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ABSTRACT
Big Data Pipelines decompose complex analyses of large data
sets into a series of simpler tasks, with independently tuned
components for each task. This modular setup allows re-use
of components across several different pipelines. However,
the interaction of independently tuned pipeline components
yields poor end-to-end performance as errors introduced by
one component cascade through the whole pipeline, affecting
overall accuracy. We propose a novel model for reasoning
across components of Big Data Pipelines in a probabilistically
well-founded manner. Our key idea is to view the interaction
of components as dependencies on an underlying graphical
model. Different message passing schemes on this graphical
model provide various inference algorithms to trade-off end-
to-end performance and computational cost. We instantiate
our framework with an efficient beam search algorithm, and
demonstrate its efficiency on two Big Data Pipelines: parsing
and relation extraction.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Theory

Keywords
Big Data Pipelines, Modular Design, Probabilistic Inference

1. INTRODUCTION
Benevolent pipelines propagate knowledge. — Adapted

from a quotation in the Sama Veda.

Unlocking value from Big Data is a hard problem. The
“three V’s” of the data (volume, velocity, and variety) require
setting up sophisticated Big Data Pipelines — workflows of
tasks such as data extraction and transformation, feature
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Figure 2: Object Detection & Recognition pipeline.

creation, model construction, testing, and visualization. In
order not to have to develop components for each task from
scratch, data scientists build Big Data Pipelines using exist-
ing software components, for example, a natural language
parser or a text classifier.

An example of a Big Data Pipeline for relation extraction
from text is given in Figure 1. After sentence splitting and
tokenization, a part-of-speech (POS) tagger feeds into a
syntactic parser, which is the basis for a dependency parser.
Finally, the POS tags and parses provide features for the
relation extractor. The components of this pipeline are
also used in pipelines for other natural language analysis
tasks like joint entity and relation extraction [30], sentiment
analysis [23] or opinion extraction [5]. Another example
of a Big Data Pipeline from computer vision [14] is shown
in Figure 2, where low-level filters (e.g., edge detectors)
eventually feed into an object recognizer (e.g., an SVM) after
several transformation and pooling operations. Similarly,
such pipelines also exist in other domains, ranging from
robotics [1] to computational biology [31].

The speed of plug-and-play development of Big Data
Pipelines comes with a big drawback: the composition and
resulting execution of the pipeline is rather ad-hoc. In par-
ticular, we lack a model for global reasoning about the un-
certainty that is associated with the predictions of each task
in the pipeline, even though components maintain and could
provide a wealth of relevant information. In the default ap-
proach, where each stage merely passes its canonical output
to the next stage, any error in the early stages can lead to
cascading and unrecoverable errors in later stages. Each
pipeline component makes a locally optimal choice without
consideration that it is only one of the steps in a long chain.

In this paper, we present a formal model of inference over
Big Data Pipelines in a probabilistically well-founded manner.
Our model accounts for and utilizes the uncertainty in the
predictions at all stages of the pipeline. We propose inference
algorithms that allow us to trade off computational efficiency
versus overall quality of the pipeline by optimizing how much



uncertainty is propagated. Our inference algorithms have an
elegant formulation in relational algebra which may be of in-
dependent importance due to its connections to probabilistic
databases and data provenance [2, 29].

In particular, the paper makes the following contributions.
First, we formalize pipeline inference as a graphical model
in which nodes are processing components and edges de-
note data flow between components. With this model, we
have a formal foundation for reasoning across a whole Big
Data Pipeline (Section 2). Second, we propose inference
algorithms that resolve uncertainty across the pipeline, in-
cluding a beam search algorithm that adaptively increases
the amount of information that is propagated. We show that
these inference algorithms can be formulated in relational
algebra well-suited for probabilistic database implementation
(Section 3). Third, in a comprehensive experimental evalu-
ation, we demonstrate how our approach gracefully trades
off the quality of predictions and computational efficiency
of inference on two real-world tasks: a Syntactic Parsing
pipeline and a Relation Extraction pipeline (Section 4). We
conclude with a discussion of our approach in Section 5 and
its connection to related work in Section 6.

2. PROBABILISTIC PIPELINE MODEL
Given an input x, how should we compute the output y

of a pipeline with multiple components? The answer to this
question depends on the API that each component exposes.
In the most basic API, we may only assume that a component
takes input x (e.g., sequence of words) and outputs an answer

y(1) (e.g., sequence of part-of-speech tags). We call this

y(1) the canonical output. With this simplistic API for each
component, it is unclear how cascading errors can be avoided.

Fortunately, many pipeline components permit a more
refined API in two respects. First, a component θi can
provide a confidence score, interpreted as the conditional
probability Pr(y | x, θi), for the returned output y(1). Second,

a component can not only return the canonical output y(1),
which most naturally is the maximizer of the conditional
probability i.e. y(1) = argmaxy Pr(y | x, θi), but also all of
the top-k highest scoring predictions

[y(1), . . . , y(k)] = k-argmax
y

Pr(y | x, θi)

with their respective conditional probabilities:

[Pr(y(1) | x, θi),Pr(y(2) | x, θi), . . . ,Pr(y(k) | x, θi)]

In contrast to the basic API that only returns the canonical
output, we call this API the Top-k API.

