the line
samples to compute analytic coverage in depth of �eld. There are also applications of
analytic integration in single scattering (Sun et al. 2005; Pegoraro and Parker 2009), and
area lighting (Arvo 1995a,b; Chen and Arvo 2000, 2001; Belcour et al. 2018).

Further more, our work uses the analytical integration together with the Monte-Carlo es-
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timator to approximate the path integral. From this point of view, there are some previous
work of combining analytic integration with Monte-Carlo through ratio (Heitz et al. 2018)
or using control variates Belcour et al. (2018). According to recent analyses in (Sun et al.
2013; Singh et al. 2017; Singh and Jarosz 2017), these techniques smoothing out the inte-
gral by pre-integrating analytically and therefore help to improve the rate of convergence
as well as variance reduction. Di�erent from previous work, as we start the derivation
with photon mapping which has an extra point when comparing to standard path space,
we construct the path integral in the extended path space (Hachisuka et al. 2012, 2017). In
this way, the integrand are ensured to be singular and all integrals are able to be computed
in closed form.

2.3 Other Techniques

Specially, by analytically integrating parts of the extended path integral, we can also for-
mulate unbiased path sampling strategies like BPT, VPLs and next-event estimation in our
framework. More generally, we can consider our method as a way to reparameterize paths
with new parameters set, thus the corresponding weight of our estimators are the geom-
etry factor of parametrizations. As a reference to compare similar method, previous work
from (Jakob 2013) introduces a reparametrization of specular chains with a corresponding
generalized geometry factor.

7



Chapter 3

Light Transport Basics

Rendering generates realistic images from the description of geometries and illumina-
tion conditions of a scene. In general, a renderer achieves this through simulating light
transport, such as re�ection and refraction, and developing the picture from virtual �lm
with the captured light information. In this chapter, we brie�y review the key problem
of interest that solved by Rendering and introduce the basic concepts of light transport
simulation.

3.1 The fundamentals of light transport

In physically-based rendering, the light transport simulation is strictly conducted under
physic laws, like optics.

Light generally refers to electromagnetic radiosity. In rendering, we mainly study a subset
spectrum of light that directly causes visual sensation. This spectrum of light is usually
referred to as visible light. Also, the light is considered as consisting of particles that
carry energy called photons. This wave-like and particle-like property is the wave-particle
duality of light.

Classic optics has two branches based on di�erent aspects of light properties. One is
the physics (wave) optics which consider lights as electromagnetic radiosities. In physics
optics, the light propagates in the way the wave travels. Another branch is geometry
(ray) optics in which light is considered to travel in straight lines. Rendering in modern
graphics is built on top of the geometry optics. In geometry optics, a ray of light travels as a
straight line in media until it hits any surface. It then gets re�ected, refracted or absorbed

8



dA dω dA⊥dA dω
Flux Irradiance Radiosity Intensity Radiance

Figure 3.1: Radiometry measurements:

by the surface. This directional-change is referred as a scattering event or a bounce in
the scene. Under the geometry optics assumption, phenomenons resulting from wave
properties of light such as di�raction, polarization, and interference are not supported in
modern graphics.

In this section, we’ll introduce basic concepts of light transport in rendering, including
the quantities of light, the bidirectional scattering distribution functions (BSDFs), and the
phase functions.

3.1.1 Radiometry quantities

In rendering, we compute the amount of energy arrived at each pixel on the image plane.
After the light’s whole bouncing tour around the scene, we want to be able to quantita-
tively measure the energy it carries at the moment of hitting the sensor plane. Radiometry
quantities measure electromagnetic radiation, such as visible light, which can describe the
energy carried by photons. In this subsection, we introduce some basic radiometry quan-
tities that are used in light transport simulation.

Photon power A �ow of light consists of photons, and each photon has its own prop-
erties such as its currently position x, traveling direction ω, and the amount of energy it
packs. Suppose the wavelength of a light is λ, then each photon in this light carries an
energy of hc

λ , where h is the Planck’s constant1 and c is the speed of light in vacuum2.

Flux The �ux represents the power (energy) emitted, received, transmitted, or re�ected
per unit time, such as the total energy of photons passing through the surface of a light
bulb each second. Flux is usually expressed in terms of Φ, and the unit of �ux is Joule per
second [ J

S ], also known as Watt [W].
1h ≈ 6.63×10−34 m2 ×kg/s
2 c = 2.99792458×108 m/s
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Irradiance & Radiosity The irradiance E is the �ux per unit area arriving at a surface
while the radiosity B is the �ux per unit area leaving a surface. Their units are Watt per
square meter. Generally, the irradiance and radiosity at a point x on surface A is written
as

E(x) = dΦi (A)

d A(x)
B(x) = dΦo(A)

d A(x)

Intensity The intensity, noted as I , is the directional density of power per unit solid
angle:

I = dΦ

dω

Radiance Radiance L is �ux emitted, received, transmitted, or re�ected per unit solid
angle per unit perpendicular area. It is written as:

L = d2Φ

dωdA cosθ

where θ is the angle between the area plane and the projected plane, and dA cosθ is on
projected surface. During light transport simulation, we mainly use radiance term as the
energy measurement so that we have the �exibility in both direction and surface area.

3.1.2 The BSDFs and phase functions

The light travels in straight lines before they get scattered, and scatterings happen when
the light hits surface or particles in medium. When being scattered, radiance de�ected to
di�erent directions. How the radiance distribute into these directions is determined by the
material the light is interacting with. In graphics, to describe this material related property
of surface elements and mediums, we use BSDFs and phase functions respectively.

BSDFs A surface is a boundary that separates di�erent materials. In order to modeling
the appearance of surfaces under illumination, we should know how light re�ect/refract
after hitting the surfaces. Nicodemus (Nicodemus 1965) provided the bidirectional re-
�ectance distribution function (BRDF) to present the directional variation of light re�ect-
ing on an opaque surface element. At each bounce point, the BRDF gives how much the
light re�ected from one direction to another. Later in 1980s, the concept was expanded to
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Figure 3.2: BSDFs and Phase Function: The �rst image on the left is an illustration of bidi-
rectional scattering distribution function where the blue arrows are reluctance directions and the
green arrows are transmission directions. Rest images on the right are phase function in the vol-
ume: the one oh the left relates to isotropic medium and the two images on the right are anisotropic
medium ( the top one is forward scattering while the bottom one is backward scattering).

a generalized mathematical function named the bidirectional scattering distribution func-
tion (BSDF) (F O Bartell 1981) which tells how light scatter after hit a surface. The BSDFs
includes both BRDF and BTDF (bidirectional transmittance distribution function). At a
scattering point x, the BSDF of the surface takes the incident direction ωi , the emitting
direction ωo and the surface normal n as input and give us a ratio as output. This ratio
represents the portion of the radiance from ωi that scatters into ωo . To be precise, let
L(x,ωi ) and L(x,ωo) be incident radiance and outgoing radiance respectively, the BSDF
at point x is

ρs(x,ωi ,ωo) = dL(x,ωo)

L(x,ωi ) |n(x) ·ωi |dω

where n(x) is the surface normal at point x.

Here we list some simple examples of BSDFs: Lambertian BRDF corresponds to uniformly
distributed re�ecting directions. Specular BSDF relates to surface like mirror and glasses
where the re�ecting direction is �xed given incident direction. Microfacet model relates
to more complex surface, which may be anisotropic when re�ecting, like surface of the
mac book.

As we mainly interest in light transport in participating media, we won’t discuss surface
appearance modeling further and will just use ready-made BSDFs for surface rendering.

Phase functions When traveling in participating medium, light will hit particles and
scatter into other directions (we will discuss this in detail later in ??). Analog to BSDFs,
phase function is used in describing the property of participating. It stands for the like-
lihood of light scatter from one direction into another in medium. A simple and straight
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example of phase function is the isotropic medium where the scattering direction is uni-
formly random distributed over the sphere (analog to lambertian BRDFs, middle column
in ??). We use ρp (ωi ,ωo) to denote the phase function, and for the isotropic medium
ρp (ωi ,ωo) = 1

4π . Also, the medium can be anisotropic: scattering direction may tend
to form obtuse angle between incident direction (backward scattering) or acute angle
(forward scattering). There are several models of anisotropic phase function such as
Henyey-Greenstein phase function (Henyey and Greenstein 1941), Lorenz-Mie models
and Rayleigh scattering model. Since our derivation of volume density estimator mainly
concern about the propagation distance and point sample on light/camera, we won’t dis-
cuss this direction-related property in detail.

Reversion-reciprocity principle Reversion-reciprocity principle or Helmholtz reci-
procity says the light ray matches its inverse ray in optic activities like re�ecting and
refracting. As is shown in Figure 3.3, the randiance scattered from the light ray in direc-
tion ωi to ωo matches the randiance scattered from ωo to ωi if we switch the incident
direction of the light to ωo . This could also be expressed as:

ρs(x2,ω2i ,ω2o) = ρs(x2,ω2o ,ω2i ) or ρs(x2,ω2i ↔ω2o)

A simpler way to understand this is the statement “If I can see you, then you can see me.”
We rely on this principle in rendering so that we can swap camera and light source, or
trace light path from camera as well as from light source.

3.2 Light transport in vacuum

Our illustration of light transport start with this simpler assumption where there is no
medium in between surfaces, and lights travels in vacuum between scattering events.
With this vacuum assumption, in Figure 3.3 the incident radiance L(x2,ω2i ) at vertex x2

equals to the outgoing radiance L(x1,ω1o) at vertex x1.

One key problem in light transport simulating is to evaluate the radiance coming along
the ωo from some point x, which we note as L(x,ωo) and the source of radiance on this
ray is emission at point x and the radiance scattered into direction ωo at point x.
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Figure 3.3: Two point model (on the left) and the three point model (on the right)

3.2.1 The scattering equation

Given the BSDFs (left most image in Figure 3.2) and the Helmholtz reciprocity principle,
the scattering radiance from point x2 along direction ω2o noted as Ls(x,ω2o) is the sum
of radiance get scattered into ω2o from all the direction over sphere S, moreover,

Ls(x2,ω2o) =
∫

S2
ρs(x2,ω2i ,ω2o)L(x2,ω2i )|n(x2) ·ω2i |dω2i (3.1)

This equation is the scattering equation.

3.2.2 The rendering equation

The outgoing radiance from point x on a surface along direction ωo is identical to the
sum of corresponding emission radiance and scattered radiance. Knowing the scattered
radiance from Equation 3.1, we add the emittance at point x and yield the radiance along
direction ωo :

L(x2,ω2o) = Le (x2,ωo)+Ls(x2,ω2o) (3.2)

= Le (x2,ω2o)+
∫

S2
ρs(x,ω2i ,ω2o)L(x,ω2i )|n(x2) ·ω2i |dω2i (3.3)

Equation 3.3 is the spherical form of rendering equation, and tackling most light transport
simulating problems in graphics is directly related to solving this rendering equation. The
rendering equation origins from Kajiya (1986b). It was presented in surface form and
discribed in a three-point model ( image on the right in Figure 3.3).
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3.2.3 Jacobian

Sometimes, it’s more convenient to use surface integration form of rendering equation:

L(x1, x2) =G(x1, x2)[Le (x1, x2)+
∫

A
ρs(x1x2,x2x3)Li (x2, x3)G(x2, x3)dx3] (3.4)

In the equation above, G(x1,x2) is the geometry term between two input points. It includes
the visibility between points x1 and x2 and the Jacobian term that transfer the rendering
equation from directional integration to surface integration:

G(x1, x2) =


0, if x1,x2 are not mutually visible,
cosθcosθ′

r 2
otherwise,

(3.5)

where r = |x1 −x2|, cosθ = x1 −x2

r
·n(x2) and cosθ′ = x1 −x2

r
·n(x2)

Instead of parameterizing the radiance by the directions, the surface integration form
only parameterize the radiance by the position of points on the surfaces, these two pa-
rameterization stand for di�erent integration space, then there should be a Jacobian that
map the integration in surface vertex form to directions form. The jacobian equals to the
determinatant of the transformation matrix between these two type of parameterization.

3.3 Light transport in participating media

In last section, the radiometry transfers between surfaces and light are considered, how-
ever, a big assumption of the surface model is that there is no participating media between
the surface and light travels in vacuum between scattering events. Therefore, realistic im-
age with participating media ranging from the medium as sparse as morning fogs to the
medium as dense as marbles are not supported.

