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Abstract
Building agents that can perform new skills by
composing existing skills is a long-standing goal
of AI agent research. Towards this end, we investi-
gate how to efficiently acquire a sequence of skills,
formalized as hierarchical neural options. How-
ever, existing model-free hierarchical reinforce-
ment algorithms need a lot of data. We propose a
novel method, which we call AgentOWL (Option
and World model Learning Agent), that jointly
learns—in a sample efficient way—an abstract
world model (abstracting across both states and
time) and a set of hierarchical neural options. We
show, on a subset of Object-Centric Atari games,
that our method can learn more skills using much
less data than baseline methods.

1. Introduction
For decision-making agents, an important goal is the cu-
mulative acquisition of new skills, in tandem with an ever-
expanding knowledge of how those skills affect the outside
world. For example, we want our agents to first learn to
pick up objects, then to pour drinks, and eventually to make
a cup of coffee, while also learning how each skill affects
the outside world, so that the agent can plan to achieve new
goals such as getting coffee for a room full of people.

We formalize this compositional skill learning using the
options framework (Sutton et al., 1999): an agent learns a
sequence of options o1:n that achieve increasingly difficult
goals, g1:n. Each option contains a policy that achieves
its specific goal, and which can use options learned earlier,
forming a deep hierarchy of skills (Figure 1 right).

But hierarchical options are challenging to learn, because as
we acquire more options, we effectively expand our action
space, making policy learning less tractable whenever we
face with a new goal. This introduces a tradeoff between
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learning new skills quickly, and how many skills we have
acquired. Applications of standard model-free RL to learn-
ing option hierarchies therefore require increasingly more
samples as learning progresses (Kamat & Precup, 2020;
Abdulhai et al., 2022; Nica et al., 2022).

To resolve this tradeoff, we instead turn to model-based
reinforcement learning (Kaelbling et al., 1996; M. Moer-
land et al., 2023). By modeling the effects of options and
planning in that world model, we can rule out many options
before trying them out in the real world, effectively using the
world model to improve sample efficiency. Moreover, mod-
eling option effects produces temporally abstract world mod-
els, overcoming the “one-step trap” (Sutton, 2025; Asadi
et al., 2019) and promising more tractable planning than
low-level world models. However, for this approach to
actually improve sample efficiency, we also need a world
modeling approach that is data-efficient.

In this work, we propose a novel world model whose rep-
resentation combines symbolic code with non-parametric
distributions, which allows learning the world model from
little data. The world model abstracts over states and time.
We combine this with a method to learn hierarchical options.
We call the resulting system AgentOWL, which stands for
Option and World model Learning Agent.

We apply our method to 3 hard object-centric Atari
(OCAtari) games, namely Montezuma’s Revenge, Pitfall,
and Private Eye. We show that AgentOWL acquires the
highest number of skills compared to other baselines. We
also show that AgentOWL has various unique capabilities
that the baselines lack.

2. Background
Problem Setting. An environment can be described as a
goal-conditioned MDP (S,A, T ,G, γ). We assume states
can be broken down into primitive features S = S1×...×Sn,
meaning the state is symbolic, allowing us to focus on the
skill learning problem without mixing in the well-known
challenges of representation learning of pixel inputs. The set
A enumerates primitive actions, e.g., LEFT, RIGHT, UP, etc.
in 2d video games. The goals G = (g1, g2, · · · , gm) are an
ordered sequence of goal predicates, gi : S → {0, 1}, each
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GOAL

Planning with Abstract World Model Execution with Hierarchical Options

GOAL

Get to the left platform in 
the left room

Get to the rope in the left room
Get to the right platform in
the left room

LEFT
LEFT
...

Get to the rope from the 
right platform in the left room

LEFT
LEFT JUMP
...

Get to the left platform from 
the rope in the left room

DO NOTHING
DO NOTHING
...
DOWN

Figure 1. Illustration of hierarchical planning and execution in AgentOWL where the goal is to go to the left platform in the left room. Left:
AgentOWL goes through possible plans and successfully makes a short plan (two high level steps) in its abstract world model to reach the
goal. Right: AgentOWL executes a hierarchical sequence of options. (The hierarchical structure is represented by the indentation.)

of which defines a reward function Rgi(s, a, s
′) = gi(s

′).
We use the same discount factor γ for all goals, and assume
that the transition function T does not depend on the goal.
Episodes end when an agent reaches the goal or timeouts.

Options (Figure 1 right). An option is a learned skill.
Formally, option oi comprises a tuple (πi, gi) of a policy
πi which executes until its goal, gi, is satisfied. The goal
gi serves as the termination condition of the option. We
follow the call-and-return paradigm (Sutton et al., 1999);
an option executes until its goal is satisfied, or it timeouts.
Options may form a hierarchy: Option oi has policy πi :
S → A ∪ {oj}j<i, meaning it can output either primitive
actions in A or a previously learned option oj (for j < i).
We write Ω for a set of options. Adding options to the action
space of an MDP forms a Semi-MDP (Puterman, 1994).

State abstraction (Figure 1 left). An option can change
the state in complex ways, and for the agent to plan, it
must predict those changes. To make this prediction prob-
lem tractable, we consider state abstractions, which are
functions of the state that elide unpredictable or irrelevant
features that would be hard to predict (Dean & Givan, 1997;
Li et al., 2006). Formally, a state abstraction f(s) is a func-
tion of the state s. When the state is clear from context, we
abuse notation by writing f to mean f(s).

Abstract world models (Figure 1 left). Within the context
of this work, an abstract world model predicts future ab-
stract states, given the current state, and the current option.
This implements temporal abstraction and state abstraction,
because rather than predicting the immediate next state, we

instead predict only its abstract features, and only at the
time that the current option terminates. This prediction is
written po(f

′ | s). This conditions the abstract world model
on the full state but predicts only the future abstract state.