Many standard components (e.g., POS taggers, parsers)
already provide this functionality. Even non-probabilistic
models (e.g., SVMs) can typically be transformed to produce
reasonable conditional probability estimates [25].

The Top-k API allows us to interact with components
as if they were truly black boxes. We do not assume we
have access to θi, nor the form of the internal probabilistic
model. This is important in the Big Data application setting
where re-training pipeline components for a new domain
imposes a significant scalability bottleneck, and plug-and-
play development of pipelines is desirable.

We now explore how the information provided by this
extended interface can be used to not only make pipeline
predictions more reliable and robust, but also to provide
probabilistic outputs for the pipeline as a whole.
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2.1 Pipelines as Graphical Models
A note about notation: We denote specific values using

lower-case letters and the set of all possible values by upper-
case letters. This is consistent with the usual notation for
random variables. For instance, we denote any general output
of a component by Y , and a specific output by y.

To derive a general model of pipeline inference, let us for
now assume that each component, when provided an input x,
exposes the full distribution Pr(Y | x, θi) through the API.
Equivalently, one may view this as providing the top-k, but
for a large enough value of k that enumerates all possible y.
Under this API for each component, what should the final
pipeline output be and what confidence should the pipeline
assign to this output?

Assume that each component θi in the pipeline is a trained
or hand-coded model. We shall use sx,i(y) as shorthand
for Pr(y | x, θi). When it is clear from the context which
component and input is being talked about, we shall drop
the subscript to yield s(y).

The schematic of a black box component is illustrated
in Figure 3. It is very natural to view input X and out-
put Y as random variables, and the component θ specifies
the conditional dependencies between X and Y . Note that
this is a general definition of a component, encompassing
deterministic rule-based transformations (the conditional dis-
tribution is such that all the probability mass is concentrated
on the mapping of the input x) as well as generative and
discriminative probabilistic models.

To provide intuition for the inference problem, first consider
a pipeline of only two components, θ1 and θ2, where the
output of θ1 is piped to the second component. This is
illustrated in Figure 4. Let the input to the pipeline be X,
the outputs of θ1 and θ2 be Z1 and Y respectively. From
Figure 3, we know that this is equivalent to a graphical model
with three nodes X,Z1, Y . The law of joint probability gives
us

Pr(Y | X) =
∑
Z1

Pr(Y,Z1 | X)

=
∑
Z1

Pr(Y | Z1, θ2) Pr(Z1 | X, θ1), (1)

where (1) follows from the conditional independence induced
by the graphical model. Thus, for a particular input x, the
ideal output according to Equation 1 would be:

yBayes = argmax
y

∑
z1

Pr(y | z1, θ2) Pr(z1 | x, θ1) (2)

We call yBayes the Bayes Optimal output since it considers all
possible intermediate outputs in determining the prediction.
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Figure 5: Schematic of a general pipeline.

Going beyond the composition of two components, any
general pipeline can be viewed as a Directed Acyclic Graph,
where the nodes are the black box components and the
edges denote which outputs are piped as inputs to which
components. The basic idea illustrated above for a linear two-
step pipeline can be extended to general pipelines such as the
one illustrated in Figure 5. Any general pipeline structured
as a DAG admits a topological ordering. Denoting the input
to the pipeline as X, eventual output Y , and the output of
each intermediate stage i in this topological ordering as Zi,
then any acyclic pipeline is a subgraph of the graph shown
in Figure 5. From our modeling assumption, this DAG is
an equivalent representation of a directed graphical model:
each of X,Z1, Z2 . . . Y are nodes denoting random variables,
and the components enforce conditional independences. The
graphical model corresponding to Figure 5 makes the fewest
independence assumptions across stages.

Analogous to the two stage pipeline from above, the Bayes
Optimal prediction yBayes for general pipelines is

yBayes = argmax
y

∑
z1

[
Pr(z1 | x, θ1)

∑
z2

[
Pr(z2 | x, z1, θ2)

∑
z3

(
Pr(z3 |x,z1,z2,θ3). . .Pr(y |x,z1. . .zn−1,θn)

)
. . .
]]

(3)

Computing the Bayes Optimal yBayes is infeasible for real-
world pipelines because it requires summing up over all pos-
sible intermediate output combinations z1, . . . zn−1. We will
therefore explore in the following section how this intractable
sum can be approximated efficiently using the information
that the Top-k API provides.

