

Learning to Ask: Neural Question Generation for Reading Comprehension

Xinya Du, Junru Shao, Claire Cardie

QG dataset

Rule-based

Learning-

based

What's QG and why QG?

A New Task: Automatic natural question generation for sentences from text passages in reading comprehension.

Example: From Wikipedia article Oxygen

Sentence:

Oxygen is used in cellular respiration and released by photosynthesis, which uses the energy of sunlight to produce oxygen from water.

Questions:

- What life process produces oxygen in the presence of light?

photosynthesis

- Photosynthesis uses which energy to form oxygen from water?

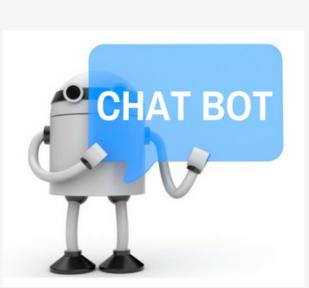
sunlight

– From what does photosynthesis get oxygen? water

Real Applications:

Education: Generating questions for testing understanding

Chat bot: asking questions to start a conversation or to request feedback.



Improving question answering (QA)

Experiments

Automatic Evaluation:

_							
	Model	BLEU 1	BLEU 2	BLEU 3	BLEU 4	METEOR	$ROUGE_L$
-	IR _{Edit Distance}	18.28	5.48	2.26	1.06	7.73	20.77
	DirectIn	31.71	21.18	15.11	11.20	14.95	22.47
→	H&S (rule-based)	38.50	22.80	15.52	11.18	15.95	30.98
	MOSES+	15.61	3.64	1.00	0.30	10.47	17.82
	Vanilla seq2seq	31.34	13.79	7.36	4.26	9.88	29.75
→	Our model (no pre-trained)	41.00	23.78	15.71	10.80	15.17	37.95
	Our model (w/ pre-trained)	43.09	25.96	17.50	12.28	16.62	39.75
	+ paragraph	42.54	25.33	16.98	11.86	16.28	39.37

- Our sentence-level model beats the strong rule-based system
- Directly copy (Directln) forms a very strong baseline.
- Pre-trained word embeddings help significantly.

Human Evaluation:

	Naturalness	Difficulty	Best %	Avg. rank
H&S (rule-based) Ours	2.95 3.36	1.94 3.03 *	20.20 38.38 *	2.29 1.94 **
Human	3.91	2.63	66.42	1.46
Two-tailed t-test statis	tical significanc	e: $*(p < 0.00)$	5), **(<i>p</i> <	0.001)

- The neural model outperforms significantly rule-based methods by human evaluation
- Larger margin compared with automatic eval., **better automatic metrics** to be designed.

Sentence- and Paragraph-level seq2seq model

Task Objective:

- Input: a natural language sentence \mathbf{x}_s AND optionally a natural language paragraph \mathbf{x}_p
- Objective: To generate a question about the input sentence, such that:

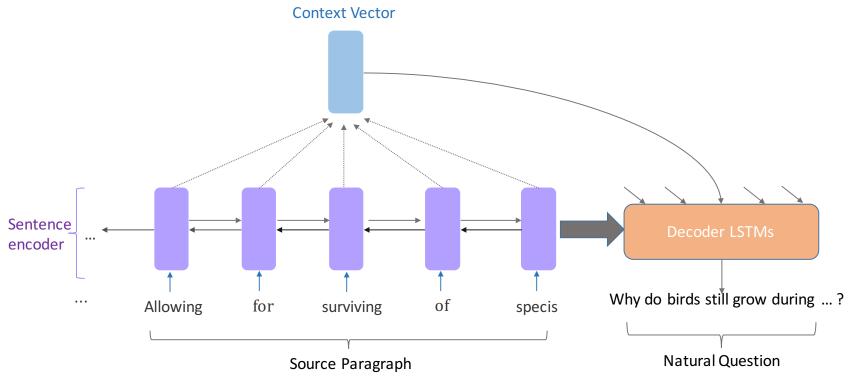
 $\overline{\mathbf{y}} = \arg \max P(\mathbf{y}|\mathbf{x})$

We model the conditional next-word probability as:

 $P(y_t|\mathbf{x}, y_{< t}) = \operatorname{softmax}(\mathbf{W}_s \operatorname{tanh}(\mathbf{W}_t[\mathbf{h}_t; \mathbf{c}_t]))$

Conditional log-likelihood of the predicted question y, given the input x.