PoE-World (Figure 2 left). Piriyakulkij et al. (2025) in-
troduces PoE-World, a framework for learning structured
world models from little data. World models are represented
using a product-of-experts, where each expert is a short
symbolic program. Intuitively, each program models an in-
dependent causal mechanism in the world, and by encoding
each program as a snippet of Python, they become learnable
using LLMs. Given current state s and action a, the next
state s′ follows

pθ(s
′|s, a) =

∏
j p(s

′
j |s, a) (1)

p(s′j |s, a) = 1
Zj

∏
i:j(i)=j pi(s

′
j |s, a)θi . (2)

where j(i) is the target feature dimension modeled by expert
i. Learning with PoE-World means generating experts pi
with LLMs and estimating weights θ, which requires little
data (few (s, a, s′) triples) because it is not learning a fully
parametric model. The model assumes the state features
are conditionally independent; this makes it tractable to
compute the partition function, Zj , and hence we can per-
form maximum likelihood estimation (MLE) of the weights
through gradient descent. On object-centric Atari (OCAtari)
(Delfosse et al., 2023), PoE-World takes only a few minutes
of gameplay to assemble a working world model. We use
PoE-World to learn an abstract world model.

2



Joint Learning of Hierarchical Neural Options and Abstract World Model

option

state before option state after option

Option Transitions Data

Update

...

if player.touches(initial_platform) 
    and option == "TO_rope": 
    at_rope = True

θ1

θ2
if at_rope is True and option ==
    "FROM_rope_TO_bottom_platform": 
    at_bottom_platform = True

Abstract World Model

θi

Abstract World Model Learning Hierarchical Option Learning
Want to learn the following option:
og = TO_ground
Have existing sub-options:
Ω = {

TO_conveyer_belt,
TO_platform

}
and abstract world model T

Hypothesize new sub-options:
oh→g ~ LLM-based-sampler({

FROM_conveyer_belt_TO_ground,
FROM_platform_TO_ground

})
Add them to our set of sub-options:
Ω = Ω ∪{oh→g}
Update T to predict that executing
oh→g at h might take the agent to g

Train to master og with model-based 
exploration leveraging T, which also 
implicitly train the sub-options. 

Simultaneously update T with newly 
collected transitions to identify sub-options 
with high goal completion rates

Figure 2. Illustration of how AgentOWL learns its abstract world model (left) and hierarchical options (right). Left: given a dataset
of option transitions, we learn an abstract world model using (an extension of) the method of (Piriyakulkij et al., 2025). Specifically,
each expert is generated using LLM code synthesis, and the weight for each expert (denoted θi) is learned using gradient descent on
the likelihood objective. Right: AgentOWL learns a new option to achieve a new goal by leveraging previously acquired sub-options.
Specifically, given the goal, we ask an LLM to hypothesize new sub-options (building on the already learned ones) that might help achieve
the goal. The agent trains to master the highest-level option, og , which implicitly train these new sub-options, and simultaneously update
our abstract world model to identify sub-options with high goal completion rates. Eventually, the agent masters the target option og by
composing good sub-options. Detailed pseudocode can be founded in Algorithm 1.

3. Method
We propose AgentOWL (Option and World model Learning
Agent), an agent that sample-efficiently learns a sequence of
options {oi}, given a goal-conditioned MDP and a sequence
of goals {gi}. We describe our abstract world modeling
approach embedded in AgentOWL in Section 3.1 and then
the full AgentOWL in Section 3.2.

3.1. Abstract World Modeling

How should we abstract the state in order to reason about
the effects of options? Each goal predicate must be in the
state abstraction in order to successfully capture how each
option transforms the state. In principle, further predicates
may be important to include so that the abstract state is suffi-
ciently informative, but recall that the abstract world model
conditions on the current state s, so any further features can
still be extracted from the current state. We therefore define
a state abstraction using just the goal predicates:

f(s) = (g1(s), g2(s), g3(s), . . .) (3)

Next, we need an abstract world model that can be used

for model-based lookahead. We learn po(f
′|s) using PoE-

World (Piriyakulkij et al., 2025), because by using symbolic
programs to represent the abstract dynamics of the world,
we can generalize more strongly from fewer examples. In-
deed, symbolic rules have long been an attractive represen-
tation for modeling coarse-grained world dynamics (Fikes
& Nilsson, 1971; McDermott, 2000).

But even using symbolic programs, abstract states contain
many abstract features, requiring many samples to learn.
To maintain sample efficiency, we impose a “frame axiom
prior” on the abstract world model, which biases it toward
believing that option oi tends to change fi (from achieving
gi), but does not usually change fj for j ̸= i. The frame
axiom prior is implemented by incorporating p(θi) into
Equation (2), turning weight optimization into a maximum
a posteriori estimation (MAP) instead of MLE. We use
Gaussian priors p(θi) = N (µ, σ2) with σ = 0.1 and µ =
0.5 for experts that do not change fj , and µ = 0.001 for the
ones that do. This “frame prior” is commonly used in the
planning community, as it is employed, in a much stronger
form, in PDDL (McDermott, 2000).

3



Joint Learning of Hierarchical Neural Options and Abstract World Model

Algorithm 1 AgentOWL learning algorithm

1: Given a target goal to achieve g, a list of sub-options Ω and corresponding policies πΩ = {πo}o∈Ω, a current abstract
world model T = {po}o∈Ω, a set of seen option transitions DΩ = {Do}o∈Ω, an environment E, and stabilization
thresholds n (number of samples) and δ (goal completion rate).

2: πrealg ← InitPolicy(E,Ω) ▷ Initialize policy
3: ϵ← 1 ▷ Initialize ϵ which will anneal over time to 0
4: while og for goal g is not mastered do
5: Ωg ← {o : go = g | o ∈ Ω} ▷ Set of options whose corresponding goals match the target goal
6: Ωstable−g ← {o : no > n or δo > δ | o ∈ Ωg} ▷ Subset of Ωg with only “stable” sub-options
7: Ωgood−g ← {o : δo > δ | o ∈ Ωg} ▷ Subset of Ωg with only good, high-performing options
8: # If all relevant options are stable but none are good enough, then generate new subgoal
9: if |Ωg| = |Ωstable−g| and |Ωgood−g| = 0 then

10: h← LLM(g,Ω, DΩ) ▷ Sample a precondition with LLM
11: Ω← Ω ∪ {oh→g} ▷ Add a new sub-option oh→g to Ω
12: T ← T ∪ {poh→g