2.2 Canonical Inference
Even the naive model of passing only the top output to

the next stage can be viewed as a crude approximation of the
Bayes Optimal output. We call this procedure the Canonical
Inference algorithm. For simplicity, consider again the two
component pipeline, such that the naive model results in

z1
(1) = argmax

z1

Pr(z1 | x, θ1)

yCan = argmax
y

Pr(y | z1(1), θ2) (4)

The optimization over y in (4) is unaffected if it is multiplied

by the term Pr(z1
(1) | x, θ1). Once the summation in the

marginal in (1) is restricted to z1
(1), the sum reduces to

Pr(y | z1(1), θ2) Pr(z1
(1) | x, θ1) ≤ Pr(y | x).

Hence, this objective provides a lower bound on the true
Pr(y | x). It is easy to see that this holds true for general
pipeline architectures too, where the canonical inference
procedure proceeds stage-by-stage through the topological
ordering. For i = 1, . . . , n, define:

zi
(1) = argmax

zi

Pr(zi | x, z1(1), . . . , zi−1
(1), θi)

yCan = argmax
y

Pr(y | x, z1(1), . . . , zn−1
(1), θn) (5)

then Pr(y |z1(1), . . . ,zn−1
(1),θn). . .Pr(z1

(1) |x,θ1) ≤ Pr(y |x).
In this sense, canonical inference is optimizing a crude

lower bound to the Bayes Optimal objective (again, the

terms Pr(z1
(1) | x, θ1) etc. do not affect the optimization

over y). This suggests how inference can be improved, namely
by computing improved lower bounds on Pr(y|x). This is the
direction we take in Section 3, where we exploit the Top-k
API and explore several ways for making the computation
of this bound more efficient.

3. EFFICIENT INFERENCE IN PIPELINES
Canonical inference and full Bayesian inference are two

extremes of the efficiency vs. accuracy tradeoff. We now ex-
plore how to strike a balance between the two when pipeline
components expose the Top-k API. In particular, given input
x suppose each component θ is capable of producing a list

of k outputs
[
y(1), y(2), . . . y(k)

]
along with their conditional

probabilities
[
Pr(y(1) | x, θ), . . .Pr(y(k) | x, θ)

]
(in decreas-

ing order). We now outline three algorithms, characterize
their computational efficiency, and describe their implemen-
tation in terms of relational algebra. This interpretation
enables direct implementation of these algorithms on top of
traditional/probabilistic database systems.

3.1 Top-k Inference
The natural approach to approximating the full Bayesian

marginal (Eq. 3) when computation is limited to a few sam-
ples is to choose the samples as the top-k realizations of the
random variable, weighted by their conditional probabilities.
We call this Top-k Inference, which proceeds in an analo-
gous fashion to canonical inference, stage-by-stage through
the topological ordering. However, inference now becomes
more involved. Each component produces a scored list, and
each item in the lists generated by predecessors will have a
corresponding scored list as output.

Denote the list of outputs returned by the component θi
(each of which are possible values for the random variable Zi

in the equivalent graphical model) as {zi}k. Note that this
set depends on the inputs to θi, but we omit this dependence
from the notation to reduce clutter. This gives rise to the
following optimization problem for identifying the eventual
output of the pipeline.

yTopK = argmax
y

∑
{z1}k

[
Pr(z1 | x, θ1)

∑
{z2}k

[
Pr(z2 | x, z1, θ2)

∑
{z3}k

(
Pr(z3 |x,z1,z2,θ3). . .Pr(y |x,z1,. . .zn−1,θn)

)
. . .
]]

(6)

A simple extension of top-k inference is to have a parameter
ki for each component θi that allows variable length lists of
outputs {zi}ki for different components in the pipeline. We

refer to these parameters collectively as ~k.
Consider again the simple two stage pipeline in Figure

4. Each component now operates on relational tables and
generates relational tables. We initialize the table T0 with
the input to the pipeline x:



IX0 V ALUE0 SCORE0

1 x 1

The subscripts in the attributes refers to the component ID,
IX denotes the index into the scored list of outputs produced
by the component, VALUE is the actual output and SCORE

is its conditional score. Now, given a parameter vector ~k
= (k1, k2), the first component will generate the table T1.

IX0 IX1 V ALUE1 SCORE1

1 1 z1(1) sx,1(z1(1))

1 2 z1(2) sx,1(z1(2))

. . . . . . . . . . . .

1 k1 z1(k1) sx,1(z1(k1))

Note that IX0 carries no additional information, if component
1 is the only successor to component 0 (as is the case in this
example). However, in a general pipeline, we need columns
like IX0 to uniquely identify inputs to a component.

The second component now takes the table T1 and produces
the final table T2.

IX0 IX1 IX2 V ALUE2 SCORE2

1 1 1 z2(1,1) sz1(1),2(z2(1,1))sx,1(z1(1))

1 1 2 z2(1,2) s(z2(1,2))s(z1(1))

. . . . . . . . . . . . . . .

1 1 k2 z2(1,k2) s(z2(1,k2))s(z1(1))

1 2 1 z2(2,1) s(z2(2,1))s(z1(2))

. . . . . . . . . . . . . . .