Encoding only sentence as input, do not consider paragraph/context-level information.



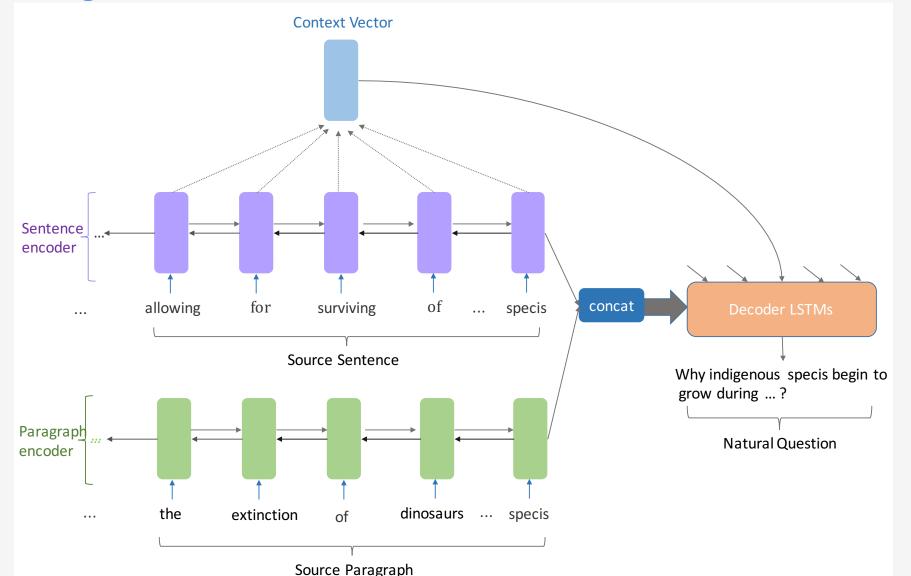
 \mathbf{C}_t is the context vector, sum of the weighted avg. of encoder hidden units.

we use bilinear score to calculate the attention weights

Paragraph-level model:

Sentence-level model:

 Encoding both sentence and paragraph (that contains the sentence) as input, but only attending source sentence hidden states.



Also tried encoding *title/* passage-level information, but performance drops.

• <u>Training</u>: Minimize the negative log-likelihood with respect to θ:

Very important!!! Even copy mechanism cannot eliminate UNKs.

• Inference: Beam search and UNK replacement For the UNK token at time step t, we replace it with the token in the input sentence with the highest attention **score**, the *index* of which is:

 $arg \max a_{i,t}$

Output Analysis

Paragraph 1 (truncated): during the oligocene, for example, the rainforest spanned a relatively narrow band. it expanded again during the middle miocene, then retracted to a mostly inland formation at the last glacial maximum. however, the rainforest still managed to thrive during these glacial periods, allowing for the survival and evolution of a broad diversity of species.

Human: did the rainforest managed to thrive during the glacial periods? **H&S** (rule-based): what allowed for the survival and evolution of a broad diversity of species?

Ours (sent.-level model): why do the birds still grow during glacial periods

Ours (para.-level model): why did the indigenous specis begin to grow during the glacial period?

kuznets ' Paragraph 2 (truncated): curve predicts that income inequality will eventually decrease given time . as an example, income inequality did fall in the united states during its high school movement from 1910 to 1940 and thereafter. citation needed -rsb- however, recent data shows that the level of income inequality began to rise after the 1970s. this does not

Human: during what time period did income inequality decrease in the united states?

H&S (rule-based): where did income inequality do fall during its high school movement from 1910 to 1940 and thereafter as an example?