Participating medium could be thought of as a large number of extremely small particles
�ll in a volume. For example, the morning fog consists of water droplets or ice crystals.
When a ray of light travels pass a medium, a portion of photons in the light hit some
particles in the medium being re�ected away (out scattering) or a partial of their energy
been absorbed during collision (absorption). At the same time, photons from other light
may be scattered into this light (in-scattering). Also, the light ray collects radiance emitted
by luminous medium into its traveling direction along the way (Emission). Although,
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Figure 3.4: Light transport events in participating media: Absorption (top left), out-
scattering (top right), in-scattering (bottom left) and emission (bottom right).

interacting with participating medium is, in fact, interacting with particles, in graphics, we
don’t actually model the particles explicitly. Instead, the participating media are described
by statistical properties including density, absorption and scattering coe�cients and phase
functions.

To analyze the radiance change when a light ray goes through participating medium, in
this subsection, we will review the derivation of radiative transfer equation by looking at
a di�erential beam L(x,ω) going from x along directionω by a distance t to xt in medium,
like Figure 3.4.

Absorption As is mentioned previously, when going through a volume, the radiance
reduces due to absorption. This lose of radiance is measured by the absorption coe�cient
σa . Suppose the medium is purely absorption medium which usually looks transparent
and dim, like sunglasses. The radiance at xt is noted as L(xt ,ω) or L(t ) , then

dL(t ) =−σa(t )L(t )dt . (3.6)

sovling this equation gives as the expression of L(t )

L(t ) =C e−∫ t
0 σa (t )dt (3.7)

where by setting t = 0 we know C = L(0) = L(x0,ω). It can be also observed from Equa-
tion 3.7 the radiance decreases by a exponentially factor of absorption coe�cient,
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Out-scattering Except for the absorption, the radiance also decreases because of the
photons’ scattering into other directions, this portion of energy lose is measured by the
scattering coe�cient. Suppose the medium is not absorbing nor luminous, the radiance
lose by out-scattering is

dL(t ) =−σs(t )L(t )dt . (3.8)

similar as the absorption, solving this equation gives as a exponential decrease factor
e

∫ t
0 σs (t )dt .

In-scattering As the radiance getting scattered away, when a light passes the volume,
there are also photons scattered in from other directions. This increment radiance at
point xt , denoted as Ls(xt ,ω) is identical to integration of in-scattering radiance from all
the directions over the sphere. Also, this increment in radiance is also described in terms
of the scattering coe�cient

dL(t ) =σs(t )Ls(t )dt (3.9)

where

Ls(t ) =
∫

S2
ρp (ω,ωi )L(xt ,ωi )dωi

The weight ρs(ω,ωi ) is the phase function, which tells the likelyhood of a light traveled
in direction ωi scattered into direction ω. This phase function is an analog of the BSDF
term in surface scattering model.

Emission In addition to in scattering radiance, the emitted radiance of the volume itself
Le (x,ω) also contributes to the change of radiance when light passes,for example liquid
in a glow stick. This part of radiance change is expressed by

dL(t ) =σa(t )Le (xt ,ω)dt (3.10)
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Figure 3.5: Radiative transfer

3.3.1 The radiative transfer equation

Summing up those factors of radiance lose and gain results in a di�erential form of radia-
tive transfer equation:

dL(t ) =σa(t )Le (t )dt +σs(t )Ls(t )dt −σt (t )L(t )dt (3.11)

where σt is the extinction coe�cient that equals to the sum of scattering coe�cient and
absorption coe�cient. The Equation 3.11 usually write in the form of radiance derivative
with respect to distance traveled in the medium, which is referred as radiative transfer
equation:

L′(t )+σt (t )L(t ) =σa(t )Le (t )+σs(t )
∫

S2
ρp (ω,ωi )L(xt ,ωi )dωi (3.12)

Solving the radiative transfer equation by pattern matching the ODE function y ′+q y = p

gives us the full volume rendering equation in participating medium:

L(xt ,ω) = L(t ) =
∫ t

0
Tr (t ′, t )Le (t ′)d t ′+Tr (0, t )L(0)

+
∫ t

0
Tr (t ′, t )σs(t ′)(

∫
S2
ρp (xt ′ ,ω,ωi )L(xt ′ ,ωi )dωi )dt ′ (3.13)

where the Tr (t ′, t ) is the transmittance term between xt ′ and xt :

Tr (t ′, t ) = e−∫ t
t ′ σt d t ′ , (3.14)

and it expresses the combined energy lose result from the absorption and out-scattering.
Moreover, we can rewrite this Equation 3.15 in the same form of Equation 3.4 to keep the
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Figure 3.6: Camera plane and light paths

consistency of notations, we have:

L(xt ,ω) =
∫ xt

x
Tr (xt ′ , xt )Le (xt ′ ,ω)dxt ′ +Tr (x, xt )L(x,ω)

+
∫ xt

x
Tr (xt ′ , xt )σs(xt ′)(

∫
S2
ρp (xt ′ ,ω,ωi )L(xt ′ ,ωi )dωi )dxt ′ (3.15)

3.4 The Measurement equation

The rendering equations of surface(Equation 3.4) and medium(Equation 3.15) make it pos-
sible to compute the radiance coming from speci�c directions by simulating light trans-
port. Then, to render a image, a virtual camera looking at the scene is introduced. Usually,
the virtual camera consists of a grid of sensors each relating to a pixel in rendered image.
The way they work is that, for each location on a sensor, it accumulate the radiance pass-
ing through it over all directions and use the results as the pixel intensity value. Radiance
from each direction are not directly add up but weighted by an acceptance weight noted as
We (x ,ω). This acceptance weight called importance describes how much of the radiance,
that came from ω and arrived at x on sensor, are actually captured by the sensor plane.
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Thus, the intensity value of a pixel is calculated as follows:

I =
∫

A

∫
H 2

We (x,ω)L(x,ω)dωdx (3.16)

This equation is called the measurement equation,

3.5 The Path integral framework

According to the rendering equations, the radiance arriving at sensor plane can be com-
puted by recursively tracing rays. In this way, new rays are traced into scattered directions
when the former ray de�ected by surface/medium until it hit the light source. Usually, we
call a chain of traced ray from light source to camera( or from camera to light) as a light
path, noted as z. The length of a light path varys from one to in�nity large ( it is possible
that photon bounce around the scene but never hit the camera plane ). Unfortunately, this
recursive form makes it di�cult to compute the pixel intensity, since the radiance can al-
ways be expanded to another integral. Also, if we solve this numerically, the number of
light path grows exponentially due to this recursive structure.

However, another way to solve this, is transforming the measurement equation into a
path integral formulation which origins from Veach (1997). The path integral formulation
is written in the form

I =
∫
Ω

f (z)dµ(z) (3.17)

where Ω is space of all the paths of all lengths, µ(z) is a measure on path z and f (z) is the
measurement contribution function. Since this paper mainly focus in volume rendering,
we will review the path integral frame work brie�y in terms of volume.

A light path z with length h is de�ned to be a chain of vertices: x0x1 . . .xh−1. This light
path belongs to the sub path space Ωh which includes all the paths with length h. The
measure µh on this path is a product measure such that

dµh(x0 . . .xk ) = dV (x0)×·· ·×dV (xk )

or µh = V ×·· ·×V︸ ︷︷ ︸ .
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Now the whole path space is de�ned as the union of path spaces of all possible path length:

Ω=∪∞
i=1Ωh .

Suppose D is a set of path of any length, then

µ(D) =∪∞
i=1µ(D ∩Ωi )

For each light path there is a measurement contribution function that returns the intensity
contributed by this path. By extracting proper term from volume rendering equation, the
measurement contribution function is

f (z) = Le (xk ,ωk )G(xk , xk−1)We (x0,ω1)

1∏
i=k−1

G(xi , xi−1)Tr (xi , xi−1) fs(xi+1, xi , xi−1)

where fs(xi+1, xi , xi−1) is BSDFs when xi is on surface and phase function when in medium.

Now the problem of light transport simulating has been transformed to solving this path
integral. In next chapter, we will discuss in detail how this path integral is previously
solved, and how we solve it.
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Chapter 4

Solving Light Transport Problem in
Participating Media

Last chapter, we reviewed the basics of light transports, and landed at simulating light
transport by solving the path-integral formulation. To estimate an integration, usually
we can use numeric method which divide the domain into sections and sum up value of
each slices. However, this is not practical in rendering. The reason is that the radiance
term in rendering equations could be recursively expressed by an integration with another
radiance term in its integrand. In another word, solving the path integral is relating to
integrating over a high dimensional domain.

Another way to estimate the value of integral is using Monte-Carlo estimators. In this
section, we �rst show how to estimate the integral formulation in Monte-Carlo ways, and
we will go through some popular Monte-Carlo method that are widely used in rendering
including path tracing, bidirectional path tracing and photon mapping. Then we start to
build the frame work of our solution on top of photon mapping and the path integral in
extended path space.

4.1 The Monte-Carlo estimator

Monte-Carlo methods named after casino in Monte-Carlo use random numbers to solve
numerical problems that are di�cult with other approaches. Earlier, it was used in the
development of atomic bomb and was �rst introduced in rendering by Cook(Cook et al.
(1984)) to solve problems including depth of �eld and monition blur. Some good example

21



references of using Monte-Carlo to solve rendering problems are Kajiya (1986b) and Veach
and Guibas (1997).

When solving rendering problems, the value of interest is the pixel intensity which, by
path integral formulation, equals to

I =
∫
Ω

f (z)dµ(z)

Monte-Carlo methods estimate the integral by replacing it with the mean of approxima-
tion of the integral at each random sample. We de�ne a random variable z on path spaceΩ
with the probability density function of p(z), a path z j is an instance of z. Then g (z) = f (z)

p(z)
is a function of z on the path space. According to the de�nition of the expected value

E[g (z)] =
∫
Ω

g (z)pz(z)dµ(z)

=
∫
Ω

f (z)

p(z)
p(z)dµ(z)

=
∫
Ω

f (z)dµ(z)

= I

Then the expected value of g (z) is approximated by taking N samples of random variable
z and computing the mean, a sample is note as z j where 1 É j É N .

E[g (z)] = E[
f (z)

p(z)
] ≈ 1

N

N∑
j=1

f (z j )

p(z j )

Then, the light transport problem expressed in the form of integral is transferred, by
Monte-Carlo, to distribute functions that can be evaluated easily:

I =
∫
Ω

f (z)dµ(z) ≈ 1

N

N∑
j=1

f (z j )

p(z j )
= 〈I N 〉 (4.1)

where 〈I N 〉 notes the expect value of the pixel estimated by N samples. The larger the N

is, the closer approximation the I N is to I . By the law of large number, it’s guaranteed
that the approximation will converge to the exact value of path integral as N →∞.
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4.1.1 Variance analysis

In order to assess the performance of Monte-Carlo estimator, variance and standard devi-
ation are commonly used. We want to know what the variance of the estimated value look
like and what factors in�uence the variance, so that we can improve the Monte-Carlo es-
timator further. We note the variance of the Monte-Carlo estimated value with N samples
as s2[I N ] where s stands for the standard deviation. Here we also de�ne a new random
variable Y = g (Z ) = f (z)/p(z), and Y j is an instance of Y that Y j = f (z j ))/p(z j ). Since the
path samples are uncorrelated, the summation property holds for variance, then

s2[〈I N 〉] = s2[
1

N

N∑
j=1

f (z j )

p(z j )
]

= 1

N 2

N∑
j=1

s2[
f (z j )

p(z j )
]

= 1

N
s2[Y ] (4.2)

and the standard deviation is

s[〈I N 〉] = 1p
N

s[Y ] (4.3)

According to Equation 4.2 and Equation 4.3, the variance of the estimated value goes down
with a speed of O(

p
N ), which means reducing the variance by a factor of two requires

increasing the sample number by factor of four. Though it converge slowly, one advan-
tage of using Monte-Carlo in rendering is its tolerance of high dimension samples: The
numerical method which estimate the integral by summing up area of sections requires
N d samples when the sample goes to d dimensions, while the Monte-Carlo method only
requires N.

4.1.2 Variance reduction

Since the radiance convergence rate is relatively slow, variance reduction strategies are
used to compensate this down side of Monte-Carlo estimators. One thing we learn from
those equation above is that the variance of the Monte-Carlo estimator is in�uence by the
variance of Y = f (z)/p(z).
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Figure 4.1: Random walks in the process of sampling a light path.