} ▷ Add the corresponding hypothetical option model poh→g
to T

13: πrealg ← InitPolicy(E,Ω) ▷ Reinitialize the policy as Ω changes
14: end if
15: πwmg ← DQN(T,Ω, Rg) ▷ Learn πwmg from scratch in the abstract world model T with Ω.
16: # Train hierarchically to master an option for goal g in E. This may change any π ∈ πΩ, in addition to πg .
17: ((πrealg , πwmg , ϵ), πΩ, DΩ)← HierarchicalDQN(E,Ω, DΩ, πΩ, g, n, δ, πg = (πrealg , πwmg , ϵ))
18: T ← PoEWorld(T,DΩ) ▷ Fit T with the updated DΩ using PoE-World
19: end while
20: og ← ((πrealg , πwmg , ϵ), g)
21: return og,Ω, T,DΩ ▷ Return the target option og and the updated Ω, T,DΩ

PoE-World yields po(f
′ | s), but learning only this con-

ditional distribution is insufficient because it cannot chain
together several options: After running the first option in
state s, we arrive in f ′, but predicting the effect of a second
option might need the full state s′. We heuristically predict
s′ from f ′ using a kernel density estimator w(s′ | f ′) that
samples full states s′ given an abstract state f ′:

po(s
′ | s) ≈ Ef ′∼po(·|s) [w(s

′ | f ′)] (4)

Note this is approximate: s′ generally depends on s and
o, even conditional on f ′. This approximation is common
in the hierarchical decision-making literature, where w is
called a weighting function (Bertsekas, 1995; Li et al., 2006).
Weighting functions allow sampling states from an abstract
state without learning the MDP transition function, and
without training a parametric generative model over the
raw state space, both of which would require enormous
data. To the extent that the environment can be accurately
modeled using po(f

′ | s) where po only depends on the
state abstraction f(s), this approximation becomes exact.
Section A.3 contains implementation details of our abstract
world modeling approach.

3.2. Joint Learning of Hierarchical Neural Options and
Abstract World Model

Using this world modeling setup, we now introduce the full
AgentOWL. It iteratively trains the next option to achieve

the next goal (and in its world model) by calling Algorithm 1,
whose three main ideas are described below.

Model-based exploration. Intuitively, planning in our
world model should offer good guidance to a model-free
policy; we can weigh trajectories in imagination before
deciding what to try in the real world. Concretely, we run
RL (specifically, deep Q-learning (DQN)) in the abstract
world model yielding a policy πwm (Algorithm 1 line 15).
Note that this is computationally cheap, since the abstract
world model T takes large steps, and is defined on a fairly
low-dimensional symbolic state space, which allows us to
use simple MLPs to represent the policy.1

The resulting policy, πwm, serves as an exploration policy
for training a policy in the real world, πreal, that learns to
achieve a goal. More precisely, each option comprises a
policy and goal, o = (π, g), and we further decompose the
policy into π = (πreal, πwm, ϵ), where ϵ is the probabil-
ity of taking exploratory actions (actions the world model
predicts):

π(a | s) = (1− ϵ) πreal(a | s) + ϵ πwm(a | s) (5)

The decomposition ensures we can still learn a good policy
even with imperfect world model. By annealing ϵ from 1 to

1Note πwm could be computed using a different strategy, such
as planning in the world model, rather than RL in the world model.
We leave exploring these alternatives for πwm for future work.
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0, the agent eventually stops relying on πwm and falls back
on fully model-free RL learning of πreal. The reason we do
this is that model-based learning is known to be sensitive to
model inaccuracy (Gu et al., 2016; Janner et al., 2019).

We note that for AgentOWL, each policy has its own set of
weights; there is no weight sharing between the policies.

Hypothesizing sub-options to achieve a target goal.
Planning (or RL) to achieve a new goal is challenging unless
we already have an option which reaches that goal, which
therefore could serve as a sub-option. Absent such sub-
options, the agent would need to reason about how its low
level actions could be used to reach the new goal, defeating
the whole point of a temporally abstract world model. For
example, if we have a sub-option to “pick up the cup” and
a target goal of “fill the cup with water”, a successful plan
might first “pick up the cup” followed by a long sequence
of low level actions.

To shorten our abstract plans, and help “plan in the now”
(Kaelbling & Lozano-Pérez, 2011), we let the agent hypoth-
esize new sub-options that aim to achieve the target goal
given that certain preconditions are satisfied (see Figure 2
(right) and Algorithm 1 line 10-13). We use LLMs to pro-
pose the preconditions, h, of a new option oh→g . This new
option, and its corresponding hypothetical option model
poh→g

, is then added to the set of options Ω and the abstract
world model T respectively.

For this work, we restrict preconditions to the form h(s) =
f(s)i, representing the completion of the sub-goal with
index i. Concretely, we prompt Gemini 2.5 Flash to pick,
among the sub-goals that the agent can already achieve
with existing sub-options Ω, a sub-goal that would be useful
towards the target goal. In the prompt, we include a sampled
state from our set of seen transitions DΩ to be included as
part of the prompt. If the game has multiple rooms, we
sample one state for each room (each state contains a “room
number” object, so this can be easily done). The exact
prompt used can be founded at Section A.4.

Stable training of hierarchical options. Hierarchical op-
tion training is done in Algorithm 1 line 17 using a hierarchi-
cal version of DQN. It proceeds similarly to typical DQN:
executing the policy to collect data in the replay buffer and
optimizing the policy using samples from the replay buffer.
However, in hierarchical DQN, the execution is hierarchical
(Figure 1 right); the agent executes the root-level option, og ,
which then recursively calls sub-options until a primitive
action is executed. We also assign each option its own re-
play buffer to keep the data it collects with its own policy.2

Each time an option has collected enough new datapoints,

2Note that we could be even more sample-efficient if we main-
tain a single shared replay buffer. We leave this for future work.

the agent optimizes the option’s policy weights for a fixed
number of steps. Because of hierarchical execution, any sub-
option may collect data and have its weights updated. We
describe hierarchical DQN in more details in Section A.1.

Nevertheless, hierarchical DQN can be unstable, because
each higher-level option faces a non-stationary environment:
Training lower level options changes the transition dynam-
ics as seen by higher level options (Nachum et al., 2018).
To mitigate this instability, note that an option’s policy stabi-
lizes once it has been trained with enough samples, or it reli-
ably achieves its goals. We therefore disregard episode data
for option training which contains an execution of at least
one sub-option o with no < nthreshold and δo < δthreshold,
where no is the number of samples the option has been
trained with, δo is the option’s goal completion rate over
the 100 most recent episodes, and nthreshold, δthreshold are
hyperparameters. More details on stable Hierarchical DQN
can be founded at Section A.1.

