A New Defense Against Adversarial Images: Turning a Weakness Into a Strength
Tao Yu*, Shengyuan Hu*, Chuan Guo1, Wei-Lun Chao2, Killian Q. Weinberger1

1 Department of Computer Science, Cornell University.
2 Department of Computer Science and Engineering, The Ohio State University

Background

Neural Networks are prone to imperceptible changes in the input -- adversarial perturbations -- that alter the model’s decision entirely.

- **Common and inevitable:**
 - Gradient-guided search can perturb real images to any other class.
 - Any classifier has a fundamental limit on the robustness that it can achieve for adversarial examples.
- **Hard to defend against:**
 - Defenses such as adversarial training are very slow and not suitable for large datasets like ImageNet.
 - State-of-the-art defense (TRADES) achieves only 56% accuracy against strongest attack with a drop of 11% clean accuracy on CIFAR10.

Vulnerability of Existing Defenses

Attackers can easily bypass defenses by optimizing them in black-box and white-box settings.

- **Black-box:** Attackers can access model and defense structure, but not any parameter, one can use decision-based methods or natural gradients to optimize the defense criterion.
- **White-box:** Attackers have full knowledge of model and defense, one can use gradient-guided methods for differentiable functions or approximate non-differentiable functions with identity (BPDA) to optimize defense criterion.

Methodology

We propose a set of seemingly contradictory criteria to detect adversarial examples.

- **Robustness to random noise (C1):**
 - Prediction of a real image x_0 is robust to random noise, i.e., low density of adversarial perturbations
 - Input x' can be detected effectively.
- **Existence of nearby adversarial examples (C2):**
 - Gradient-guided attacks can easily find an adversarial example of x_0. However, the optimization against C1 makes it hard to find an “adversarial example” of the adversarial example x''.
 - Adversarial example x'' can be detected effectively.
- **Contradictory optimization for attackers:**
 - Optimizing C1 pulls the adversarial example away from the boundary (towards x'').
 - Optimizing C2 pulls the adversarial example close to the boundary (towards x').
 - Optimizing C1+C2 during attack leads to competing objectives!