Importance sampling It can be observed from the variance expression that if Y be-
comes closer to constant, the variance will be smaller. As we have the freedom to choose
from what distribution we sample the path, one way to reduce variance is making the
sampling density function as close to the measurement contribution function as possible.
Intuitively, this could be think as putting more samples in the area where the measurement
contributes more. If we perfectly sample the path such that p(z) = c f (z), then variance
becomes

s2[
f (z)

cp(z)
] = s2[ ���f (z)

c���f (z)
] = s2[

1

c
] = 0 (4.4)

Equation 4.4 proves that if the probability density function is carefully chosen such that
it perfectly match the shape of measurement contribution function, in theory we can
reduce the variance of Monte-Carlo estimator to zero. However, computing this constant c

contains solving
∫

c f (z)dµ(z) = 1, and this seems to form a dead lock. However, although
it is di�cult to make the PDFs exactly the same shape as the measurement contribution
function, if we have some knowledge of the structure of f , we can make the PDFs as close
to f as possible to reduce the variance.
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4.2 Sampling a light path

As mentioned previously, the Monte-Carlo estimator use random variables to solve the
numeric problem. In this light transport simulation problem the random variables refer to
the light path z. Actually, a light path is a high dimension variable that consists of a chain
of random processes including sampling on light source/camera plane, sampling emis-
sion direction/importance direction. sampling propagation distances in medium, sam-
pling scattering directions and a random process on whether terminate the path or not.

In this subsection, we will review the random processes that used to generate a light
path, random variables in each random process and the probability density function of a
sampled path.

4.2.1 Random variables

Sampling on light source A sampled path starts from a random point on light source
and then propagates along a sampled emission direction. If the light source is not a point
light, then starting point is usually uniformly sampled with respect to the area/volume
of light. By importance sampling, its propagation direction is sampled proportion to the
distribution of emission function. For example, for a area light emitting cosine distributed
light, we usually chose to sample with p(ωl ) = cosθ, where θ is the angle between sam-
pled direction ωl and surface normal n.

Sampling on camera A path sample could also starts from a random point on sensor
plane and trace along a sampled direction. Similarly, The point on the sensor plane could
simply generated from uniform distribution, since the importance is invariant to the point
on aperture. When choosing out going direction of a ray, we could choose to sample with
respect to the importance function We or the reconstruction �lter.

Sampling scattering directions After a light or a ray is generated. It travels along
sampled direction in the medium. It may be defected into another direction by medium
before hitting any surface, or it scattered into another direction after hitting a surface.
The direction that the light get scattered into is sampled with respect to the distribution of
phase functions for scattering event happens in medium and BSDFs for surface scattering.
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Sampling propagation distance Whether the light get scattered in medium or not is
determined by the process of sampling a propagation distance, usually referred as free �y
distance, in the medium. It works in this way: After a propagation direction is sampled, we
sampled a distance t that the light could travel before de�ect in the medium. If t is smaller
than the distance between xi and the nearest surface, then the propagation distance equals
to t and scattering point xi+1 is in medium, otherwise the propagation distance equals to
the distance from xi to nearest surface and x lays on surface. When sampling the free �y
distance, we usually choose to sample proportion to the transmittance term Equation 3.14.

Terminate a path A path terminate after sliding into light source for path starting from
camera or camera senor for path traced from light source. A path also terminate when
it exits the scene. It is possible that a path keep bounce around in the scene and never
stops, one way to avoid this is to add a random process after each bounce on whether
terminate this path or not. This random process of termination decision is called Russian.
With the internal goal of making the path PDF as close to the contribution function as
possible, the distribution of this random variable is carefully designed to follow the shape
of contribution function diving all the other terms used in previous random process.

4.2.2 Path probability density function

For a path z = x0x1 . . .xl , the probability density function is a joint probability of generating
all the points along this path

p(z) = p(x0, x1, . . . ,xl )

Traced from light source, this probability could be decomposed into products of condi-
tional probabilities like

p(x0, x1, . . . ,xl ) = p(x0)p(x1 | x0) . . . p(xl | xl−1 . . .x1x0)

Di�erent decomposition of the joint probability relates to di�erent strategy of generating
the path sample. In the following sections, we will review a few path sampling strate-
gies including path tracing, bidirectional path tracing and smoothly move towards our
solutions from photon mapping.
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4.3 Path tracing

One straight forward way of generating a path sample is tracing ray starting from a point
on camera y0 and recursively shooting new rays at scattering points y j until the path hit
the light source, get out of the scene or terminated by the Russian Roulette. Following
the process of how a path is generated by path tracing, the probability density function
of a sampled path with length k +1 is expressed as z = y0 . . .yk and its probability density
function is

p(z) = p(y0 . . .yk ) = p(y0)p(y1 | y0) . . . p(yk | yk−1 . . .y1y0) (4.5)

Path tracing does not call for a random process of sampling a point on the light source,
thus the path may never hit the light source. This made path tracing perform badly in
the scene with point light sources in which it is impossible to trace a ray that hit the light
source. Another simple way to sample a path is reverse form of path tracing which start
the random walk from the light, named light tracing, however, since this strategy don’t
sample a point on sensor plane, light scattered from specular surfaces hardly get into the
camera plane directly, thus it can not handle the scenes with specular surfaces.

4.3.1 Next event estimate

A a technic named Next Event Estimate (NEE) is used to improve path tracing as well as
light tracing so that they can handle most of the light path type. With next event estimate,
a sample on the light source xl is generated and directly connected to the vertices along
the sampled path, with this setting, a path with length k+1 is expressed as z = y0 . . .yk−1x0

the probability of a path is decomposed in the following way:

p(z) = p(y0 . . .yk−1x0)

= p(y0)p(y1 | y0) . . . p(yk−1 | yk−2 . . .y1y0)p(x0) (4.6)

Similarly, if we do next event estimate for light tracing, which directly connect each point
along the path with a random point on camera sensor, we will have the PDF for a path
z = y0xk−1 . . .x0 equals to

p(z) = p(x0 . . .xk−1y0)

= p(x0)p(x1 | x0) . . . p(xl−1 | xl−2 . . .x1x0)p(y0) (4.7)
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Figure 4.2: Path tracing, next event estimation (NEE), multiple importance sampling
among path tracing and NEE (�rst row) and rendering examples (second row).

Although the next event estimator prevent the path tracing from never hitting a light
source, it performs badly when the scattering point gets close to the emission surface
due to the geometry term in Equation 3.5. Fortunately, path tracing without next event
estimate performs well under this situation since it’s easy for a sampled scattering direc-
tion to slide in to an emission surface near by. Since path tracing with and without NEE
show advantage in di�erent area over the other, a combination of these two strategies is
necessary and bene�cial.

4.4 Multiple importance sampling

In the last section, we want to combine the path sampling strategy which uses NEE with
the strategy that don’t use NEE to improve the path tracing. Observing that only applying
straight averaging to combine two strategies will keep the bad e�ects from both sides, to
address this, multiple importance sampling (MIS) is used.

Multiple importance sampling is a technique introduced by Veach and Guibas (1995)
which uses the combination of multiple sampling strategies to improve the Monte-Carlo
estimating where the integrand is high-dimension, discontinues or has singularities. Read-
ers who wants more detail of Multiple importance sampling can go to Veach and Guibas
(1995) to read the full derivation and analysis. Here we just pattern match our path inte-
gral problem into the general interpretation of multiple importance sampling. Suppose m

is the number of strategies we use to evaluate the integral, ni is the number of samples we
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Figure 4.3: Bidirectional path tracing

take from each strategy, then the robust estimate of I with Multiple Importance Sampling
should be

I =
m∑

i=1

1

ni

ni∑
j=1

wi , j
f (zi , j )

pi (zi , j )
(4.8)

where zi , j represents the j th sample we take from strategy i , and wi , j is the MIS weight
of j th sample from i th strategy. By balance heuristic, the weight is

wi , j =
ni pi (zi , j )∑m

k=1 nk pk (zi , j )
(4.9)

In the weight expression above, pk (zi , j ) is the probability of generating exactly the same
path as zi , j by strategy k .

To obtain robust estimation of pixel intensity, we can combine NEE with path tracing by
multiple importance sampling. As is illustrated in section 4.3. a path z can be generated
by path tracing with a probability of pPT (y0 . . .yk ) and also by NEE with a probability of
pN EE (y0 . . .yk−1x0). At each evaluating point, we take one sample from NEE and one sam-
ple from simple path tracing, and weighed contribution from each path by Equation 4.9.
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4.5 Bidirectional path tracing

Except for generating the path sample from one side, we can also generating the path
samples by tracing a light subpath with length l from light and a sensor subpath from
camera side with length h−l −1, and then connecting each vertices on light subpath with
vertices on camera subpath. This could also be think of as decomposing the probability of
path z from two directions instead of decomposing in only one direction (path tracing/-
light tracing). This path sampling method is referred as Bidirectional Path Tracing (BPT).
If we consider the bidirectional path tracing as a path sampling strategy, then the path
probability density function could be written as:

p(z) = p(x0 . . .xl yk−1y0)

= p(x0 . . .xl )p(yk−1 · · ·y0)

= p(x0)p(x1 | x0) . . . p(xl | xl−1 . . .x1x0)p(yk−1 | yk−2 . . .y1x0) · · ·p(y0) (4.10)

By varying l in [0,h], a light path z with length of h can be decomposed in h+1 ways
where l = 0 is actually a light tracing strategy and l = h relates to simple path tracing.
Since these di�erent decomposition of generating the same path sample relates to di�er-
ent composition of path probability, we can think each decomposition as a type of path
sampling strategy. Each strategy has advantage over others in some area, and then utilize
MIS to reach a more robust estimation of path integral with bidirectional path tracing.

4.6 Photon mapping

Although bidirectional path tracing provides robust estimation of path integral, there are
still some light paths, like specular-di�use-specular paths, that are tricky for bidirectional
path tracing. For example, it’s still challenge to render caustics under the water.

A two-pass global illumination algorithm named Photon Mapping was developed by Hen-
rik Wann Jensen et al. to approximate solutions to rendering equation. By photon map-
ping, rendering caustics is possible. The photon mapping algorithm work in this way: In
�rst pass, it deploy photons from light into the scene to represent indirect illumination
and store their info like position and energy in data structures for later use. In the second
pass, rays are traced from camera to query photons. Usually, at each query point, it use a
blurring kernel to collect photons and return the average radiance of photons within the
kernel. This blurring kernel add additional bias into the estimation, however, by properly
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Figure 4.4: Photon mapping

choosing the blurring kernel and carefully control the bias, this sacri�ce is worthy to take.

A path in photon mapping with length h is expressed as x0 . . .xl yk . . .y0 where xl xk are
blended by the blurring kernel. Then probability of a light path with length h is decom-
posed:

p(z) = p(x0 . . .xl )p(yk . . .y0) (4.11)

Di�erent from bidirectional path tracing, the photon mapping estimator has an additional
term K (xl ,yk ) relating to blurring in measurement contribution function. It can also be
think of as the probability of taking a point within the kernel and its value identical to
the inverse volume of the kernel. Another important point is, photon mapping is demon-
strated in a di�erent path space because it has an additional point at the connection of
two subpaths while bidrectional path tracing couples subpaths directly by shadow con-
nection. This additional point makes it tricky to describe a path generated by photon
mapping in standard path space and additional care is needed. Then the extended path
space (Georgiev et al. 2012; Hachisuka et al. 2017) which can express photon mapping
in path integral framework is used. By the path integral in extended path space, photon
mapping is able to MIS with path tracing as well as bidirectional path tracing, etc.

Next we will introduce the extended path space and describe photon mapping in the form
of extended path integral. Although the photon mapping itself is biased method, we will
show how we make the it unbiased with our photon surfaces estimator by carefully con-
�gure the blurring kernel. Noticing that, for the sake of simplicity, we assume all the
medium used in this paper are homogeneous. We can easily expand the theory to sup-
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port heterogeneous by Woodcock/delta tacking once we have solution for homogeneous
medium.

4.7 Path integral in extended path space

Now we introduce the framework we use to derive our photon surfaces estimators in this
paper starting from rede�ning the path integral in extended path spaceHachisuka et al.
(2017).

Recall that, with the path integral frame work provided by Veach (1997), the intensity of
a pixel is evaluated by an integration:

I =
∫
Ω

f (z)dµ(z) (4.12)

where µ(z) is the measure of a full path from light source to camera plane,Ω is the space
of all possible paths, and z is the measurement contribution function along a full path.