1 k1 k2 z2(k1,k2) s(z2(k1,k2))s(z1(k1))

The final output for top-k inference yTopK is generated by
grouping the values T2.VALUE2, aggregating by SCORE2

and selecting the element with largest sum. For linear
pipelines (Figure 5 without the curved edge dependencies),
this procedure is summarized in Algorithm 1. The linear
pipeline has the nice property that each component has ex-
actly one successor, so we need not store additional informa-
tion to trace the provenance of each intermediate output. We
assume each component provides the interface GenTopK(ID,
k, INPUT) which returns a table with attributes VALUEID,
SCOREID that has k tuples. For the n-stage linear pipeline,

performing top-k inference with parameters ~k will yield a
final table Tn with at most k1k2 . . . kn tuples. There may be
fewer tuples, since any output generated by different com-
binations of intermediate outputs results in only one tuple.

For top-k inference in general pipelines, the algorithm
needs to maintain additional information to uniquely identify
each input that a component processes. Specifically, for a
component θi, let the indices of its parents in the DAG be
denoted by J . We need to construct a table that θi can
process, which has all compatible combinations of outputs
in tables {Tj}j∈J . This procedure is outlined in Algorithm
2. Let the lowest common ancestor of two parents of θi (say,
θp and θq) be denoted by θm. If θp and θq do not share
an ancestor, m defaults to 0. The only compatible output
combinations between θp and θq are those that were generated
from the same output from θm. We store columns IX∗ in our
tables to identify precisely this fact: Ti traces all ancestors
of the component θi. Hence, the natural join of tables Tp

and Tq will match on the IX attributes corresponding to

Algorithm 1 Top-k Inference for Linear Pipelines.

Require: GenTopK(id, k, x), ~k
T0 ← CreateTable(V ALUE0:X ; SCORE0:1)
for i = 1 to n do
Ti ← φ
for t in Ti−1 do
x← t.V ALUEi−1

s← t.SCOREi−1

OP ← GenTopK(i, ~ki , x)
OP.SCOREi ← s ∗OP.SCOREi

Ti ← Ti ∪OP
end for
if |{Successors(i)}| ≤ 1 then
Ti ← Sum(Ti.SCOREi, GroupBy(V ALUEi))

end if
Ti ← Transform(Ti) {Section 3.2, 3.3}

end for
return Max(Tn.SCOREn)

Algorithm 2 Creating Compatible Inputs.

Require: J
1: p← max J
2: T ← Tp

3: A← J \ p
4: repeat
5: q ← maxA
6: r ← LowestCommonAncestor(p, q)
7: T ← T 1 Tq

8: T.SCOREr ← T.SCOREp ∗
Tq.SCOREq

Tr.SCOREr

9: A← A ∪ {r} \ {p, q}
10: p← r
11: until |A| ≤ 1
12: return T

their common ancestors up to m, as shown in lines 6-7 in
Algorithm 2. Furthermore, we need to update the probability
mass for each compatible output combination. From (6), we
see that the product of the scores in Tp and Tq will have the
contribution from their common ancestors double-counted.
Hence, in line 8 of the algorithm, we divide out this score.

With this algorithm, and the understanding that Gen-
TopK(ID, k, INPUT) augments its returned table with IXID

information, inference proceeds exactly as the algorithm for
the linear pipeline (Algorithm 1) with Ti−1 replaced by the
output of Algorithm 2 given Parents(i) as input. It should
now be clear why we always check the Successors(i) before
aggregating tuples in a table: Such an aggregation step loses
provenance information (in the form of IX attributes) which
is necessary for correct recombination later in the pipeline.

3.2 Fixed Beam Inference
The top-k inference procedure described above follows

Equation (6) exactly. However, this can result in a multi-
plicative increase in the sizes of the intermediate tables, with
the eventual output requiring aggregation over potentially
k1k2 . . . kn outputs. This may become infeasible for even

moderate pipeline sizes and modest choices for ~k.
One way to control this blowup is to interpret the param-

eters ~k as limits on the sizes of the intermediate tables. In
particular, at each stage i of the pipeline, we sort table Ti



Algorithm 3 Adaptive Deepening.

Require: δ, [s1, . . . , sk]
d← 0
repeat
d← d+ 1
r ← sd+1/sd

until d ≥ k − 1 or r < δ
return [s1, . . . , sd]

according to the SCOREi and only retain the top ki tuples.
This pruning can be implemented as the Transform function
of Algorithm 1. We refer to this inference method as Beam-M
Inference. This strategy provides an optimization objective
that is a scalable intermediate between canonical inference
and top-k inference.

3.3 Adaptive Inference
Since it may be difficult to set the parameters ~k limiting the

beam width a priori, we now explore an adaptive inference
method. Intuitively, the beam width ki of component θi
should depend on the uncertainty in its prediction. If that
component had perfect confidence, doing canonical inference
for this step suffices to yield the Bayes optimal solution
since all of the probability mass is concentrated on a single
prediction. If a component is less confident, the beam width
should be larger. A larger beam is computationally more
intensive but promises to be a more robust estimate of the
Bayes optimal objective.

