
Extendible HashingTHE PAGED FILE (PF) LAYERTo simplify the proje
t, we will give you
ode for this layer of the system. The Paged File layer providesfa
ilities to allow
lient layers to do �le I/O in terms of pages. Interfa
e fun
tions are provided to
reate,open, and
lose �les, to s
an through a given �le, to read a spe
i�
 page of a given �le, and to add anddelete pages of a given �le. In order to use this interfa
e, simply say #in
lude \pf.h" near the top ofthe .h �le for your
lient layer, and then be sure to link the Paged File layer
ode with your
ode when
reating an exe
utable program that makes use of the Paged File layer routines.The interfa
es for the Paged File layer routines follow. (The name of ea
h routine begins with thepre�x PF to indi
ate the layer that they implement.) Most of the routines return an integer value, witha negative value meaning that an error has o

urred. There are several possible PF error
odes that
anbe returned; they are des
ribed later. In addition, a

ess to data on a page of a �le involves reading thepage into the bu�er pool in main memory and then manipulating (e.g., reading or updating) its datathere. While a page is in memory and available for manipulation, it is said to be "�xed" in the bu�erpool; pages are �xed as a side e�e
t of reading. Su
h a page must be expli
itly "un�xed" when the
lientis done manipulating it in order to make room for future pages and to ensure that updates are re
e
tedba
k to the appropriate page on disk. Pages are identi�ed by their page numbers, whi
h are essentiallytheir physi
al lo
ations within the �le on disk. (Note: This means that the page numbering s
heme isnot ne
essarily sequential or even monotoni
 in nature.) Finally, the number of bytes available for datastorage on ea
h page is spe
i�ed by the
onstant PF PAGE SIZE (de�ned in the PF layer).Paged File Layer Interfa
e Routines(1) PF_Init()This routine initializes the PF layer. It must be the �rst fun
tion
alled in order to use the PF layer.It produ
es no return value.(2) errVal = PF_CreateFile(fileName)
har *fileName; /* name of file */This routine
reates a paged �le
alled �leName. The �le should not already exist. It returnsPFE OK if the new �le is su

essfully
reated, and a PF error
ode otherwise.(3) errVal = PF_DestroyFile(fileName)
har *fileName; /* name of file */This routine destroys the paged �le whose name is �leName. The �le should exist, and should notbe already open. This routine returns PFE OK if the �le is su

essfully destroyed, and a PF error
odeotherwise.(4) fileDes
 = PF_OpenFile(fileName)
har *fileName; /* name of file */ 1

This routine opens the paged �le whose name is �leName. It is possible to open a �le more thanon
e if desired, getting a di�erent �le des
riptor (handle) for ea
h open instan
e of the �le. Warning:Opening a �le more than on
e for write operations is not prevented, but doing so
an easily
orruptthe �le stru
ture and thereby
rash the Paged File fun
tions. On the other hand, opening a �le morethan on
e for reading is OK. This routine returns a �le des
riptor (whi
h is non-negative) if the �le issu

essfully opened, and a PF error
ode otherwise.(5) errVal = PF_CloseFile(fileDes
)int fileDes
; /* file des
riptor */This routine
loses the open �le instan
e asso
iated with �le des
riptor �leDes
. The �le instan
eshould have been opened with PF OpenFile(). Note that it is an error to
lose a �le if any of its pagesare still �xed in the bu�er pool. This routine returns PFE OK if the �le is su

essfully
losed, and a PFerror
ode otherwise.(6) errVal = PF_GetFirstPage(fileDes
,pageNum,pageBuf)int fileDes
; /* file des
riptor */int *pageNum; /* page number of first page */
har **pageBuf; /* indire
t pointer to buffer */This routine reads the �rst page of the �le into memory and then sets *pageBuf to point to it. Italso sets *pageNum to be the page number of the page read. The page read is �xed in the bu�er pooluntil it is expli
itly un�xed with PF Un�xPage(). It returns PFE OK if the �rst page is su

essfullyread, PFE EOF if end-of-�le is rea
hed (meaning there is no �rst page), and a PF error
ode otherwise.(7) errVal = PF_GetNextPage(fileDes
,pageNum,pageBuf)int fileDes
; /* file des
riptor */int *pageNum; /* page number of first/next page */
har **pageBuf; /* indire
t pointer to buffer */This routine reads the next valid page after *pageNum, whi
h is the
urrent page number, setting*pageBuf to point to the page data. It also sets *pageNum to be the new page number on
omple-tion. The new page is �xed in the bu�er pool until PF Un�xPage() is
alled. This routine returnsPFE OK if no error o