Change of notation We derive our estimator by photon mapping, therefore, initially
we de�ned a full light path in extended path space as z = x̄ȳ where x̄ and ȳ refers to the
photon subpath and the camera subpath respectively Hachisuka et al. (2017). In order
to keep the simplicity of the equations, starting from this section, we reverse the index
numbering of the vertex on light paths to start from the connection of photon and camera
subpaths. As is shown in Figure 4.5, by this way of indexing, xl refers to the point on
light, yk refers to the pointon sensor plane, and x0 and y0 are vertices at the connection
of photon subpath and camera subpath.
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Path Shown in �gure Figure 4.5, on photon subpath, photon goes from xi to xi−1 along
directionωi by distance ti while a query beam goes from yi to yi−1 along directionψi by
distance si . These can be expressed in formula:

x0 = xl +
1∏

i=l
tiωi y0 = yl +

1∏
i=k

siψi (4.13)

Then we describe our path by directions and distance as:

z = xl ω tψ s yk

where

ω=ωl . . .ω1 t = tl . . . t1 ψ=ψk . . .ψ1 s = sk . . . s1

We refer the o�set vector between the end points of two subpaths as g where g = x0 −y0.

Space LetΩh denotes the whole set of full paths with length h, where 0 < h <∞. Then

Ω=∪∞
i=1Ωh

is the path space that represents the union of spaces of all path lengths.

Measurement We de�ne a measure µh on a paths set D where D ⊆Ωh as a product
measure such that

µh(D) =
∫

D
dA (xl )×dωl ×·· ·×dω1︸ ︷︷ ︸

l times

×dtl ×·· ·×dt1︸ ︷︷ ︸
l times

×

dψl ×·· ·×dψ1︸ ︷︷ ︸
k times

×dsl ×·· ·×ds1︸ ︷︷ ︸
k times

dA (yl )

In another word:

dµh(xl ω tψ s yk ) = dA (xl )×dωl ×·· ·×dω1︸ ︷︷ ︸
l times

×dtl ×·· ·×dt1︸ ︷︷ ︸
l times

×

dψl ×·· ·×dψ1︸ ︷︷ ︸
k times

×dsl ×·· ·×ds1︸ ︷︷ ︸
k times

dA (yl ) (4.14)
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To keep things brief, we aggregated the equation above by de�ning a parameter set ξ =
{xl ,ω, t ,ψ, s,yk } whose elements are the integration domains in Equation 4.14:

dµh(ξ) = ∏
ξi∈ξ

dξi

We extend our paths set D to include any possible �nite length path, and the measurement
on D is the sum of the measure on the path sets of each length:

µ(D) =
∞∑

i=1
µ(D ∩Ωi )

MeasurementContribution Function The measurement contribution function along
a full path Ω is the product of the contribution of light and camera subpaths coupled by
a scattering phase function and a world space 3D blurring kernel:

f (z) = f (x̄)K (g) f 1,1
ω f (ȳ)

In the equation above, the contribution from photon subpath is

f (x̄) =
1∏

i=l
fω(ωi ) ft (ti )

where the fω(ωi ) is emission function when i = l , scattering phase function when xi is in
the medium and BRDF when xi is on a surface.

fω(ωi ) =


Le (xi ,ω)cosθ i = l

σsρp (ωi+1 ,ωi ) i is in the medium.

ρs(ωi+1 ,ωi ) i is on the surface.

And the ft (ti ) is the transmittance term

ft (ti ) = Tr (ti )V (xi , xi−1) with Tr (t ) = e−tiσt

The contribution from camera subpath is computed similar as that of photon subpath since
they are symetric except that the camera subpath emits importance We (yk ,ψk ) instead of
emittance.
Recall that we have integration domain set ξ, which is also a set of variables that deter-
mine the path. For the sake of later derivation, we express our measurement contribution
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function in terms of ξ:

f (z(ξ)) = f (ξ)K (g(ξ)) f 1,1
ω

where f (ξ) = f (x̄) f (ȳ) =∏
ξ∈ξ f (ξi ), with

f (ξi ) =
 fω(ξi ) if ξi ∈ {xl ,yk ,ψ,ω}

ft (ξi ) if ξi ∈ {s, t }

Then the path integral becomes:

I =
∫
Ω

f (ξ)K (g(ξ)) f 1,1
ω dξ (4.15)

Monte-Carlo estimator in photonmapping The integration in Equation 4.15 can be
estimated by Monte-Carlo estimator that

I ≈ f (ξ)K (g(ξ)) f 1,1
ω

p(ξ)

in which p(ξ) is the joint probability of getting the speci�c value of variables in ξ.
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Chapter 5

The Photon Surfaces Estimator

5.1 Method overview

We only focus on unbiased density estimator in this paper. However, starting with photon
mapping usually means there is a blurring kernel that makes the estimator biased. With
the goal of deriving unbiased estimators, we shrink the 3D blurring kernel to a 3D Dirac
delta kernel where the full light path contributes to the pixel only when its photon and
camera subpaths exactly attach at x0y0, which means g(ξ) = 0. In this way, we know that
the light path created by photon mapping in extended space is identical to a full light
path going from the light source to the camera plane in standard path space. The Dirac
delta kernel in three-dimension equals to the product of three one-dimensional Dirac delta
functions along three orthogonal axes:

K (g) =δ3(g) =δ1(x(g))δ1(y(g))δ1(z(g))

where x−, y− and z− represent three axes of standard Cartesian coordinates and x(g), y(g), z(g)

are the projections of vector g on those axes. According to Equation 4.13, g is determined
by all the variables in ξ:

g(ξ) = x0(ξ)−y0(ξ) =
(

xl +
1∑

i=l
tiωi

)
−

(
yk +

1∑
i=k

siψi

)
.

Here comes the key problem, in practice, with the delta kernel, it is impossible to sample
a path that contributes non zero value to the pixel intensity by Monte-Carlo method. Our
solution to this is splitting our extended space integration in Equation 4.15 into two parts:
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Figure 5.1: The original 0D photon plane estimator

One takes three integration dimensions, which referred as ξa , from ξ. We analytically
integrate on ξa and alleviate the delta kernel out. The other part contains all the rest
integration dimensions named ξn , which is identical to ξ/ξa . Now we can express our
measurement contribution function as a product of contribution depending on ξa and the
contribution depending on ξn :

f (ξ) = f (ξa) f (ξn)

The extended path integral in Equation 4.15 can therefore be written as:

I =
∫
Ω

f (ξn)
∫
Ωa (ξn )

f (ξa)δ3(g(ξa)) f 1,1
ω dξa︸ ︷︷ ︸

Ia

dξn , (5.1)

where g(ξa) is a shorthand for g(ξa ,ξn) because we only manipulate on the analytical part.
With this new decomposition of path contribution, we use Monte-Carlo after analytic
integration to evaluate Equation 5.1, then

I = f (ξn)Ia(ξn)

p(ξn)

where Ia(ξn) is the analytically-preintegrated part in Equation 5.1 with in the brace, and
p(ξn) is the joint probability density function of sampling a random variable set ξn .

Next section, we will show how to derive a photon 0D-plane estimator in our framework
and extended it to more general cases.
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5.2 Re-derive 0D-photon planes

The 0D-photon plane estimator Bitterli and Jarosz (2017) employs edge x2x1 and x1x0

along photon subpath to form a photon plane and use edge y0y1 as query beam. In our
framework, this is equivalent to choosing ξa = {t1, t2, s1} as analytic integration dimen-
sions, and its analytic path integral Ia is

Ia =
∫
Ωa

ft (t2) ft (t1) ft (s1)δ3(g(ξa)) f 1,1
ω dt2dt1ds1. (5.2)

In order to analytically compute this integration, we express the delta function in terms of
ξa . With this speci�c choice of ξa , the g({t2, t1, s1}) is an one-to-one function on {t2, t1, s1}:

g(ξa) = (x2 +ω2t2 + t1ω1)︸ ︷︷ ︸
x0(t2, t1)

− (y1 + s1ψ1)︸ ︷︷ ︸
y0(s1)

= x2 −y1 +Aξa

where the matrix A = [ω2,ω1,ψ1]. Moreover, g(ξa) = 0 only have one root for this choice
of ξa , then by the function composition property of Dirac delta function, we can replace
the delta function of g with a delta function of ξa as follow:

δ3(g(ξa)) = δ3(ξa −ξ∗a)∣∣∣ ∂g

∂ξa
(ξ∗a)

∣∣∣ = δ3(ξa −ξ∗a)

Jg

ξa
(ξ∗a)

(5.3)

where ξ∗a = {t∗2 , t∗1 , s∗1 } is the root of equation g(ξa) = 0. In this photon plane case, it is
the intersection point between the query beam and photon plane, as shown in the �gure
Figure 5.1. The denominator in Equation 5.3 is the change-of-variable Jacobian Jg

ξa
from

ξa to g, and it is equals to the determinant of matrix A:

Jg
t2,t1,s1

(ξ∗a) = det(A) = |(ω2 ×ω1) ·ψ1| . (5.4)

Replacing the delta function in Equation 5.2 with Equation 5.3 allows us to preintegrate
over ξa and sweep out the delta kernel. Then we yielded

Ia = f 1,1
ω ft (t∗2 ) ft (t∗1 ) ft (s∗1 )∣∣(ω2 ×ω1) ·ψ1

∣∣ . (5.5)

The equation above exactly matches the expression of 0D photon plane estimator in Bit-
terli and Jarosz (2017) accounting for di�erent notations.
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Figure 5.2: Expected value (right), collision estimator (middle) and tracklength estimator
(left): Expected value directly compute the transmittance; collision estimator check if
the sample t∗i falls in the interval [t−, t+]; track-length estimator check if the sample go
beyond some distance t .

5.2.1 The transmittance estimators

Shown in Equation 5.5, when evaluating contribution of a path, there are transmittance
related terms like ft (t∗1 ) that defers for each hitting point. In fact, the parametric 2D pho-
ton plane formed by sweeping all possible combination of t1, t2 is an semi-in�nite plane.
Its costly to evaluate the transmittance using expected value (Spanier 1966) for each hit-
ting points. The original photon mapping method estimates the transmittance with “col-
lision” estimator (Spanier and Gelbard 1969). (Jarosz et al. 2011a) replace the expected
value of transmittance with an unbiased estimation produced with "track-length" estima-
tor (Spanier 1966), which replaced the semi-in�nite “long” beam with a �nite “short” beam.
Later, Bitterli and Jarosz (2017) also use track-length estimator to substitute semi-in�nite
plane with �nite planes.

To be precise, here we brie�y review the collision estimation, track-length estimation and
expected value in an one dimension setting (Figure 5.2). Let light beams emit from x1

and travel along direction ω in a medium. The energy lose of light beam is expressed in
terms of transmittance, and the relation between the transmittance and the distances t

is described by Equation 3.14. To simulate the transmittance, we can evaluate its value
directly at each location t∗ by Equation 3.14, or use samples who has constant transmit-
tance value but distributed proportional to the transmittance term. t∗i denotes the i th
sampled distance along ω.

Expected value Shown in Figure 5.2, when using expect value, it return the analytic
value of the transmittance computed by Equation 3.14 at each query distance.
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The collision estimator Collision estimator use sample point with constant contribu-
tion value as an estimation of beam. We can think it as concentrating all the energy of
the in�nite photon beam to the sampled location; since the probability density function
we take for distance sampling is proportion to the transmittance function, large number
of samples ensure the estimation converge to the expected value. However, in practise,
a point estimation is replaced by a blurring kernel, and the energy is equally distributed
within the kernel. Let t− and t+ be the lower and upper bound of the kernel, for one
sampled distance t∗i , its contribution is

fCi (t ) =


1
|t+−t−|σ t− É t∗i É t+,

0 otherwise.

The collision estimator has two main problem: It requires large number of samples to
converge. Also, it introduces bias by blurring.