This leads to the operational goal of adapting the beam
width to ensure that each result list includes all predictions
that have high probability, but ideally not many more so that
efficiency does not suffer. This can be operationalized by
looking for sharp drops in the conditional probability as the
algorithm goes down the scored list of predictions generated
by a component. To control this process, we not only have

the maximum beam width ~k like in top-k inference, but also

a vector of parameters ~δ = [δ1, δ2, . . . , δn] that specify the
drop threshold for each component. As outlined in Algorithm
3, we only deepen the beam (up to the maxima specified by
~k), if the next prediction in the top-k list has a sufficiently

large (as specified by ~δ) conditional probability relative to
the previous element of the list. We typically set the value of
~δ to be the same for all components. Adaptive Inference also
proceeds through the topological ordering as in Algorithm 1,
with AdaptiveDeepening(δi, ki) (Algorithm 3) being used as
the Transform function.

4. EXPERIMENTS
The following experiments evaluate the proposed inference

methods on three pipelines.
Parse Pipeline: The syntactic parsing pipeline is an

important NLP task and a common sub-pipeline in many
application problems. The pipeline consists of two stages,
namely POS tagging followed by parsing. We use the bench-
mark Wall Street Journal Treebank dataset [20] with the
standard setup: POS tagger and parser with models trained
on Sections 2-21, the remaining sections are used for evalu-
ation. This leads to a test set of 9370 sentences. We used
two popular off-the-shelf components for this pipeline: the
HMM-based LingPipe system [4] to predict POS tags and
the phrase grammar-based Enju parser [26]. There was no

modification required to use these systems, as they both al-
ready expose interfaces to get the top k outputs. In addition
to the standard Bracketed F1-measure [24], we also report
0/1-loss performance (i.e., the number of sentences with the
correct parse tree predicted) denoted as #Cor.

Relation Extraction (RelEx) Pipeline: We built a
three-stage Relation Extraction (RE) pipeline similar to the
one from Figure 1, which adds the RE stage at the end of
the POS/parsing pipeline. We use the benchmark ACE 2004
dataset, which contains sentences labeled with entity-pairs
along with the corresponding relation type. As in previous
studies [22], the labeled relation types are collapsed into
seven pre-defined categories. To extract relations we used
the RECK relation extraction system [22], which employs an
SVM with a convolution kernel. Given a sentence, its POS
tag sequence, and its parse tree, and a pair of entities, the
SVM predicts the relation between them. RECK predicts the
class with the highest score if it exceeds a fixed pre-defined
threshold τ . Since RECK uses the Stanford parser [15], so
do we. Lingpipe was used for POS tagging.

A large fraction of this dataset can be trivially classified
using just the sentence tokens. Thus in order to better study
the impact of pipeline inference, we use a subset of the data
which consists of the “difficult” examples: all examples where
the predicted relation differs for at least one of the candidate
(POS sequence, parse tree) values. The candidate set consists
of the top 9 POS tag sequences predicted by LingPipe and
the top 5 parses predicted by the Stanford Parser for each
tag sequence (our results are stable to a broad choice of these
numbers). This leads to a set of 11016 examples.

Mean average precision (MAP) over the difficult examples
is used as the performance measure, computed by the ranking
scores of all examples for each of the seven relations. To
compare with results from the literature, we also report the
precision of the classification (using the same pre-defined
threshold for prediction τ as in [22]).

Synthetic Data (Synth) Pipeline: We also report re-
sults for a synthetic pipeline, since this allowed us to investi-
gate a wide range of scenarios, such as the amount of noise
at each stage of the pipeline. To generate this data, we used
the following model.

Each black box in the pipeline is represented by two dis-
tributions: the true distribution Pr(· | ·) (instantiated as a
Dirichlet distribution Dir(α)) mapping inputs to outputs

and the learned distribution P̂r(· | ·). The learned distri-
bution is a mixture of the true distribution and a Dir(α)
noise distribution. This captures the notion of noisy training
without having to materialize a training dataset or algorithm.
The default mixture weight for the noise was set to 10%. The
true label for an example is obtained as the Bayes Optimal
value using the true distributions.

By default, we use a three-stage pipeline. The first black
box takes in one of 500 input values and outputs one of 50
outputs. Using the above as input, the second black box
outputs one of 20 outputs, which is used in the final stage to
generate one of 10 possible outputs. We report 0/1 accuracies
for these final outputs, averaged over 500 synthetic pipelines
drawn from Dir(α).

4.1 Results
We now show the results of our experimental study. In

the remainder, we distinguish between performance of the
inference, which is measured by problem-specific quality



Data Top-1 Top-k
(k=1) k = 2 k = 3 k = 5

Parse 83.0 83.9 84.4 85.3
RelEx 35.0 35.9 36.4 37.0
Synth 25.4 34.4 44.2 59.2

Table 1: Performance of Top-k inference.