4. Experimental Results
Experimental setup. Each agent will be given an ordered
sequence of target goals (g1, ..., gn). The task for each agent
is to “master” a set of neural options that correspond to the
target goals, (o1, ..., on). We consider an option “mastered”
when the goal completion rate of that option surpasses a
threshold δthreshold. For practicality, we approximate the
goal completion rate by averaging goal completions over the
100 most recent execution of the option and set δthreshold =
0.5. We evaluate the number of environment steps each
agent uses to master this set of neural options.

Domains. We conduct our experiments on a subset of
object-centric Atari games. Object-centric Atari (OCAtari)
(Delfosse et al., 2023) provides an object parser on top of
Atari games (Bellemare et al., 2013), transforming the inputs
from pixels to sets of objects. Each object is described by
object type (player, platform, ladder, etc.) and bounding
box coordinates; we treat these values as primitive features.
We additionally add a “room number” object to each state
to indicate the room of the state.

We evaluate on the subset of games commonly used to study
hard exploration in RL (Aytar et al., 2018; Ecoffet et al.,
2021; Hosu & Rebedea, 2016), specifically Montezuma’s
Revenge, Pitfall and Private Eye, selected based on available
computational resources.

For each game, we construct a small sequence of goals
ordered by difficulty (for reasons discussed in Section 6)
with the following procedure: We manually select a few
rooms in each game, as each may have many rooms, e.g.,
Pitfall contains 255 rooms. We then define our list of goals
as touching each possible object within these selected rooms.
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Figure 3. Fraction of options mastered vs number of environment steps for the three OCAtari’s games we test on: Montezuma’s Revenge,
Pitfall, and Private Eye. Option is acquired once its success rate for the recent episodes reaches threshold δ = 0.5.

Room 1Room 2Room 3Room 4

Player's starting
location

Player can
traverse between
rooms through

the sides

Only AgentOWL master options for
these red-bordered goal objects,
because getting to room 3 and 4 is

hard with random exploration

Figure 4. Screenshots of 4 rooms of Pitfall stitched together. Player starts in Room 1 (rightmost) and can traverse to other rooms through
the sides of the screen. Goals that only AgentOWL masters within 5M environment steps (Figure 3 middle) are shown in red borders.

Finally, we manually order these goals by difficulty such
that the earlier goals serve as stepping stones for later goals.
(We leave automated curriculum learning to future work.)
Full details on the experimental setup and domains can be
founded at Section A.2.

Baselines. Rainbow DQN (Hessel et al., 2018) is an im-
proved version of DQN (Deep Q-Network) (Mnih et al.,
2015), a standard off-policy RL algorithm commonly used
in discrete action settings. All DQNs used in the paper are
Rainbow DQNs. Goal-conditioned DQN is DQN with
weight sharing between the policies of the options. Specifi-
cally, instead of learning π1(a | s), ..., πn(a | s), we seek
to learn a goal-conditioned policy π(a | s, g). Hierarchi-
cal DQN is DQN whose policy has an action space that
includes previously learned sub-options. Hierarchical DQN
can be seen as AgentOWL without its abstract world model.
Implementation details of DQN and Hierarchical DQN can
be founded at Section A.1

Results. As shown in Figure 3, AgentOWL masters the
highest number of options for most number of environment
steps. Although the baselines without hierarchical options
seem to be better than AgentOWL at lower training sample
budget, their performance plateaus at a much lower number
of options mastered compared to that of AgentOWL. Qual-

itatively, these baselines fail to acquire options for harder
goals (Figure 4) because they never discover any action
sequence that can achieve the harder goals, as the number
of possible action sequences grows exponentially with the
number of steps needed to achieve the goals. In a sense,
AgentOWL succeeds here because of its focused explo-
ration: It manages to accomplish a goal that requires a long,
complicated sequence of primitive actions by planning ab-
stractly with higher-level options. Abstract plans can be
very short, allowing them to be found very easily in both
the real world and the abstract world model.

We perform an ablation study in Figure 5. Removing tech-
niques introduced in Section 3.2—specifically LLM-based
sub-goal proposal and hierarchial training stabilization—
degrades AgentOWL’s performance across most environ-
ment steps. These ablated systems need more data to master
the same number of options across three games, and, in Pit-
fall, plateau at fewer mastered options than the full system.

Zero-shot generalization to novel situations. Another
benefit of having a world model is zero-shot generaliza-
tion to novel situations. We demonstrate this capability in
Table 1. In OCAtari, the starting state of each game is al-
ways exactly the same. Looking forward to more complex
domains, we want agents that can flexibly complete goals
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Figure 5. Ablation study: Removing core components of AgentOWL lead to fewer options being acquired and/or more data from the
environment being needed. Setting nthreshold = 0 means stabilization for hierarchical DQN is not implemented.
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Figure 6. Left: Illustration of the goal labels (where all goals are of the form ”touch this specific object”) and the path the player needs to
take to get the key from the starting position. Right: The success rates of the sub-options implicitly trained while the agent is training for
the goal ”key”, compared to those of sub-options with randomly initialized policy network. The sub-options for the sub-goals within the
path to retrieve the key, such as goal #13-17, has high success rates, because they are useful to its parent-option ”TO key”. On the other
hand, unhelpful goals, such as goal #3-6, remain poorly learned.

Method Goal 1 Goal 2 Goal 3

Random 0.06 0.00 0.00

Goal-conditioned DQN 0.00 0.00 0.00

AgentOWL w/o the new option 0.02 0.01 0.26

AgentOWL w/ the new option 1.00 1.00 1.00

Table 1. Goal completion rates, over 100 episodes, to previously
seen goals but from a new starting state in Private Eye. We first
trained agents to achieve goals starting from an initial position
in PrivateEye (Figure 3 right). We then give a new option to
navigate from the new starting state to the initial starting state to
AgentOWL, allowing it to achieve the goals from the new starting
position without any additional training.

in novel situations, such as picking up a cup in a novel
kitchen, or clearing a randomly generated level in Minecraft
or Nethack (Johnson et al., 2016; Küttler et al., 2020). Thus,
we design experiments where each agent needs to accom-
plish goals it has already mastered an option for, but from
a new starting state. In Table 1, we show that after learn-
ing an option to travel from a new starting state back to

the game’s original starting state, AgentOWL can compose
existing options to achieve target goals zero-shot without
any additional training data. It is unclear, on the other hand,
how other baselines would perform zero-shot adaptation to
novel situations without hierarchical options to compose
sub-options and an abstract world model to plan on.