The track-length estimator Another way of estimate a light beam in the medium is
track-length estimator, which draws a short beam with constant intensity value for each
sample, this short beam is expressed as:

fT i (t ) =
1 0 É t É t∗i ,

0 otherwise
(5.6)

Then when evaluating the transmittance at distance t∗:

Tr (t∗) ≈
n∑
1

fT i (t∗) p(t∗i )

= ∑
1ÉiÉn, t∗i >t∗

σt e−σt t∗i (5.7)

when n →∞, Equation 5.7 becomes

lim
n→∞

∑
1ÉiÉn, t∗i >t∗

σt e−σt t∗i =
∫ ∞

t∗
σt e−σt t dt (5.8)

= e−σt t∗ (5.9)

Since our photon surfaces requires more than one dimension of transmittance estima-
tion. Here, we illustrate, in a canonical setup, how each combinations of transmittance
estimators look like in two-dimensional cases. As shown in top left corner of Figure 5.3,
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Figure 5.3: Transmittance estimators: The �rst and second letters in green label represent
the transmittance estimators used along direction ω2 and ω1 respectively. C: Collision
estimator; T: Track-length estimator; E: Expected value of transmittance.

a photon is �rstly emitted from light source along direction ω2 and then it scatters into
direction ω1, which is perpendicular to ω2; then a camera view the scene from direction
ψ1 which is perpendicular to the plane formed by ω2 and ω1. Suppose we always use ex-
pected transmittance along ψ1, then use di�erent density estimators, including collision
estimator (C), track-length estimator (T) and expected transmittance (E), along ω2 and
ω1. This gives us nine possible combinations. We draw seven of them out in Figure 5.3.

Since the transmittance estimators is in an orthogonal dimension to our derivation of Ja-
cobian for photon surfaces, we can directly use track-length estimators for transmittance
evaluation.

5.3 Generalize photon plane to photon surfaces

We have showed how to derive photon plane estimator in our generalized framework
section 5.2, now we want to extend this to a family of unbiased estimators by selecting
di�erent combination of the analytic variables. Although there are many choices of in-
tegration dimensions that can be used as ξa , what we focus on, in this thesis, is a subset
of this family which takes two integration dimensions ξa1

,ξa2
from the photon subpath

and always uses ξa3
= s1 as the third integration dimension. By doing this, at analytic

integration stage, all the other path integral dimensions except ξa are �xed and the x0 is
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only in�uenced by two variable, ξa1
and ξa2

. Then integrating over ξa1
and ξa2

sweeps all
possible locations of x0 and produces a two dimensional parametric surface x0(ξa1

,ξa2
),

which named “photon surface”. Similarly, all the possible positions of point y0 in�uenced
by ξa3

form a query beams. Integrating over ξa is equivalent to �nding the intersections
between the photon surfaces and the query beam, and each intersection point relates to
a full light path sample.
With our constrain on the choice of analytic integration domain, the vector g with respect
to analytic variable can be written generally as

g(ξa) = x0(ξa1
,ξa2

)−y0(s1) (5.10)

and solving equation g(ξa) = 0 is identical to �nding the intersection between query
beams and the photon surface. It is obvious that if the surface have some curvature prop-
erties, a photon sphere for example, there will be more than one intersection between a
surface and a beam. Recall that in section 5.2, we want to transform the delta function of g

directly to a function of ξa . That requires dividing the function domain into parts before
the change-of-variables happens to ensure that each part has the one-to-one property.
Then, for a function g with more than one root, the delta function on it equals to the sum
of delta functions on ξa of each parts:

δ3(g(ξa)) =∑
r

δ3(ξa −ξ∗r
a )∣∣∣ ∂g

∂ξa
(ξ∗r

a )
∣∣∣ , (5.11)

where ξ
∗r
a is the r th root of equation g(ξa) = 0. The denominator of Equation 5.11 is

referred to as Jacobian term and is represented by Jg

ξa
in this thesis. From Equation 5.10,

we can compute the Jacobian as follow:

Jg

ξa
=

∣∣∣∣∣ ∂g

∂ξa

(ξ∗r
a )

∣∣∣∣∣=
∣∣∣∣∣det

[
∂g(ξ∗r

a )

∂ξa1

,
∂g(ξ∗r

a )

∂ξa2

,
∂g(ξ∗r

a )

∂s1

]∣∣∣∣∣
=

∣∣∣∣∣det

[
∂x0(ξ∗r

a1
,ξ∗r

a2
)

∂ξa1

,
∂x0(ξ∗r

a1
,ξ∗r

a2
)

∂ξa2

,
∂y0(s∗r

1 )

∂s1

]∣∣∣∣∣
=

∣∣∣∣∣(∂x0(ξ∗r
a1

,ξ∗r
a2

)

∂ξa1

× ∂x0(ξ∗r
a1

,ξ∗r
a2

)

∂ξa2

) · ∂y0(s∗r
1 )

∂s1

∣∣∣∣∣. (5.12)

In Equation 5.12 above, ∂x0(ξ∗r
a1

,ξ∗r
a2

)

∂ξa1
and ∂x0(ξ∗r

a1
,ξ∗r

a2
)

∂ξa2
can be considered as two tangent vector

of the parametric surface x0(ξa1
,ξa2

) at point (ξ∗r
a1

,ξ∗r
a2

), then their cross product is a normal
of the surface. This surface normal n is not normalized because it includes information of
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Figure 5.4: Generalized photon planes

the angle between two tangent vectors. Since all the estimators in this paper has a Jacobian
term that transform function of ξa to function of g, and according to Equation 5.12, all
the Jacobian of our photon surfaces estimators can be expressed as a dot product between
photon surface normal and the query beam’s direction:

Jg

ξa
=

∣∣∣n(ξa) ·ψ1

∣∣∣
Then, by following the same recipe of deriving the 0D photon plane estimator, we procure
the general expression of our unbiased density estimators,

Ia =∑
r

f 1,1
ω f (ξa)∣∣∣n(ξ∗r

a ) ·ψ1

∣∣∣ (5.13)

In the next subsection, we will instantiate di�erent choices of ξa1
and ξa2

and introduce
corresponding photon surfaces estimators including planes in thelight path with more
than 2 bounces in medium, and photon surfaces for light path that has one bounce o� the
area light source.

5.4 Generalized photon planes

The original photon plane assign t1 and t2 to ξa1
and ξa2

, now we can extend this to a
broader group of photon plane estimators by assigning arbitrary two distances variable
ti , t j (l Ê i > j Ê 1) on photon subpath to ξa1

and ξa2
. To derive the Jacobian term, we
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start with the o�set vector g:

g(ξa) = xl + tiωi + t jω j +
∑

b 6=i , j
tbωb︸ ︷︷ ︸

x0(ti ,t j )

− (y1 + s1ψ1)︸ ︷︷ ︸
y0(s1)

=
(

xl −yk +
∑

b 6=i , j
tbωb

)
+Aξa , (5.14)

where A = [ωi ,ω j ,ψ1], and all possible positions of (ti , t j ) sweep out a photon plane,
which is referred as ti t j -plane. Given the g function, by following Equation 5.12, we
know the Jacobian of the general photon plane estimator is

Jg
ti ,t j ,s1

=
∣∣∣∣(∂x∗

0

∂ti
× ∂x∗

0

∂t j

)
· y∗

0

∂s1

∣∣∣∣= det(A) = ∣∣(ωi ×ω j ) ·ψ1

∣∣
Then the precomputed integrand for aribitary choice of photon plane estimator is

Ia =
f 1,1
ω f (t∗i ) f (t∗j ) f (s∗1 )∣∣(ωi ×ω j ) ·ψ1

∣∣ (5.15)

5.5 Photon surfaces for area light source

5.5.1 uv-surfaces

Except for picking the dimensions relating to distance variables to compute analytic in-
tegral, for the light path starting from area light source, we can also choose the two-
dimensional variable xl as integration domain ξa1

,ξa2
. This two-dimensional variable xl

relates to the point sampling process on the area light. Notice that we made an assumption
that all the area light sources we use are Ramen surfaces. With this assumption, we can
say there must be some orthogonal two-dimension parametrization (u, v) that represent
all the points in the 2D space of the light source, and this surface could be expressed as
xl (u, v). By assigning u, v to ξa1

and ξa2
, the o�set vector becomes

g(ξa) = xl (u, v)+
k∑

i=1
ωi ti︸ ︷︷ ︸

x0(u,v)

− (yk +ψ1s1)︸ ︷︷ ︸
y0(s1)
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Figure 5.5: uv-surfaces for area lights: Images in �rst row illustrate how a path is gener-
ated by a uv-surface. The second row presents examples of uv-surfaces for a sphere (left),
a quad (middle) and a bunny mesh (right) light sources through three rendering results
with low sample amounts. The third row shows validations of uv-surfaces by comparing
rendering from uv-surfaces estimators (right) with path tracing (left) in an in�nite scene
with sphere light, quad light and mesh light(bunny).
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We can tell from the expression above that the photon surfaces x0(u, v) has the same shape
as the light surface xl (u, v) because ωi ti are linear transformations. We name this group
of estimators as uv-surfaces. Following the process of deriving Jacobian that changes
variables from u, v, s1 to g, we yield:

Jg
u,v,s1

= ∣∣n∗ ·ψ1

∣∣
where n∗ is the normalized surface normal at the intersection point between query beams
and the uv-surface. Replace the contribution term in Equation 5.13 with the emission func-
tion, and put in the Jacobian term, we get the pre-integrated throughput of uv-surfaces:

〈Ia〉xl =
f 1,1
ω Le (x∗r

l ,ωl )cosθ∣∣n∗r ·ψ1

∣∣
where x∗r

l is the corresponding point, on the light source, of x∗r
0 .

An interesting way to think about this is that here we e�ectively are performing standard
volumetric photon mapping, but instead of it being blurred by an arbitrary 3D kernel, the
kernel is the shape of the light source.

5.5.2 ut/vt-planes

It is obvious that the original 0D photon plane estimator requires at least two distance
variables alone the photon subpath. Therefore, for the �rst bounce o� surface, we can not
draw a photon plane by following the same procedure. However, we can employ some
other integration domain, to sweep out parametric photon surfaces. For the �rst bounce
o� the light source, we can take the only distance variable and one dimension of the
emission direction to sweep out a photon cone as well as take both dimensions of direction
sampling to get a photon sphere (Jiao 2018). Also, in previous section, we introduced
uv-surfaces which is available for the �rst bounce o� the light source. In addition to uv-
surfaces, we can also take u, tl and v, tl as the analytic variables. But for most curvature
light source, it’s not intuitive what photon surfaces will we get by integrating out those
dimensions. Nevertheless, it is easier to tell what the u, v axes are for a planar light. As
the planar area light source are widely used in rendering, it is worthwhile to derive this
ut-/vt- photon plane estimator for it. This section, we will show how to derive ut- and
vt- photon planes for planar light sources, which can handle single scattering events for
planar light.
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Figure 5.6: ut-planes and vt-planes for planar lights: Images in �rst row illustrate how
paths are generated by ut-planes (left) and vt-planes (right). The second row shows the
ut-/vt-planes rendering in a in�nite large scene with homogeneous medium and a planar
light.

For simplicity, we starts with quad light source. Let two unit vectors u,v go along two
orthogonal edges of the light, and the origin point o be a corner. Any point on the same
plane as the light source can be expressed by (u, v) where u is the length of oxl ’s projection
on u and v is the length of oxl ’s projection on v. We take u, t j as analytic integrate
variables, where 1 É j É l then we express g in the following form:

g(ξa) = o+uu+ vv+ t jω j +
l∑

i=1,i 6= j
tiωi︸ ︷︷ ︸

x0(u,tl )

− (y1 + s1ψ1)︸ ︷︷ ︸
y0(s1)

= o+ vv+
l∑

i=1,i 6= j
tiωi −y1 +Aξa

where A = [u,ω j ,ψ1] and ξa = [u, t j , s1]. The 2D parameteric surface is a plane since
u, t j are two distance variables. Then, the corresponding Jacobian term equals to the
determinant of matrix A:

Jg
u,t j ,s1

= ∣∣(u×ω j ) ·ψ1

∣∣
Put this Jacobian term into the demoninator of Equation 5.13 and substitude the contri-
bution term with emission at the corespondent point of x∗

0 on light source, we yield the
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Figure 5.7: Randomly-oriented planes for planar light: left most is an illustration of how
the randomly-oriented plane is formed and how a path is generated from it. Two images
on the right are simple renderings (low sample count on the left, high sample count on the
right) of one randomly-oriented plane estimator in a in�nite large scene with participating
and a quad light.

pre-integrated contribution:

〈Ia〉ut j =
f 1,1
ω Le ((u∗, v),ωl )cosθ f (t j )∣∣(u×ω j ) ·ψ1

∣∣ (5.16)

Similarly, we take v, t j as the analytic variables and pre-integrate to procure the vt-plane
estimator

〈Ia〉v t j =
f 1,1
ω Le ((u, v∗),ωl )cosθ f (t j )∣∣(v×ω j ) ·ψ1

∣∣ (5.17)

Then the group of estimator which j = l are single scattering photon planes, and j = l −1

are double scattering photon planes.
This ut- and vt- plane estimator can also be extended to any planar light source. Take a
disk light source L as an example, we wrap it with a quad L′. The parameterization takes
two unit vector along the edge of L′ as axes and the corner of L′ as the origin point of this
coordinates. Then we de�ne a virtual light source on L′ such that emission equals to zero
when the point (u, v) is outside L:

Le (xl (u, v),ωl ) =
Le (xl ,ωl ) if (u, v) ∈ L,

0 otherwise

5.5.3 Randomly-oriented ut/vt-planes

With previous rede�nition of planar light source, in fact, we can have a continuum set of
ut-/vt- planes since there are in�nity many orthogonal parameterization of light source
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through rotation. Here we show the derivation of randomly-oriented ut/vt-plane based
on a quad light.