Data Top-1 Beam-M
(M=1) M=2 M=3 M=5 M=7 M=15

Parse 83.0 83.9 84.4 85.3 85.7 85.9
RelEx 35.1 35.5 35.7 36.3 36.7 37.0
Synth 25.4 30.2 34.5 42.2 49.5 74.2

Table 4: Performance of Beam-M inference.

measures and computational cost, which we measure by the
number of calls to the black box components in the pipeline.

4.1.1 Performance of Top-k
The first experiment verifies whether Top-k inference in-

deed provides better prediction performance than the canon-
ical Top-1 inference. The results for the three pipelines are

shown in Table 1. ~k is set so that each component returns
the same number of outputs. All measures are on a 0-100
scale – the larger the better.

We can see that going from Top-1 to even just Top-2 has
a substantial impact on all the pipelines; for instance, we
see a ∼ 3% improvement in the MAP score for Relation
Extraction. With increasing k, the performance continues to
improve monotonically.

Closer inspection reveals that this difference is largely due
to the errors made by the Top-1 inference in the early stages
of the pipeline. On the Parse pipeline, for example, using
the True POS tag sequence (available from the labeled test
set), instead of the Lingpipe output, we obtain a significantly
higher F-1 score of 89.1% even when using top-1 in the second
stage. Similarly, in the Synth pipeline, the Bayes-Optimal
solution using the noisy learned distributions P̂r(· | ·) leads
to an accuracy of 90.1%. Using Top-k inference narrows the
gap between the naive Top-1 baseline and these skylines by
overcoming early-stage errors in the pipeline.

4.1.2 The Choice of k Throughout The Pipeline
How should we set k in the pipeline — should we use the

same k for all components or should k vary by component?
To answer this question, we experimented with the two real-
world pipelines using up to nine POS tag sequences and five
parse trees. The results are shown in Tables 2 and 3. We can
see that using a larger k helps more for tagging than parsing.
For instance, using the top-5 POS tag sequences and the
top parse tree leads to larger improvements than using the
top-5 parse trees and the top POS tag sequence across both
pipelines. This indicates that the gains observed are mainly
due to “fixing” errors in early stages of the pipeline. Sending
more outputs from the early stages provides a mechanism
for the pipeline to recover the true eventual output even if
the top intermediate output is incorrect. Thus including a
sufficiently good POS sequence in the top-k improves the
confidence of the correct parse. This effect is particularly
pronounced in the two-stage parsing pipeline (compared to
the three-stage RelEx pipeline) as here fixing errors in the
POS tag sequence has a larger impact on the eventual output.

Data Top 1 Top-k Beam-M
2 3 5 2 3 5

Parse 83.4 84.7 85.3 85.9 84.7 85.3 85.9
RelEx 34.3 35.3 35.5 35.4 35.5 35.4 35.8
Synth 24.7 33.0 40.0 52.5 28.7 31.9 37.7

Table 5: The effect of noise in the learned models.

These performance improvements exist for nearly every
combination of k values for both datasets. In particular, using
only the top-1 parse tree but all the top-9 tag sequences leads
to more than 250 additional sentences parsed correctly and
a gain of ∼ 10% in precision for the RelEx pipeline. Thus, if
we have limited resources, we should use different values of
k throughout the pipeline.

4.1.3 Performance of Beam-M
Next we investigate if the computationally cheaper Beam-

M inference also improves over Top-1 inference. We use a
fixed beam width M across all stages of the pipeline. Table 4
shows the results of varying M for the three pipelines. As
with Top-k inference, we find that deepening the beam by
even one (M = 2) leads to improvements on all pipelines.
Further increasing M provides additional gains. Again, it
seems helpful to pass more information at earlier stages of the
pipeline. Comparing k=3 and M=7 for the RelEx Pipeline
shows that passing on more (3 vs 7) POS tag sequences helps
despite passing fewer (9 vs 7) parse trees.

Note that the amount of information that is passed be-
tween components is constant in Beam-M , while it can grow
exponentially with pipeline length for Top-k. Scalability can
be further improved by reducing the beam for components
that are computationally intensive.

4.1.4 Adaptive Inference
Our results indicate that the inference algorithms can trade

off computational cost and performance by varying k or M .
Algorithm 3 automatically selects the beam size individually
for each pipeline component on a per-example basis. We ran
Algorithm 3 for different values of δ ∈ [0.001, 0.999]. For
each run, we set identical values of δ for all components in
the pipeline. We measured the computational cost in terms
of the sum of black box calls.

Figure 6 shows the tradeoff achieved by this deepening
strategy. In all pipelines, we find a diminishing return in per-
formance gain when we increase computation. This means
that we can achieve significant improvement in performance
with a small computational overhead as compared to the
canonical Top-1 approach. As the computational cost is
monotone in δ, we can estimate the value of δ that fits within
the available computational budget (and maximizes perfor-
mance) by profiling over a small sample of examples. Other
beam deepening strategies lead to similar results, but are
omitted for brevity. Our cost model assumed a uniform cost
across pipeline components. However, more sophisticated
cost models could plausibly be incorporated and further
extensions to adaptive deepening are discussed in Section 5.