Implicit learning of sub-options. AgentOWL improves
its sub-options through hierarchical DQN even when re-
warded only for goals that do not correspond to them. In Fig-
ure 6, we perform an experiment to clearly demonstrate this
implicit learning. We take an AgentOWL agent trained to
achieve a goal sequence in Montezuma’s Revenge (Figure 2
left), keep its learned abstract world model, but re-initialize
the policy networks of all options with random weights.
Then, we solely train this agent to master goal “key”, i.e., to
touch the key. Figure 6 (right) shows the performances of
many re-initialized sub-options increase significantly after
AgentOWL is trained to achieve goal “key”. We observe
that sub-options helpful to the target goal improve, while
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irrelevant options corresponding to sub-goals outside the
successful trajectory (Figure 6 left) do not.

Intuitively, the agent leverages the learned world model to
help decide a sequence of sub-goals to pursue to eventually
achieve the target goal. This sequence of goals acts as a
curriculum for the agent to follow. The agent refines these
options to help it eventually achieve the target goal.

5. Related Work
Abstract and symbolic world models. The advent of
LLMs has sparked interest in symbolic world models.
WorldCoder and GIF-MCTS (Tang et al., 2024; Dainese
et al., 2024) directly use LLMs to generate and refine a
world model as a program. POMDP Coder (Curtis et al.,
2024) and CWM (Lehrach et al., 2026) tackle the problem of
partial observability. PoE-World (Piriyakulkij et al., 2025)
and OneLife (Khan et al., 2025) scale up symbolic world
modeling with a product-of-experts world representation.

Like our work, several prior works have explored ab-
stract world modeling with symbolic world representations.
DECKARD (Nottingham et al., 2023) learns a directed
acyclic graph as its abstract world model. Ada (Wong et al.,
2024) synthesizes PDDL as its abstract world model. Agen-
tOWL, on the other hand, learns a stochastic, symbolic
world model capable of making both abstract and low-level
predictions, offering greater representational power.

Option discovery and hierarchical RL. Option critic
methods (Bacon et al., 2017; Harutyunyan et al., 2019;
Tiwari & Thomas, 2019) learn both policies and termina-
tion functions of options end-to-end through gradient de-
scent. Skill-chaining (Konidaris & Barto, 2009; Bagaria &
Konidaris, 2019; Bagaria et al., 2021a) focuses on discover-
ing chainable options, where the termination set of an option
is the initiation set of another. Other hierarchical RL meth-
ods tend to have high-level policies and low-level policies,
where the high-level ones either set goals or rewards for
the low-level ones (Dayan & Hinton, 1992; Kulkarni et al.,
2016; Vezhnevets et al., 2017; Li et al., 2019; Hafner et al.,
2022) or directly select which low-level ones to execute
(Florensa et al., 2017; Heess et al., 2016; Eysenbach et al.,
2018). Our work takes inspiration from these prior works
but differs in how we learn deeply hierarchical options, as
opposed to the common two-level hierarchy of policies.

LLMs for RL. Existing works have explored the use of
LLMs in RL agents in many ways, including assisting with
reward design (Kwon et al., 2023; Ma et al., 2023; Klissarov
et al., 2023; Castanyer et al., 2025a), serving as policies or
policy generators (Yao et al., 2022; Wang et al., 2023; Liang
et al., 2022), and producing high-level plans (Ahn et al.,
2022; Huang et al., 2022; Singh et al., 2022; Song et al.,

2023). AgentOWL leverages LLMs for world modeling and
sub-goal proposal, but can also benefit from LLM-based
reward design if reward functions are not provided. Impor-
tantly, AgentOWL learns neural policies through environ-
mental interaction rather than relying on LLMs to directly
output action sequences or policies.

6. Limitations and Future Direction
While AgentOWL efficiently learns abstract world models
and hierarchical neural options in our setting, there are
limitations. First, we assume the given sequence of goals
is ordered by difficulty. What made AgentOWL effective
is the ability to use sub-options to help achieve a hard goal.
Consequently, AgentOWL can fail to achieve a challenging
goal without first learning to accomplish its prerequisite sub-
goals. In the future, we hope to use ideas from curriculum
learning (Bengio et al., 2009) to automate this.

Second, we assume the number of goals is relatively small
(< 100). While AgentOWL’s model-based exploration
keeps environment interactions from scaling linearly with
the number of goals, training compute still does. Thus, cur-
rently, we reduce the number of environment samples at the
expense of increasing compute, which is the right tradeoff
only when compute is cheaper than data. Incorporating op-
tion affordances (Khetarpal et al., 2020; 2021) to reduce the
number of applicable options could be a fruitful direction.

Lastly, we assume symbolic input to the abstract world
model, using OCAtari instead of pixel-level Atari. Sym-
bolic input permits learning world models like PoE-World,
which is much more sample-efficient than learning a pixel-
level world model. There is ongoing effort to learn abstract
symbolic world models directly from pixels (Liang et al.,
2024; 2025; Athalye et al., 2024), but merging that line
of work with option training remains open. Purely neural
world models have made great strides (Ball et al., 2025;
Alonso et al., 2024), but do not learn explicit symbolic ab-
stractions that can be used to reason over long horizons.
Leveraging these purely neural models to efficiently learn
neurosymbolic world models offers another path forward.

Limitations aside, AgentOWL’s successful results empha-
size that option and world model learning are deeply inter-
twined, and that skills are fundamental to an agent’s under-
standing of its environment. We hope this insight draws
attention to several underexplored research problems. For
example, if we allow goals and corresponding skills to grow
over time, our abstract model faces an ever-changing state
and action space. How do we perform efficient world model-
ing in this online learning setting? With large sets of abstract
features and skills, how do we reason over only relevant
ones to save computation? Answering these questions could
make systems like AgentOWL much more powerful.

8



Joint Learning of Hierarchical Neural Options and Abstract World Model

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix
A.1. DQN and Hierarchical DQN

Here we describe our implementation of Rainbow DQN (Hessel et al., 2018) which is used in all baselines, including
AgentOWL itself.