Starting with the local parameterization of light source described in subsection 5.5.2 where
u and v goes along two edges of the light and o is the corner connecting these two edges,
we rotate the local parameterization clockwise by α°around the geometry center of the
quad light and yield new parameterization (u(α), v(α)). α is the angle between new axes
u(α) and the old axes’ vector u. When α= 0, (u(α), v(α)) refers to the original local pa-
rameterization. We rede�ne a virtual quad light L′ to wrap the origin quad light L, and
set the origin of the axes to one corner of this virtual quad light. Then we can derive
new ut/v t-plane on this rotated parameterization by following the same recipe in sub-
section 5.5.2. Then the pre-integrated contribution of a randomly-oriented ut/v t− is:

〈Ia〉u(α)t j =
f 1,1
ω L′

e ((u(α)∗, v(α)),ωl )cosθ f (t j )∣∣(u(α)×ω j ) ·ψ1

∣∣ (5.18)

〈Ia〉v(α)t j =
f 1,1
ω Le ((u(α), v(α)∗),ωl )cosθ f (t j )∣∣(v(α)×ω j ) ·ψ1

∣∣ (5.19)

In next section, we’ll show how to utilize this continuum set of photon planes in multiple
importance sampling and reduce the singularities from photon plane estimators.
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Chapter 6

Multiple Importance Sampling

From the Jacobian term in the denominator of Equation 5.13, we know that, when the
angle between n(ξ∗r

a ) and ψ1 becomes 90°, the value of the analytic integration evaluated
by the photon surface will be in�nitely large. In another words, the closer the angle is to
90°, the larger the path contribute is to the pixel intensity. For example, the photon sphere
has bright silhouette, as well as photon planes become super bright when viewed from
glancing angles. Those e�ects bring singularities to rendering results. The main purpose
of this chapter is providing solutions to alleviate this noisy e�ects.

Observing that each intersection point between query beam and photon surface produces
a standard light path in Figure 4.5, we interpret our photon surface estimators as sampling
strategies in standard space. Moreover, as each photon surface estimator has advantages
over others in some area, to address the singularity problem, we can use multiple impor-
tance sampling to combine the bene�ts of estimators.

In this section, we’ll show how to alleviate the noise of 2+ bounce by applying multiple
importance sampling among generalized photon planes, and how we reduce the singu-

Figure 6.1: An example of plane singularity: Here we show the brightness change of a
photon plane (highlight with green lines) when we rotate the viewing angle.
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larities of single scattering photon surfaces by combining ut-,vt- and uv planes. We also
demonstrate a method to reduce the ut/vt- planes’ singularities by multiple importance
sampling among a continuum of strategies.

6.1 Combining a Discrete Collection of Strategies

Multiple importance sampling combines discrete collection of strategies by summing up
the weighted contribution computed from each strategy. Usually, for a strategy j , the mis
weight is de�ned to be the ratio between its PDF, p j (z), and the sum of the PDFs of all
strategies that can produce the same path:

w j (z) = p j (z)β∑m
i=1 pi (z)β

where β = 1 gives balance heuristic and β = 0 relates to straight average. However, our
photon surface estimators is derived by pre-integrating three selected dimensions in the
path integral. Thus, the remaining dimensions di�ers according to di�erent choice of an-
alytic integration domains, which made it hard to directly compute the weight from path
PDFs. Instead we use the inverse of path throughput as a proxy of path PDFs.Jendersie
(2018):

w j (z) = I j (z)−β∑m
i=1 Ii (z)−β

(6.1)

where Ii (z) is the path throughput in Equation 5.1 that computed by i th strategy.

6.1.1 MIS Thrid-plus Bounces Photon Planes

With a complete light path who has more than three edges on the photon subpath, there
are at least t1t2-, t1t3- and t2t3-planes available for MIS. Take strategy t1t2-plane for ex-
ample, replace the analytic integration in Equation 5.1 by Equation 5.15 and put it into
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Figure 6.2: MIS discrete startegies: Top left image is an illustration of combining three
generalized photon planes (t1t2-planes, t1t3-planes and t2t3-planes). Top right image
shows how we combine three single scattering photon surfaces (ut-/vt-planes and uv-
planes) for planar light source. Images on the bottom is comparison between straight
(left) average and MIS (right).

Equation 6.1, then its weight is:

wt1t2 (ξ) =
p(ξ/{t1,t2,s1})Jg

t1,t2,s1

�
�f (ξ)

p(ξ/{t1,t2,s1})Jg
t1,t2,s1

+p(ξ/{t2,t3,s1})Jg
t2,t3,s1

+p(ξ/{t1,t3,s1})Jg
t1,t3,s1

�
�f (ξ)

=
p(ξ/{t1, t2, s1})Jg

t1,t2,s1

p(ξ/{t1, t2, s1})Jg
t1,t2,s1

+p(ξ/{t2, t3, s1})Jg
t2,t3,s1

+p(ξ/{t1, t3, s1})Jg
t1,t3,s1

(6.2)

6.1.2 MIS Single Scattering Photon Planes

According to section 5.1, for a complete light path who only has one edge along photon
subpath, we can combine ut-, vt- and uv-plane estimators. Similarly, when MIS these
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three strategies, the weight is computed as:

wuv (ξ) = p(ξ/{u, v, s1}))Jg
u,v,s1

p(ξ/{u, t1, s1}))Jg
u,v,s1

+p(ξ/{u, t1, s1}))Jg
u,t1,s1

+p(ξ/{v, t1, s1}))Jg
v,t1,s1

= p(tl )p(ωl )Jg
u,v,s1

p(tl )p(ωl )Jg
u,v,s1

+p(v |u)p(ωl )Jg
u,t1,s1

+p(u|v)p(ωl )Jg
v,t1,s1

(6.3)

Although in theory, for the light path with more than one edge on photon subpath, we
could MIS ut-,vt-,uv-planes with ti t j -planes, the increasing need for shooting shadow ray
for occlusion checking makes it less e�cient. Therefore, we just use ut-,vt-planes for the
�rst and second bounce.

6.1.3 MIS Second Bounce Photon Planes

Initially we only have the 0D-photon plane at the second bounce o� light source, with
ut-/vt-photons, we are allowed to do MIS among photon planes at the second bounce o�
area light. For this speci�c bounce, we choose to multiple improtance sampling among
utl−, utl−1− and tl tl−1-planes.

6.2 Combining a Continuum of Strategies

As mentioned in subsection 5.5.3, there are a continuum set of ut-/vt- planes that can be
used for multiple importance sampling, we apply this contiuum MIS in the single scat-
tering event o� a planar light source. Recall that an u(α)t-plane is yield by rotating the
coordinates system by α°. Thus we have u(α) = sinαu+cosαv. Through Equation 5.16
and Equation 5.1, we know the score of a path returned by it is

〈Ia〉u(α)tl =
f (ξn)

p(ξn)
Ia(u(α), tl , s1)

= f (ξn) f 1,1
ω ft (t∗l )Le ((u(α)∗, v(α)),ωl )

p(ξn)Jg
u(α),tl ,t1

where

Jg
u(α),tl ,t1

= ∣∣(si nαu+cosαv) ·ψ1

∣∣ (6.4)
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Firstly, we consider leveraging multiple importance sampling among m discrete estima-
tors, corresponding to m randomly-rotated parameterizations of the original light source.
Similar to the last section, we use the reciprocal estimator throughput as a proxy for the
path PDF. We de�ne the term I (z,αi ) to represent the path throughput returned by a
randomly-oriented plane which makes an angle of α with the ut-plane. If we have m

strategies, by balance heuristic the pixel intensity goes

I = 1

N

N∑
j

I (z j ,α)−1

1
m

∑m
i=1 I (zi ,αi )−1

I (z j ,α) (6.5)

Replacing the path throughput with section 6.2 and cancelling terms give us

I = 1

N

N∑
j

Jg
u(α),tl ,s1

1
m

∑m
i=1 Jg

u(αi ),tl ,s1

I (z j ,α) (6.6)

Performing MIS between the uncountably in�nite possible parameterizations of the light
source corresponds to taking limit of the expression as the number of strategies m goes
toward in�nity. Recall the property of the Riemann sum is

lim
m→∞

b −a

m

m∑
i=1

f (x) =
∫ b

a
f (x)dx (6.7)

lim
m→∞

1

m

m∑
i=1

f (x) = 1

b −a

∫ b

a
f (x)dx. (6.8)

We can then compute the denominator of Equation 6.6 by

lim
m→∞

1

m

m∑
i=1

Jg
u(αi ),tl ,s1

= 1

π

∫ π

0
Jg

u(α),tl ,s1
dα (6.9)

Inserting Equation 6.4 into Equation 6.9 we obtain

1

π

∫ π

0

∣∣((sinαu+cosαv)×ω1) ·ψ1)
∣∣dα

= 1

π

∫ π

0
|k1 sinα+k2 cosα|dα

= 2

π

√
k2

1 +k2
2 (6.10)
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Figure 6.3: MIS a continuum of startegies

where k1 = (u×ωl ) ·ψ1,k2 = (v×ωl ) ·ψ1. This gives us the continuously MIS’d estimator

〈Ia〉C ≈ 1

N

N∑
j

Jg
u(α),tl ,s1

2

π

√
k2

1 +k2
2

I (z j ,α) (6.11)

Considering this MIS’d estimator as a whole, the demoninator can be regard as its new
Jacobian 2

π

√
((u×ωl ) ·ψ1)2 + ((v×ωl ) ·ψ1)2. This Jacobian only goes to zero when the

query beam is parallel to the emission direction while an individual plane estimator goes
to zero at any glancing angle. To alleviate the only singularity it have, we can further
improved it by MIS with uv-planes.
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Chapter 7

Implementation and Results

7.1 Implementation

In order to validate our photon surface estimators, we �rst implemented it in a simpli�ed
real-time renderer with orthogonal camera. Then, for the e�ciency comparison with
previous unbiased Monte-Carlo estimator, such as path tracing and photon plane Bitterli
and Jarosz (2017), we implemented photon surfaces in an open-source renderer Tungsten
Bitterli (2018). In this section, we will brie�y describe these two implementation.

7.1.1 Real-time implementation

Aim at directly viewing photon surface estimators and validating them by comparing
converged images, the real-time implementation makes an assumption that the scene is
consist of a light source in in�nite large space that �lled with homogeneous medium. This
assumption makes it possible for us to ignore the occlusion and surfaces �rst while only
focusing on medium. The rendered images are returned by an orthogonal camera, and
the camera subpath is limited to only one edge. We added the �exibility of con�guring
the properties of the participating media, setting the path number, switching emission
functions, light shapes and setting up MIS options. This real-time implementation sup-
ports t1t2-, t1t3- and t2t3-planes for multiple scattering; can draw utl -, vtl -, uv-, randomly
orientated utl - planes and uv-surfaces for single scattering (�rst bounce o� light source).
For multiple importance sampling at �rst bounce o� the light source, this real-time ren-
derer could combine ut1-, vt1- and uv- planes, MIS between randomly orientated utl -
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Figure 7.1: Screen shots of real-time implementations.

planes and uv- planes. Moreover, this real-time implementation supports MIS in higher
bounces(three-plus bounces) between t1t2-, t1t3- and t2t3-planes.

The photon subpaths are traced on CPUs, expressed as chains of vertices and sent to
GPUs. For the sake of e�ciency, the program only generates the photon surfaces for
selected bounces. Most of the photon surfaces are generated by geometry shaders while
some of them are connected in vertex shaders. Then, the intensity values returned by
photon subpaths are �nalized in fragment shaders.