urs, PFE EOF if end-of-�le is rea
hed (meaning there there is no next page),PFE INVALIDPAGE if the in
oming page number is invalid, and another PF error
ode otherwise.(8) errVal = PF_GetThisPage(fileDes
,pageNum,pageBuf)int fileDes
; /* file des
riptor */int pageNum; /* page number of desired page */
har **pageBuf; /* indire
t pointer to buffer */This routine reads the page spe
i�ed by pageNum, setting *pageBuf to point to the page's data. Thepage number must be a valid one. The page that is read is �xed in the bu�er pool until it is un�xed viaPF Un�xPage(). This routine returns PFE OK if no error o

urs, PFE INVALIDPAGE if the in
omingpage number is invalid, and another PF error
ode otherwise.(9) errVal = PF_Allo
Page(fileDes
,pageNum,pageBuf)int fileDes
; /* file des
riptor */int *pageNum; /* page number of new page */
har **pageBuf; /* indire
t pointer to buffer */2

This routine allo
ates a new, empty page in the �le asso
iated with the �le des
riptor �leDes
. It sets*pageNum to the new page's page number, and sets *pageBuf to point to the bu�er for that page. Thisroutine returns PFE OK if a new page is su

essfully added to the �le, and a PF error
ode otherwise.(10) errVal = PF_DisposePage(fileDes
,pageNum)int fileDes
; /* file des
riptor */int pageNum; /* page number of old page */This routine disposes the page numbered pageNum in the �le asso
iated with the �le des
riptor�leDes
. Only a page that is not
urrently �xed in the bu�er pool
an be disposed of. This routinereturns PFE OK if the page is su

essfully disposed of, and a PF error
ode otherwise.(11) errVal = PF_UnfixPage(fileDes
,pageNum,dirty)int fileDes
; /* file des
riptor */int pageNum; /* page number of page */int dirty; /* true if page is dirty */This routine tells the Paged File layer that page pageNum of the �le asso
iated with �leDes
 is no longerneeded in memory. The parameter dirty must be set to TRUE if the page has been modi�ed at all, asotherwise the
hange will not be written ba
k to the page on disk. This routine returns PFE OK if thepage is su

essfully un�xed, and a PF error
ode otherwise.(12) PF_PrintError(errString)
har *errString; /* string to write */This routine writes the string errString onto stderr, and then writes the last error message produ
edby the PF layer onto stderr as well. It has no return value.Paged File Layer Error HandlingError handling is done in the Unix style, with a global variable PFerrno keeping tra
k of the last error.PF PrintError()
an be
alled to print out the last error message. If PFerrno is equal to PFE UNIX,whi
h means that a Unix error o

urred, the Unix fun
tion perror() is
alled by PF PrintError() toprint the error message. Thus, a given error
an
ause as many as three messages to be produ
ed insequen
e: the message given in the errString argument to PF PrintError(), the message produ
ed bythe PF layer itself, and the message produ
ed by Unix in the
ase of a Unix error. Only in very few
ases, all involving unexpe
ted internal errors, does the PF layer a
tually exit the program by itself. Itis suggested that the
aller also implement error handling in this hierar
hi
al manner. A list of the PFerror
odes follows:#define PFE_OK 0 /* OK */#define PFE_NOMEM -1 /* no memory */#define PFE_NOBUF -2 /* no buffer spa
e */#define PFE_PAGEFIXED -3 /* page already fixed in buffer */#define PFE_PAGENOTINBUF -4 /* page to be unfixed is not in the buffer */#define PFE_UNIX -5 /* unix error */#define PFE_INCOMPLETEREAD -6 /* in
omplete read of page from file */3

#define PFE_INCOMPLETEWRITE -7 /* in
omplete write of page to file */#define PFE_HDRREAD -8 /* in
omplete read of header from file */#define PFE_HDRWRITE -9 /* in
omplete write of header to file */#define PFE_INVALIDPAGE -10 /* invalid page number */#define PFE_FILEOPEN -11 /* file already open */#define PFE_FTABFULL -12 /* file table is full */#define PFE_FD -13 /* invalid file des
riptor */#define PFE_EOF -14 /* end of file */#define PFE_PAGEFREE -15 /* page already free */#define PFE_PAGEUNFIXED -16 /* page already unfixed *//* Internal error: please report this to me */#define PFE_PAGEINBUF -17 /* new page to be allo
ated already in buffer */#define PFE_HASHNOTFOUND -18 /* hash table entry not found */#define PFE_HASHPAGEEXIST -19 /* page already exists in hash table */

4