4.1.5 The Effect of Noise in the Learned Models
How robust are Top-k and Beam-M inference algorithms

to errors in the predictions of the components? To answer
this question, we experimented using different sources of
noise and error in the learned models. A common source of
error is that models may have been trained on out-of-domain



Number Number of POS Sequences
of Parse 1 2 3 4 5 7 9

Trees F1 #Cor F1 #Cor F1 #Cor F1 #Cor F1 #Cor F1 #Cor F1 #Cor
1 83.0 2629 83.9 2749 84.4 2820 84.9 2841 85.2 2864 85.7 2886 85.9 2893
2 83.0 2629 83.9 2750 84.4 2823 84.9 2843 85.2 2868 85.7 2893 85.9 2899
3 83.0 2630 83.9 2748 84.4 2823 84.9 2841 85.3 2865 85.7 2892 85.9 2900
4 83.0 2630 83.9 2750 84.4 2824 84.9 2843 85.2 2865 85.7 2891 85.9 2899
5 83.0 2634 83.9 2753 84.4 2828 84.9 2847 85.3 2868 85.7 2894 85.9 2902

Table 2: Results of Top-k inference for Parse pipeline on varying k for the tagging and parsing components.

Number Number of POS Sequences
of Parse 1 2 3 4 5 7 9

Trees MAP Prec MAP Prec MAP Prec MAP Prec MAP Prec MAP Prec MAP Prec
1 35.1 68.5 35.4 70.1 35.8 72.6 36.0 72.3 36.4 74.4 36.6 77.5 36.8 75.9
2 35.5 70.0 35.9 69.8 36.1 72.0 36.4 72.0 36.6 74.1 36.6 75.9 36.8 75.3
3 35.7 70.3 36.0 70.9 36.4 72.6 36.5 72.3 36.8 74.7 36.7 76.2 36.9 75.6
4 35.8 69.2 36.2 70.9 36.4 72.6 36.6 72.9 37.0 73.8 37.0 76.5 37.1 75.9
5 35.9 68.9 36.3 70.9 36.5 72.6 36.7 72.6 37.0 73.5 37.1 76.2 37.3 75.6

Table 3: Results of Top-k inference for RelEx pipeline on varying k for the tagging and parsing components.

Length Top 1 Top-k Beam-M
2 3 5 2 3 5

2 48.7 57.4 65.1 76.1 57.4 65.1 76.1
3 24.4 35.0 45.1 62.3 30.6 36.4 46.1
4 17.2 29.4 44.2 64.9 21.6 26.6 34.5
5 16.0 33.3 46.0 71.6 20.1 22.5 31.8

Table 6: Effect of pipeline length for Synth.

α Top 1 Top-k Beam-M
2 3 5 2 3 5

0.1 58.6 75.0 85.1 94.8 70.9 78.6 87.5
0.2 42.1 56.8 68.0 83.2 52.1 59.4 70.2
0.5 24.4 35.0 45.1 62.3 30.6 36.4 46.1
1 17.1 24.0 33.7 50.7 20.6 25.1 33.4
5 12.2 16.3 22.1 37.5 13.6 15.5 21.5

Table 7: Effect of black box complexity for Synth.

data. Thus on the Parse pipeline (which is tested on financial
newswire text), we increased the error rate of the Lingpipe
POS tagger by training it on the literary Brown corpus [11].
Another source of error is the use of less powerful learning
techniques. As an example of this case, on the RelEx pipeline
we degraded the final RE stage by using the CK1 kernel
instead of the CK1+SSK kernel from [22], a weaker kernel,
in the SVM classifier. In the Synth pipeline, we increased
the noise component in the learned distribution mixture of
all pipeline components to 30%.

Table 5 shows the results comparing the different inference
methods in the presence of increased error and noise. While
the performance of different inference methods drops com-
pared to the low error/noise settings, we find that the Top-k
and Beam-M inference methods still significantly outperform
the canonical Top-1 inference method. Furthermore, the per-
formance for both proposed inference techniques improves
on increasing the value of k in Top-k or M in Beam-M as
already observed in the low error/noise settings. In general,
the trends from our earlier experiments continue to hold,
showing the robustness of our inference methods.

4.1.6 Pipeline Length and Complexity
In our last set of experiments, we explore the effects of

increasing pipeline length and complexity.

Task Tools
POS Tagging LingPipe, NLTK, Stanford Tagger,

GENiA, OpenNLP
Parsing Stanford Parser, Enju, NLTK

Table 8: Popular NLP modules for tagging and pars-
ing that provide the Top-k API

First, we varied the length of the synthetic pipeline by
adding more components at the end of the pipeline. The
results are shown in Table 6. As expected, the performance
for all methods drops as we increase the length. However,
we still find that the two proposed inference methods signifi-
cantly outperform the canonical method, and they maintain
their trends across varying pipeline lengths.