7.1.2 Tungsten implementation

After having our photon surface estimators validated in simple real-time setups, we had
them implemented in a full functional renderer Tungsten, which supports other unbiased
Monte-Carlo estimators as well as the previous photon plane estimator. In Tungsten ren-
derer, the surface shading and occlusion test are enabled, which allows us to render actual
scenes with our estimators.

Generating photon surfaces Once a photon path is traced, the integrator iterates over
all bounces and generates one kind of “photon surface” that speci�ed in the con�guration
�le. If the selected estimator is one of the MIS’d ones, at each bounce, we will uniformly
choose one photon surface among the alternative strategies to draw out. This corresponds
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to the one-sample strategy of MIS. We store those primitives and their bounding box in a
uniform grid or a BVH structure, depending on the integrator setting in the input �le. For
the uv-surfaces, since they share exactly the same shape with the light source, we only
store the bounding box and a transform matrix for each photon uv-surface.

Evaluating path In rendering pass, we evaluate each path at the intersections between
the query beam and all the photon surfaces. For the purpose of MIS, at each hitpoint,
we take the throughput returned by the photon surface that it hits and multiply it by the
weight computed from the path throughputs of all estimators. The ways of computing
the weights are given in ??. However, in order to make the implementation more time-
e�cient, in practice, we only compute a subset of path throughput in�uenced by di�erent
Jacobians.

Handling occlusion When shooting camera rays, some photon surface estimators re-
quire us to trace additional shadow rays for visibility test. The reason for this is we inte-
grated three dimensions out, and that makes some photon surface estimators not produce
exactly the same path as the one which generated the photon surface. The number of ad-
ditionally required shadow rays depends on the farthest analytic variable counting from
the x0. Because the photon path generated by a photon surface and the path producing
such photon surface only share the same subset of path edges from xl to the farthest ana-
lytic variable the estimator takes. For example, the uv-surfaces take the position of xl on
area light as variable, therefore, wherever the hitpoint is, we need to trace a shadow ray
all the way back to the light source. As shooting shadow rays are time-consuming, we
only choose to include, in implementation, the photon surface estimators whose analytic
integration dimensions are as close to x0 as possible.

In order to make a fair comparison with previous 0D photon plane, additional care should
be taken when tracing the photon subpath. Evaluating the path by MIS’d t1t2-, t1t3-
and t2t3-planes requires at least three scattering events in the medium, while by the 0D-
Photon planes only needs two. If we trace 100 photon subpath in a scene, the number
of paths with at least two scattering events is larger than the path with at least three
scattering events. To make the sample numbers equal, every time the photon subpath hit
a surface, in addition to re�ecting and transmitting by following BSDFs, we also force it
to pretend not hitting any surface and continue to draw two segments in the medium.
The occlusion test allows us to do so without introducing extra radiance, and the path
probability is truncated to the hitting point by the surfaces.
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7.2 Results

To evaluate our methods, we conducted equal time comparisons between our photon sur-
face estimators and previous methods on a variety of scenes from (Bitterli 2016). All the
images in equal time comparison were rendered with the same renderer and hardware
(Core i-5 6500, 4 cores, 3.2Ghz). For one particular scene, each estimator went through
100 �ve-minutes render passes with di�erent seeds, creating 100 rendered images, then
the variance of the 100 images is used as the quantitative score of the performance. Since
both our photon surfaces estimators and the 0D Photon Plane estimators, as well as path
tracing, are unbiased methods, the variances of the 100 images are actually the mean
square errors(MSE). However, as the photon beams is a bias method, its variance is just
an underestimated version of the error. In order to show the improvement from photon
surface estimators, here we mainly focused on rendering results of the �rst scattering
event o� the light and the third scattering o� the light source.

Figure 7.2 shows the performance of the 3-Planes estimator which combines t2t1-, t3t1-
and t3t2- together. This group of images compare the MIS’d 3-Planes estimators (middle
column), the straight average of 3-Plane estimators (leftmost column) and the original
0D Plane from Bitterli and Jarosz (2017) (rightmost column). This group of images only
rendered out third bounce of the light source. It can be observed that the MIS’d 3-Plane
estimator signi�cantly reduced the singularities of planes.

Figure 7.3 compares the MIS’d ut-,uv- and uv- estimators (middle column), the straight
average of ut-,uv- and uv estimators (leftmost column) and the photon beams Jarosz et al.
(2011a) at the �rst bounce of light source. This group of comparison contains six scenes
ranging from outdoor gas station (Row 4) to indoor living room (Row 6) with light oriented
in di�erent directions. This group shows how the rendering problem of single scattering
event is solved by unbiased estimators (photon surfaces) with a higher convergence rate
than the biased method (photon beams). Scenes in Row 2 and Row 3 have window shades
just behind the light sources, which might in�uence the performance of the plane. How-
ever, the results turn out that even with dense occluders on the light source, the photon
plane estimators still perform signi�cantly better than beams. Row 4 is an outdoor scene
and the light source is coming from the top, this row present the advantage of the MIS on
eliminating the singularities of planes.

Figure 7.4 compared the MIS’d photon planes (middle column) with path tracing (left-
most column) in simulating single scattering in the media. We noticed that, although the
convergence rate of photon planes are higher than path tracing, they visually relate to

59



di�erent kind of noises. By zooming the image (rightmost column), we observed that the
path tracing methods have more high-frequency noises while the MIS’d photon planes es-
timator has more low-frequency noises. That is reasonable because a photon plane may
cover many pixels, and this allows more pixels to share the same random number, there-
fore its rendered image is visually smoother when being viewed closely. This leads to a
discussion on which one is better: high-frequency noises or low-frequency noises, and
how we can quantitatively evaluate them and make a judgment.

Figure 7.5 shows the advantage of using the MIS among a continuum of strategies (randomly-
oriented planes) over just taking averting these strategies. The variance shows that the
rate of convergence when applying MIS is about the twice to three times of the strait
averaging. To further con�rm how much these randomly oriented planes improve the
e�ciency, there should also be a comparison between MISing among randomly-oriented
planes and uv-planes with MISing among just ut-/vt- and uv- planes. However, there is a
debate on how much uv-plane should we include together with randomly-oriented planes,
ten percent, one third or �fty percent? Some further tests remain in this.
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Var: 0.7550×Var: 0.7550× 3-Planes(MIS)3-Planes(MIS)

Var: 0.180×Var: 0.180× 0D Plane0D Plane
Var: 1.0×Var: 1.0×

3-Planes(AVG)3-Planes(AVG)
Var: 2.090×Var: 2.090× 3-Planes(MIS)3-Planes(MIS)

Var: 0.268×Var: 0.268× 0D Plane0D Plane
Var: 1.0×Var: 1.0×

3-Planes(AVG)3-Planes(AVG)
Var: 0.793×Var: 0.793× 3-Planes(MIS)3-Planes(MIS)

Var: 0.159×Var: 0.159× 0D Planes0D Planes
Var: 1.0×Var: 1.0×

3-Planes(AVG)3-Planes(AVG)
Var: 1.097×Var: 1.097×

3-Planes(MIS)3-Planes(MIS)
Var: 0.227×Var: 0.227×

0D Planes0D Planes
Var: 1.0×Var: 1.0×

Figure 7.2: Straight average v.s. MIS 3-Planes v.s. 0D Photon Plane: We compare our
methods, including straight average of 3-Planes (right column) and MIS of 3-Planes (mid-
dle column), with the original 0D photon plane (left column) at the third bounce o� light
source.
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3-Planes(AVG)3-Planes(AVG)
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Var: 1.0×Var: 1.0×
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Var: 1.0×Var: 1.0×
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Var: 0.56268×Var: 0.56268× BeamsBeams
Var: 1.0×Var: 1.0×

Figure 7.3: Single scattering comparison: straight-averaged ut-/uv-vt-planes v.s. MIS’d
ut-/uv-vt-planes v.s. photon beams: We compare our methods for single scattering event
o� light source, including straight-averaged ut-/uv-vt-planes (right column) and MIS’d
ut-/uv-vt-planes (middle column), with photon beams (left column).
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Path TracingPath Tracing
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Var: 0.19220×Var: 0.19220×

Figure 7.4: Single scattering comparison: MIS’d ut-/uv-/vt-planes v.s. path tracing: We
compare our method, MIS’d ut-/uv-/vt-planes (middle column) with path tracing (right
column) as well as showing zoomed in comparisons between these two methods (left
most two columns).
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Figure 7.5: We compare among our straight-averaged randomly-oriented photon plane
(right) and MIS’d randomly-oriented photon plane (left).
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Chapter 8

Conclusion

8.1 Summary

In this paper, we build a new theoretical framework to derive unbiased photon density es-
timators for the participating media rendering. The main part of our theory utilizes a delta
function as blurring kernels to couple a camera subpath and a photon subpath. We then
reparameterize the delta kernel with three arbitrary variables and analytically integrate
parts of the path integral over the variables. This analytical integration sweeps out the
delta kernel and produces photon surfaces. By choosing di�erent sampling dimensions
as the analytic integration variables, we produce a group of unbiased density estimators.
We re-derive the original photon plane Bitterli and Jarosz (2017) in our framework and
got exactly the same equation. Then, we give a more general recipe of deriving photon
surface estimators, such that in addition to distance variables, the directional variables
and vertex sampling on light could also be included in the pre-integration domains and
used to generate photon surfaces. By following this recipe, we extend previous 0D photon
planes to a broader group of photon planes. Instead of only using the last two propagation
distances as the edges of the photon plane, our ti t j -plane can use any two propagation dis-
tances as the edges of photon planes, therefore providing a family of estimators available
for generating exactly the same path. By including point sampling to analytic integration
domain, we present single scattering photon surfaces, which give the renderer ability to
render light transport that was not supported by previous unbiased density estimators.
Furthermore, as each one of the density estimators performs better than others in some
area, we considered each unbiased density estimator as path sampling routine and used
MIS to combine their advantages and smooth out their weakness. Finally, we achieve
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noticeable improvement in e�ciency of volume rendering.

8.2 Discussion & Future work

Heterogeneous medium Recall that we made the assumption that all the media we
work with are homogeneous media. Although our theory could also be revised to �t in
heterogeneous conditions, there will be extra variances when applying photon surfaces
in heterogeneous media. Since our photon surfaces are 2D samples, paths samples gen-
erated from the same photon surfaces estimator may share same direction or distance
samples and that does not �t with the idea of using the importance sample to simulate
heterogeneous medium. For example, path samples generated from a t1t2 photon plane
nearly share all the random sample on photon subpath except for t1 and t2.

Surface-Medium transport As we used single scattering photon planes to solve light
transport problem for the �rst bounce o� light sources, problems of evaluating the �rst
bounce o� surfaces by photon density estimator remained unsolved. One potential solu-
tion to this is using one or two dimensions in BSDFs samples as pre-integration dimen-
sions and drawing photon cones and spheres at the �rst bounce o� the surface. However,
it is obvious that this becomes tricky for specular surfaces, and other discrete BSDFs ap-
pearance models.

Another problem in surface-medium transport relates to MIS: for the second bounce o�
surfaces, we can only generate 0D photon planes, with only one estimator, MIS makes no
sense here. It requires more photon surface estimators to apply MIS so that the singularity
from the 0D photon plane would not dominate the noise.

One alternative way of applying MIS at second bounce o� the surface is using photon sur-
faces generated from pre-integrating directional sampling domains (photon cones, photon
spheres photon cylinders).

Another possible way we could solve low orders (�rst and second) scattering o� surfaces
by utilizing ut-/vt-,uv-planes estimators at those bounces. Nonetheless, these estimators
become costly when they bounce farther from light source because of their demand for
tracing shadow rays.
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Point light We derive single scattering photon surfaces for the area lights on which
there is an extra sampling dimension. For the point lights without this extra dimension, we
need to seek for another sampling dimension when a photon surface is needed for a single
scattering event. Our paper focuses on the photon surfaces generated from choosing
distance sampling variables and area sampling variables as analytic integration domain, so
we didn’t provide any single scattering photon surfaces for point light source. However,
if we expand our focus on distance and area variables to consider other types of random
variables along the path sample, one intuitive choice of the extra dimension of a point
light is in the two-dimensional variables of emission direction variable. Then, sweeping
out combinations of direction and distance dimensions will generate photon spheres and
cones for the �rst bounce of point light source.

Single scattering Observed from the performance of single scattering photon planes
in di�erent scenes, they tend to be the most e�cient when the area light is relatively
large compared to the camera view. When the area light is small, smaller than a pixel, for
example, the performance of single scattering photon planes will perform just as good as
previous methods such as path tracing and photon beams. However, one alternative way
is considering those kind of small lights as point lights and combine the single scattering
photon planes with single scattering spheres and cones (Jiao 2018).