Ours (sent.-level model): when did income inequality fall in the us? Ours (para.-level model): when did high school movement begin?

Green highlight shows the input sentence, which is used as input to both sent. and para.-level models

Our sentence-level model and paragraph-level both:

- learns to select an important aspect of the sentence
 - Questions are more natural sounding and vary more in terms of type.

Para.-level model takes into account context info. beyond sentence

Rule-based model copies nearly word for word the input sentence with minor syntactic change.

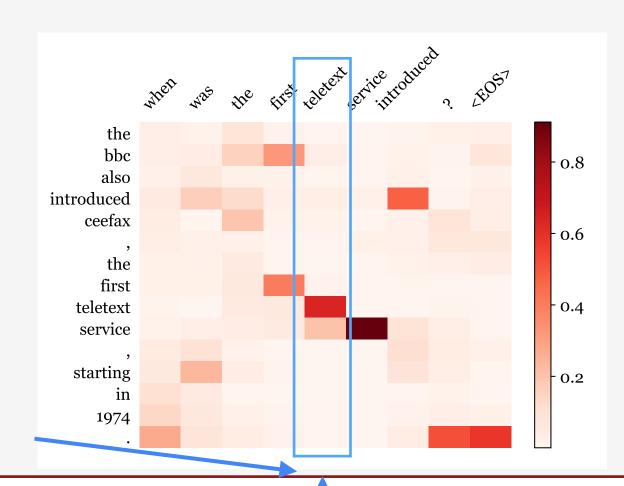
- redundant info.
- sometimes ungrammatical

Interpretability

necessarily disprove kuznets 'theory

Attention weight matrix shows the soft alignment between the sentence (left) and the generated question (top).

In this example, for the decoded token, the input sentence token with highest attention is "teletext"



Media Coverage

• New Scientist "Inquisitive bot asks questions to test your understanding"

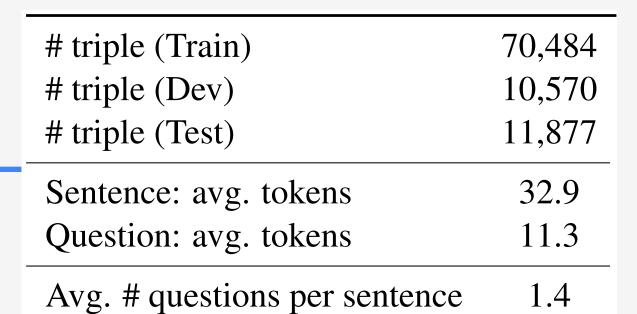
• Tech Republic "How researchers trained one AI system ~ to start asking its own questions" **Tech**Republic

Conclusion

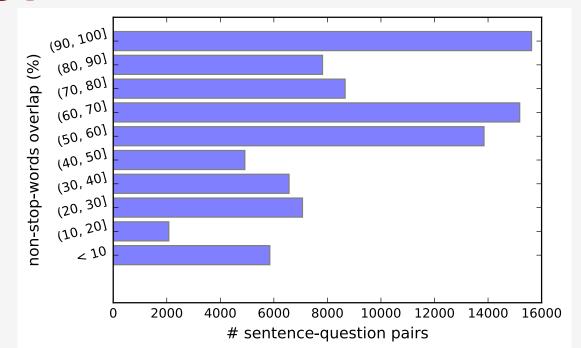
- We first proposed the first fully data-driven neural network approach for question generation in the reading comprehension setting. We investigated encoding sentence- and paragraph-level information for this task.
- Follow-up Work: Our EMNLP17 paper on sentence selection for passagelevel QG, see you soon in Copenhagen:)!
- We release the **processed dataset** based on SQuAD.

Open question: How to better utilize QG for QA?

Dataset



We pair *up* the questions with the *sentence*(s) which contain the answer span, and paragraph with contain the sentence.



Pruning constraint: the sentence-question pair have at least one non-stop-word in common.

We build the QG dataset based on the SQuAD corpus