Neural network architecture. Rainbow DQN uses dueling network architecture (Wang et al., 2016) We use a 2-layer
MLP as our feature extractor module. The hidden feature size is 256 for πreal and 128 for πwm for both layers (so always
256 for baseline methods). Each linear layer is followed by a layer normalization (LN) layer (Ba et al., 2016), as recent
studies found incorporating LN in the network of a deep RL algorithm to be highly beneficial (Lyle et al., 2023; 2024), and
then a ReLU layer. After the feature extractor, the value and advantage layer is also 2-layer MLP with hidden feature size
half of what is used in the feature extractor, but the linear layers are replaced with noisy linear layers (Fortunato et al., 2018),
and LN and ReLU are only applied the first layer, since the last layer produces output.

For goal-conditioned DQN, we also learn an embedding for each goal and concatenate it to the input to the network.

Training. We base our implementation of (Rainbow) DQN and hierarchical DQN off of Stable Baseline’s implementation
(Raffin et al., 2021). The pseudocode for DQN is and hierarchical DQN is at Algorithm 2 and Algorithm 3 respectively,
with Algorithm 4 and Algorithm 5 describing the helper functions used in hierarchical DQN. The common hyperparameter
for all variants of DQN is listed at Table 2. There are extra hyperparameters for hierarchical DQN Table 3 and overridden
hyperparameters for training πwmg Table 4.

Goal heuristics. Additionally, to speed up training, we use a heuristics based on the manhattan distance between the player
object and the goal object. Specifically, we let the heuristic function h be h(s) = 5 · (1− ManhattanDist(splayer,sg−object)

400 ).
In OCAtari, manhattan distance between any two object never exceeds 400. We incorporate this heuristics in our Q network
as follows:

Qnew
ψ (s, a) = Qψ(s, a) + hg(s) (6)

where h outputs a manhattan distance between the player object and the goal g object in the input state.

Intuitively, a freshly initialized neural network typically outputs values around 0. Adding hg(s) to it makes Qnew outputs
values around hg(s) instead. Over time, as we train Qnew more and more, the neural network learns to correct the heuristics
value so that the output is close the true Q value (Ng et al., 1999).

Note that if the goal object is not visible in s, e.g., the goal object is in another room in the game, we let the heuristics value
equal to 0.

A.2. Experimental setting and OCAtari details

Goal sequences for each game. For each game, we select a few rooms and define goals as touching objects within them.
Then, we manually order the goals based on difficulty. Additionally, we give short natural language names to each goal,
such as ‘top left plat’, ‘mid right wall’, etc. We display the screenshots of the rooms with goal objects labeled with their
order in the goal sequence at Figure 7, Figure 8, and Figure 9. We note that the orders within each room in Pitfall and Private
Eye tend not to matter too much as they are roughly the same in difficulty level.

Vectorizing list of objects. We vectorize each input object list into a fixed-size feature vector for the DQN policy. By
using the maximum count for each object type, we assign each object to a unique location in the observation space. For
example, with one player and up to two enemies, where each object is vectorized into a 8-dimensional feature vector, the
observation space has size 24: the player occupies indices 0-8, the first enemy occupies indices 9-16, and so on.

To vectorize each object, we take its x and y coordinates and encode each value into a 4-dimensional vector using a positional
encoder implemented with sine and cosine functions, commonly used in LLMs.

Additionally, we include the goal values, i.e., the abstract state f(s), in the feature vector as well, so the feature vector
contains both low-level and abstract features. To better match the dimensionality of the abstract features to that of the
low-level features, we duplicate each abstract feature by 4.
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Observation space optimization. To optimize running time, we choose to disregard static (non-moving) object types,
such as platforms, ladders, etc., from the vector discussed above, as all states have the same information for these objects.
This speeds up our code significantly, reducing the low-level feature vector size from 248, 344, 408 to 24, 176, 328 for
Montezuma’s Revenge, Pitfall, and Private Eye, respectively.

Episode timeouts. Since stable hierarchical DQN only adds data to the replay buffer once an episode ends, we need to
make sure that episodes do not go on forever. Toward that end, we set a maximum time limit for all episodes in a (real)
environment to be 1, 000 environment steps. On the other hand, when we treat our abstract world model as a simulated,
abstract environment, we set the time limit to be only 4 environment steps, as this simulated environment is very abstract
and only requires very short action sequences to achieve the goal.

A.3. Abstract world modeling implementation details

Learning po(f
′|s) with PoE-World. We first assume the following structure for po(f ′|s):

po(f
′|s) ≜ po(f

′
o|s)(

∏
i̸=o

po(f
′
i |f ′

o, s)) (7)

Then, each po(f
′
o|s) and po(f

′
i |f ′

o, s) can be modeled with a product of experts and learned with PoE-World. And as
mentioned in the main text, for po(f ′

i |f ′
o, s), we further incorporate Gaussian priors with σ = 0.1 and µ = 0.5 for experts

that do not change fi, and µ = 0.001 for the rest.

The intuition behind the above structure is the model should first predict f ′
o which corresponds to the result of executing

option o, whether or not it will achieve its corresponding goal g, with po(f
′
o|s). Based on the result of the execution, the

model can then predict the rest of the abstract features with
∏
i̸=io po(f

′
i |f ′

o, s).

Expert generation for PoE-World. For po(f ′
o|s) of each option o, we prompt Gemini 2.0 Flash-Lite to synthesize a set

of possible preconditions using the prompt in Tables 6 and 7. We then add one expert per precondition that sets f ′
o = 1 if

that precondition is true. We also add a “blanket” expert that sets f ′
o = 0 without any precondition. Both types of experts

have Gaussian weight prior with µ = 0.5, but the blanket expert has σ = 0.001, while the experts with preconditions have
σ = 0.1. We give low σ to the blanket expert because we want its weight stays close to 0.5. If we allow the weight for the
blanket expert to change too much, it might become 0 when only positive examples are observed during fitting, causing the
model to incorrectly conclude that option o will always succeed without any preconditions.

For po(f ′
i |f ′

o, s) of each option o, we generate three experts: f ′
i = fi (no change), f ′

i = 1, and f ′
i = 0. As mentioned

in Section 3.1, we give a Gaussian weight prior with µ = 0.5, σ = 0.1 for the first type of expert (no change), and
µ = 0.5, σ = 0.001 for the latter two types.

Weighting function. We implement weighting functions straightforwardly as a lookup table with the keys being the
abstract states and the values being the corresponding low-level states. We only keep a single low-level state for each
abstract state in the lookup table, so there is no sampling.