Camera plane On one hand, we have discussed that the size of the area light source will
in�uence the performance of a single scattering photon plane. The reason for this is that
large light corresponds to larger photon planes which cover more pixel in camera sensor.
On the other hand, earlier in this paper, we limited the derivation of photon surface es-
timators by forcing two pre-integration domains on the photon subpath and by directly
assigning another analytic integration variable to be the last distance on the sensor sub-
path. If we relax this constraint, there will be more possible query and photon sample
combinations, such as using a query surface and a photon beam instead of a query beam
and photon surface. For example, if we take a point sample on the sensor as the analytic
integration dimensions, similar to uv photon plane, we can get "uv- camera plane". One
possible di�erence between query surface and photon surface is drawing photon surface
on camera subpath expect to result in high-frequency noise rather than low-frequency
noise because the query plane is not shared by pixels.
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Combine with previous methods Since every photon surfaces estimator we derive
is unbiased and the path created by camera beams intersecting with photon surfaces are
expressed in standard path space, we can think our photon surfaces estimators as path
sampling techniques. As mentioned previously, our single scattering photon surfaces
have low-frequency noise while path tracing has high-frequency noise. We could think of
compensating the noise problem by utilizing MIS among our methods and path tracing,
or other previous unbiased methods, to further improve the volume rendering.

Subsurface scattering Another assumption we made is the camera being in the medium,
though, in practice, it is not always the case. If the camera is viewing the medium outside
the boundary surface, the main interest will be the appearance of a volume boundary, and
then this will turn out to be a subsurface scattering problem.

68



Bibliography

James R. Arvo. Applications of irradiance tensors to the simulation of non-lambertian
phenomena. In Proc. SIGGRAPH, August 1995a.

James Richard Arvo. Analytic methods for simulated light transport. PhD thesis, Yale
University, 1995b.

Rasmus Barringer, Carl Johan Gribel, and Tomas Akenine-Möller. High-quality curve
rendering using line sampled visibility. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 31
(6), November 2012. ISSN 0730-0301.

Laurent Belcour, Guofu Xie, Christophe Hery, Mark Meyer, Wojciech Jarosz, and Derek
Nowrouzezahrai. Integrating clipped spherical harmonics expansions. ACM Trans.
Graph., 37(2), mar 2018. doi: 10.1145/3015459.

Niels Billen and Philip Dutré. Line sampling for direct illumination. Computer Graphics
Forum (Proc. EGSR), 35(4), June 2016.

Benedikt Bitterli. Rendering resources, 2016. https://benedikt-bitterli.me/resources/.

Benedikt Bitterli. Tungsten renderer, 2018. https://github.com/tunabrain/tungsten.

Benedikt Bitterli and Wojciech Jarosz. Beyond points and beams: Higher-dimensional
photon samples for volumetric light transport. ACM Trans. Graph. (Proc. SIGGRAPH),
36(4), July 2017. doi: 10.1145/3072959.3073698.

Min Chen and James Arvo. Simulating non-Lambertian phenomena involving linearly-
varying luminaires. In Rendering Techniques (Proc. EGWR), June 2001.

Min Chen and James R. Arvo. A closed-form solution for the irradiance due to linearly-
varying luminaires. In Rendering Techniques (Proc. EGWR), June 2000.

69



Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In Proceed-
ings of the 11th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’84, pages 137–145, New York, NY, USA, 1984. ACM. ISBN 0-89791-138-5.
doi: 10.1145/800031.808590. URL http://doi.acm.org/10.1145/800031.808590.

W. L Wolfe F O Bartell, E. L. Dereniak. The theory and measurement of bidirectional re-
�ectance distribution function (brdf) and bidirectional transmittance distribution func-
tion (btdf), 1981. URL https://doi.org/10.1117/12.959611.

Iliyan Georgiev, Jaroslav Křivànek, Tomas Davidovic, and Philipp Slusallek. Light trans-
port simulation with vertex connection and merging. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia), 31(5), 2012.

Carl Johan Gribel, Michael Doggett, and Tomas Akenine-Möller. Analytical motion blur
rasterization with compression. In Proceedings of HPG, 2010.

Carl Johan Gribel, Rasmus Barringer, and Tomas Akenine-Möller. High-quality spatio-
temporal rendering using semi-analytical visibility. ACM Trans. Graph. (Proc. SIG-
GRAPH), 30(4), August 2011.

Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive photon mapping.
ACM Trans. Graph. (Proc. SIGGRAPH Asia), 27(5), 2008.

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. A path space extension
for robust light transport simulation. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 31(5),
2012.

Toshiya Hachisuka, Iliyan Georgiev, Wojciech Jarosz, Jaroslav KÅŹivÃąnek, and Derek
Nowrouzezahrai. Extended path integral formulation for volumetric transport. In Pro-
ceedings of EGSR (Experimental Ideas & Implementations). The Eurographics Associa-
tion, jun 2017. doi: 10.2312/sre.20171195.

Vlastimil Havran, Jiri Bittner, Robert Herzog, and Hans-Peter Seidel. Ray maps for global
illumination. In Rendering Techniques (Proc. EGSR), June 2005.

Eric Heitz, Stephen Hill, and Morgan McGuire. Combining analytic direct illumination
and stochastic shadows. pages 2:1–2:11. ACM, 2018. ISBN 978-1-4503-5705-0. doi:
10.1145/3190834.3190852.

L. G. Henyey and J. L. Greenstein. Di�use radiation in the galaxy. Astrophysical Journal,
93:70–83, jan 1941. doi: 10.1086/144246.

70

http://doi.acm.org/10.1145/800031.808590
https://doi.org/10.1117/12.959611


Wenzel Jakob. Light Transport on Path-Space Manifolds. PhD thesis, Cornell University,
August 2013.

Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. The beam radiance estimate
for volumetric photon mapping. Computer Graphics Forum (Proc. Eurographics), 27(2),
April 2008a.

Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. The beam radiance estimate
for volumetric photon mapping. Computer Graphics Forum (Proceedings of Eurograph-
ics), 27(2):557âĂŞ566, apr 2008b. doi: 10.1111/j.1467-8659.2008.01153.x.

Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. A com-
prehensive theory of volumetric radiance estimation using photon points and beams.
ACM Trans. Graph., 30(1), February 2011a. ISSN 0730-0301.

Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. A com-
prehensive theory of volumetric radiance estimation using photon points and beams.
ACM Transactions on Graphics (Presented at SIGGRAPH), 30(1):5:1âĂŞ5:19, jan 2011b.
doi: 10.1145/1899404.1899409.

Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike Sloan, and Matthias
Zwicker. Progressive photon beams. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 30(6),
December 2011c.

Johannes Jendersie. Path throughput importance weights. CoRR, abs/1806.01005, 2018.
URL http://arxiv.org/abs/1806.01005.

Shaojie Jiao. Photon Surfaces: Volumetric Light Transport Using Multiple Importance Sam-
pled 2D Photon Samples. Master’s thesis, Dartmouth College, October 2018.

Thouis R. Jones and Ronald N. Perry. Antialiasing with line samples. In Rendering Tech-
niques (Proc. EGWR), London, UK, 2000. Springer-Verlag. ISBN 3-211-83535-0.

James T. Kajiya. The rendering equation. Proc. SIGGRAPH, 20(4), August 1986a. ISSN
0097-8930.

James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150,
August 1986b. ISSN 0097-8930. doi: 10.1145/15886.15902. URL http://doi.acm.org/10.
1145/15886.15902.

Eric Lafortune and Yves Willems. Rendering participating media with bidirectional path
tracing. Photorealistic Rendering Techniques (Proc. EGWR), 1996.

71

http://arxiv.org/abs/1806.01005
http://doi.acm.org/10.1145/15886.15902
http://doi.acm.org/10.1145/15886.15902


Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In PROCEEDINGS OF
THIRD INTERNATIONAL CONFERENCE ON COMPUTATIONAL GRAPHICS AND VISU-
ALIZATION TECHNIQUES (COMPUGRAPHICS âĂŹ93, pages 145–153, 1993.

Fred E. Nicodemus. Directional re�ectance and emissivity of an opaque surface. Appl.
Opt., 4(7):767–775, Jul 1965. doi: 10.1364/AO.4.000767. URL http://ao.osa.org/abstract.
cfm?URI=ao-4-7-767.

Derek Nowrouzezahrai, Ilya Baran, Kenny Mitchell, and Wojciech Jarosz. Visibility silhou-
ettes for semi-analytic spherical integration. Computer Graphics Forum, 33(1), February
2014.

Vincent Pegoraro and Steven G. Parker. An analytical solution to single scattering in
homogeneous participating media. Computer Graphics Forum (Proc. Eurographics), 28
(2), 2009.

Gurprit Singh and Wojciech Jarosz. Convergence analysis for anisotropic monte carlo
sampling spectra. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 36(4), jul
2017. doi: 10.1145/3072959.3073656.

Gurprit Singh, Bailey Miller, and Wojciech Jarosz. Variance and convergence analysis
of monte carlo line and segment sampling. Computer Graphics Forum (Proceedings of
EGSR), 36(4), jun 2017. doi: 10.1111/cgf.13226.

Jerome Spanier. Two pairs of families of estimators for transport problems. SIAM Journal
on Applied Mathematics, 14(4), 1966. ISSN 00361399.

Jerome Spanier and Ely Meyer Gelbard. Monte Carlo principles and neutron transport prob-
lems. Addison-Wesley, 1969.

Bo Sun, Ravi Ramamoorthi, Srinivasa G. Narasimhan, and Shree K. Nayar. A practical
analytic single scattering model for real time rendering. ACM Trans. Graph. (Proc. SIG-
GRAPH), 24(3), 2005.

Xin Sun, Kun Zhou, Jie Guo, Guofu Xie, Jingui Pan, Wencheng Wang, and Baining Guo.
Line segment sampling with blue-noise properties. ACM Trans. Graph. (Proc. SIG-
GRAPH), 32(4), July 2013.

Stanley Tzeng, Anjul Patney, Andrew Davidson, Mohamed S. Ebeida, Scott A. Mitchell,
and John D. Owens. High-quality parallel depth-of-�eld using line samples. In Proceed-
ings of HPG, 2012. ISBN 978-3-905674-41-5.

72

http://ao.osa.org/abstract.cfm?URI=ao-4-7-767
http://ao.osa.org/abstract.cfm?URI=ao-4-7-767


Eric Veach. RobustMonte Carlomethods for light transport simulation. PhD thesis, Stanford,
CA, USA, December 1997.

Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In Photore-
alistic Rendering Techniques (Proc. EGWR), 1994.

Eric Veach and Leonidas Guibas. Optimally combining sampling techniques for Monte
Carlo rendering. Proc. SIGGRAPH, 29, 1995.

Eric Veach and Leonidas Guibas. Metropolis light transport. Proc. SIGGRAPH, 31, 1997.

73


	Abstract
	Preface
	Contents
	List of Figures
	Introduction
	Motivation
	Contribution
	Structure Overview

	Related Works
	Density Estimators & High Dimensional Samples
	Analytic Integration
	Other Techniques

	Light Transport Basics
	The fundamentals of light transport
	Radiometry quantities
	The BSDFs and phase functions

	Light transport in vacuum
	The scattering equation
	The rendering equation
	Jacobian

	Light transport in participating media
	The radiative transfer equation

	The Measurement equation
	The Path integral framework

	Solving Light Transport Problem in Participating Media
	The Monte-Carlo estimator
	Variance analysis
	Variance reduction

	Sampling a light path
	Random variables
	Path probability density function

	Path tracing
	Next event estimate

	Multiple importance sampling
	Bidirectional path tracing
	Photon mapping
	Path integral in extended path space

	The Photon Surfaces Estimator
	Method overview
	Re-derive 0D-photon planes
	The transmittance estimators

	Generalize photon plane to photon surfaces
	Generalized photon planes
	Photon surfaces for area light source
	uv-surfaces
	ut/vt-planes
	Randomly-oriented ut/vt-planes


	Multiple Importance Sampling
	Combining a Discrete Collection of Strategies
	MIS Thrid-plus Bounces Photon Planes
	MIS Single Scattering Photon Planes
	MIS Second Bounce Photon Planes

	Combining a Continuum of Strategies

	Implementation and Results
	Implementation
	Real-time implementation
	Tungsten implementation

	Results

	Conclusion
	Summary
	Discussion & Future work

	Bibliography