Undefined distribution and partial state. It is possible that in the weighting function, we try to sample from w(s | f)
when we have not yet seen a s that corresponds to f , meaning our lookup table for the key f is empty. When that happens,
we leave s unspecified. Concretely, we assign None values to all primitive features. We call states with None values for
some features, partial states. Arriving at partial states in the world-model-simulated environment does not terminate the
episode right away. The episode only terminates if the experts in po(f

′|s) try to access the features with None values.

Additionally, we also set f ′
i = None for all i ̸= o when we sample from po(f

′|s) but get f ′
o = 0. We implement

this mechanism because options can lead to highly unpredictable states when they are not successful in achieving their
corresponding goals.

A.4. Prompts for LLM-based sub-goal proposer

Table 5 contains the prompt used for LLM-based sub-goal proposer.
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Algorithm 2 DQN learning algorithm (without parallel environments)

1: Given an environment E, a list of actions/sub-options Ω, , a reward function R, and training hyperparameters in Table 2.
2: Initialy policy network: π ← InitPolicy(E,Ω)
3: Initialize replay buffer D ← {}
4: Get initial state: s← E.reset()
5: for t← 0 to total env steps step train frequency do
6: # Collect rollouts by executing π for train frequency steps
7: for i← 0 to train frequency do
8: Sample action: a ∼ π(a | s)
9: Interact with environment: s′ ← E.step(a)

10: Update replay buffer: D ← D ∪ {(s, a, s′, κ ·R(s, a, s′)}
11: Update current state s← s′

12: end for
13: # Then, train for n gradient steps steps
14: Optimize the policy weights: DQNUpdate(π,D, n gradient steps)
15: end for
16: return π

Algorithm 3 Stable Hierarchical DQN learning algorithm (without parallel environments)
Note that ExecuteOneStep and ReceiveObsOneStep are defined in Algorithm 4 and Algorithm 5 respectively

1: Given E,Ω, DΩ, πΩ, πg, g, n, δ and training hyperparameters in Table 2 and Table 3.
2:
3: # We define a mutable struct to keep track of execution variables of an option
4: # In hierarchical options, each parent option selects a child option to execute, recursing until reaching a primitive action
5: struct OptionExecutionState
6: Option: o
7: Policy: π
8: Goal: g
9: Active child option: child

10: Child start state: u
11: Episode data: D
12: Current execution time: t
13: New data counter: ct
14: end struct
15:
16: Initialize (mutable) option execution states: ωΩ ← {OptionExecutionState(o, πo, go, None,None, [], 0, 0)}o∈Ω

17: Initialize (mutable) target option execution state: ωtarget ← OptionExecutionState(og, πg, g,None,None, [], 0, 0)
18: Get initial state: s← E.reset()
19: for i← 0 to total env steps do
20: Execute the target option for one step: a← ExecuteOneStep(s, ωtarget,Ω, ωΩ)
21: Interact with environment: s′ ← E.step(a)
22: Update option states and replay buffers: ( , DΩ)← ReceiveObsOneStep(s′, ωtarget,Ω, DΩ, n, δ)
23: for o ∈ Ω do
24: # optimize the policy weights if the option has collected enough new data
25: if enough new data collected: ωo.ct > train frequency then
26: Optimize the policy weights: DQNUpdate(ωo.π,Do, n steps = n steps per sample · ωo.ct)
27: Reset new data counter: ωo.ct← 0
28: end if
29: end for
30: end for
31: Retrieve πΩ from the mutable execution states: πΩ ← {ωo.π}o∈Ω

32: Retrieve πg from mutable target execution state: πg ← ωtarget.π
33: return πg, πΩ, DΩ
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Algorithm 4 Helper function ExecuteOneStep used in Stable Hierarchical DQN

1: function ExecuteOneStep(s, ω,Ω, ωΩ)
2: # keep recursing until we hit the leaf node of the execution trace
3: if ω.child ̸= None then
4: return ExecuteOneStep(s, ω.child,Ω)
5: end if
6:
7: Sample a child option to execute: a← ω.π(a | s)
8: Set child start state: ω.u← s
9: Increment the number of sub-options ω has executed: ω.t← ω.t+ 1

10:
11: # recurse if a is indeed a sub-option, not a primitive action
12: if a ∈ Ω then
13: Make sub-option a (along with its execution state) the active child: ω.child← ωa
14: return ExecuteOneStep(s, ω.child,Ω)
15: end if
16:
17: # return a if it is a primitive action
18: return a
19: end function
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Algorithm 5 Helper function ReceiveObsOneStep used in Stable Hierarchical DQN

1: function ReceiveObsOneStep(s′, ω,Ω, DΩ, n, δ)
2: # keep recursing until we hit the leaf node of the execution trace
3: if ω.child ̸= None then
4: (is child done,DΩ)← ReceiveObsOneStep(s′, ω.child)
5: else
6: is child done← True
7: end if
8:
9: # Add data to episode buffer if the child option is done

10: if is child done then
11: Get child start state: s← ω.u
12: Get child option: a← ω.child.o
13: Calculate reward: r ← Rω.g(s, a, s

′)
14: Add datapoint to ω.D ← ω.D ∪ {(s, a, s′, r)}
15: Child is no longer active: ω.child← None
16: end if
17:
18: Check if the current option is done: is cur done← (ω.g(s′) = 1) or (ω.t > max t)
19:
20: # Update execution state and potentially update the option’s replay buffer if the option is done executing
21: if is cur done then
22:
23: # Check if all executed sub-options in the episode are stable
24: only stable in episode← True
25: for ( , a, , ) ∈ ω.D do
26: # a is not stable if a is a sub-option
27: # AND has lower number of samples it has been trained with than n and lower goal completion rate than δ
28: if a ∈ Ω and na < n and δa < δ then
29: only stable in episode← False
30: end if
31: end for
32:
33: # Add episode buffer to the full replay buffer if all executed sub-options in the episode are stable
34: if only stable in episode then
35: Get option index: o← ω.o
36: Add episode data to the corresponding replay buffer: Do ← Do ∪ ω.D
37: Add number of new data to the counter: ω.ct← ω.ct+ |ω.D|
38: Retrieve current epsilon: (πreal, πwm, ϵ)← ω.π
39: Anneal ϵ based on the number of new data: ϵ← Anneal(ϵ, |ω.D|)
40: Update the policy with the new ϵ: ω.π ← (πreal, πwm, ϵ)
41: end if
42:
43: # Update execution state
44: Child is no longer active: ω.child← None
45: Clear episode buffer: ω.D ← {}
46: Execution time resets: ω.t← 0
47: end if
48:
49: return is cur done,DΩ

50: end function
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Hyperparameter Value

Number of parallel environments 4

Batch size 256

Learning rate 0.0001

Replay buffer size 5000 · 4
Multi-step return 10

Discount factor γ 0.99

Priority replay temperature 0.01

Target network update interval 200

Number of gradient steps per training step 64

Training frequency 16 · 4
Reward multiplier κ 10

Maximum gradient norm 10

Random exploration rate ϵ 0

Frame stacking 4

Optimizer Kron (Castanyer et al., 2025b; Li, 2017)

Table 2. Common training hyperparameters for Rainbow DQN.

Hyperparameter Value

Max option executime time max t 100

Number of gradient steps per samples collected n steps per sample 1

ϵ Annealing schedule Linear(start = 1.0, end = 0, n samples = 10, 000)

nthreshold 20000

δthreshold 0.5

Table 3. Training hyperparameters that are specific to Hierarchical DQN.

Hyperparameter Value

Multi-step return 1

Random exploration rate ϵ Linear(start = 1.0, end = 0.01, fraction = 0.95)

Table 4. Training hyperparameters for Rainbow DQN that are specific to πwm.
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Figure 7. Screenshots of Montezuma’s Revenge with goals labeled in order it appears in the ordered list of goals
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Figure 8. Screenshots of Pitfall with goals labeled in order it appears in the ordered list of goals
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Figure 9. Screenshots of Private Eye with goals labeled in order it appears in the ordered list of goals
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Here is the current observation of the game {game_name}:

{cur_obs}

And here is a list of goals we know how to achieve:

{achieved_goal_names_and_descriptions}

Your task is to list 1 achieved goals that, on its own, can act as a possible
stepping stone to achieve the target goal of ’{target_goal_name}’ -- Description:
’{target_goal_description}’.

Required reasoning process:
First, discuss out loud how to achieve the target goal of ’{target_goal_name}’,
taken into account the current observation.
Then, for each achieved goal, discuss out loud how completing that goal would help
us achieve the target goal of ’{target_goal_name}’, taken into account the current
observation.
Make sure to go through all achieved goals. But also do not keep repeating the same
achieved goal. The current position of the player is irrelevant.

Final output format:
After you are done reasoning, list the achieved goal in a numbered list with
the following format:
Possible stepping stone 1: <achieved goal>

Table 5. Prompt for LLM to propose sub-goals to hypothesize new sub-options. Note that target goal description is simply “touch
object with id obj id or “in room #room num, touch object with id obj id” and target goal name is something like “bot plat” or
“rope in roomnumber+2”. cur obs is a state sampled from Dseen if there is a single room like Montezuma’s Revenge and multiple states,
one per room, for Pitfall and Private Eye.
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I’ll give you an input list of objects.

I want you to list 4 possible features that the input list of objects has that allows us
to achieve a certain goal.

Here’s an example:

Example input list of objects:
player object with at (x=16, y=104, w=8, h=21),
wall object with at (x=136, y=148, w=7, h=32),
logs object with at (x=125, y=118, w=6, h=14),
stairpit object with at (x=76, y=122, w=8, h=6),
stair object with at (x=78, y=136, w=4, h=42),
platform object with at (x=8, y=179, w=152, h=1),
platform object with at (x=8, y=125, w=152, h=1),
playerscore object with at (x=38, y=9, w=30, h=8),
lifecount object with at (x=23, y=22, w=1, h=8),
lifecount object with at (x=21, y=22, w=1, h=8),
timer object with at (x=31, y=22, w=37, h=8),
portal_0 object with at (x=7, y=85, w=1, h=40),
portal_1 object with at (x=155, y=85, w=1, h=40),
Interaction -- player object with at (x=16, y=104, w=8, h=21) is touching platform object
with at (x=8, y=125, w=152, h=1)

Example possible features that allow us to achieve the goal of ’{goal}’:
1. AnyObjTypeTouching: The player object touches a platform object
2. SpecificObjTouching: The player object touches the platform object located at (x=8,
y=125)
3. AnyObjTypeTouching: ...
4. SpecificObjTouching: ...

Now, I want you to list 4 possible features of the input list of objects has that allows
us to achieve the goal of ’{goal}’.

Input list of objects:
{input}

Please follow these rules for your output:
1. Do not explain -- simply list each feature
2. Make the features diverse
3. Do use interactions (what the player is touching), as they usually make good features
4. Each rule should of type ’AnyObjTypeTouching’ or ’SpecificObjTouching’

Table 6. Prompt for LLM to propose preconditions for games where the agent controls only the Player object: Montezuma’s Revenge and
Pitfall.
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I’ll give you an input list of objects.

I want you to list 4 possible features that the input list of objects has that allows us
to achieve a certain goal.

Here’s an example:

Example input list of objects:
player object (x=30, y=150, w=8, h=12),
car object (x=27, y=163, w=20, h=14),
score object (x=75, y=8, w=30, h=8),
clock object (x=67, y=19, w=30, h=8),
roomnumber_+0 object (x=0, y=0, w=0, h=0),
portal_to_prev_room object (x=8, y=27, w=5, h=150),
portal_to_next_room object (x=155, y=27, w=5, h=150),
platform object (x=8, y=177, w=152, h=1),

Example possible features that allow us to achieve the goal of ’{goal}’:
1. RoomNumberExist: An object with type ’roomnumber_+0’ exists
2. ObjTouchingAndRoomNumberExist: The car object touches the platform object and an object
with type ’roomnumber_+0’ exists

Now, I want you to list 2 possible features of the input list of objects has that allows
us to achieve the goal of ’{goal}’.

Input list of objects:
{input}

Please follow these rules for your output:
1. Do not explain -- simply list each feature
2. Each rule should of type ’RoomNumberExist’ or ’ObjTouchingAndRoomNumberExist’
3. Make sure to mention the roomnumber in the feature, e.g., ’an object with type
’roomnumber_+0’ exists’

Table 7. Prompt for LLM to propose preconditions for games where the agent controls several objects: Private Eye (the agent controls
Player and Car object)
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