Second, another source of complexity in pipelines is the
difficulty of correct inference in the individual components.
To study this effect, we changed the Dirichlet distribution
parameter α that was used to generate the distributions for
each of the black boxes. The results are shown in Table 7.
We find that while the task gets harder as we increase α,
the Top-k and Beam-M inference methods maintain their
advantage compared to the Top-1 canonical inference.

5. DISCUSSION
Generality of our methods: Our DAG formalism is

general enough to subsume most pipelines used in practice.
For the general case of graphs with cycles (corresponding
to pipelines with feedback), there still exists an underlying
undirected graphical model, and message passing schemes
(like Loopy Belief Propagation) may correspond to natural
procedures for pipeline inference. In cases where feedback is
limited to a maximum number of iterations, the underlying
graph can be “unrolled” to a DAG, and our approach applies.

Since the Top-k API makes very mild assumptions about
the components, it is directly applicable in pipelines across
several domains, such as vision and robotics. We experi-
mented with NLP pipelines in particular as they offer an
attractive experimental test-bed to demonstrate our approach
since the community has clearly structured linguistic tasks
into well defined sub-tasks, and has agreed upon performance
measures for each sub-task. Additionally there exist a variety
of NLP software that provide the Top-k API. For example,
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Figure 6: Tradeoff between performance and computational cost (in terms of number of black box calls) for
the Parse (left), RelEx (middle) and Synth (right) pipelines.

Table 8 lists commonly used software for tagging and pars-
ing which provide this functionality. Relation extraction is
most commonly solved as a supervised multi-class predic-
tion problem, which trivially yields top-k output along with
conditional probabilities.

Applicable even without the Top-k API: In our ex-
position, we assumed that black boxes provide the Top-k API.
However our methods can still be used when this assumption
is violated, albeit with small modifications. For example,
some software provide joint probabilities Pr(Y,X | θ) in-
stead of conditional models. These can still be incorporated
into our framework via normalization, which can be done
efficiently for many learning models. When components do
not model a probabilistic distribution and only provide the
canonical output, we can still obtain a proxy for the Top-k
in our method, by using redundant techniques/software that
solve the same problem. This is not uncommon as seen in
Table 8. Techniques such as Boosting or Mixture-of-Experts
provide reliable proxies for the confidence scores assigned
by redundant components for each output. Another alter-
native, that is applicable when model parameters can be
re-learned, is to use variants of the same model obtained via
training from different data samples or other such parameter
perturbations.

Alternatives to Adaptive Inference: The Transform
operator in Algorithm 1 is just one way to limit computational
complexity during inference. An alternative transformation
of the intermediate output table Ti is to pass along tuples so
as to capture a fixed mass of the conditional probability. This
heuristic allows us to bound the gap between the inference
objective and the Bayes Optimal objective.

Inference in a pipeline should be a goal-oriented process.
When deciding whether to deepen the beam at a particular
component, we would ideally want to know the sensitivity of
the eventual output of the pipeline to additional intermediate
outputs. We can create adaptive inference strategies that
operate in phases. In the first phase, one may propagate
limited amounts of information throughout the pipeline to
reliably estimate the sensitivity of different components. This
can then help determine how to deepen the beams. A version
of this adaptive beam deepening heuristic that performs
sensitivity analysis of just the successor component (rather
than the end of the pipeline) showed promising empirical
results.

Limitations of Top-k Inference: The Top-k and Fixed
Beam approaches (as well as the canonical approach) are not
impervious to badly designed pipelines. For example, in a two
stage pipeline, if the second component ignores the output of
the first component when making its prediction, generating
additional outputs from the first component cannot improve
overall performance. Sensitivity analysis and adaptive beam
deepening promise to address this limitation.

Applying our ideas in monolithic software pipelines can
be challenging. These software, which typically deploy fine-
tuned instantiations of pipeline components, have been de-
signed to combat the problem of cascading errors in pipelines.
For instance, some relation extraction software bundle to-
gether a hand-tuned parser and POS tagger rather than
accepting inputs from off-the-shelf components. This makes
these systems brittle to changes in the evaluation domain
and prevents potential improvements from incorporating bet-
ter models developed for early stage components. Thus in
our experimental set-up, we made a conscious effort to have
a modular pipeline throughout, with different off-the-shelf
components plugged in for different tasks.

Our approach can also fail if the Bayes Optimal prediction
is not the ideal goal. For example, if an early component
encounters a catastrophic failure on an input, and the en-
tire conditional distribution is “wrong”, the Bayes optimal
prediction need not be the correct eventual output. In light
of our work, this provides interesting insight into model de-
velopment efforts. During training, it may be more prudent
to spend modeling effort on limiting catastrophic failures
across the input space, than tweaking parameters to make
the correct output appear at the top of the scored prediction
lists rather than a few places below.

Scalability of Inference: Pipeline inference is embar-
rassingly parallel: each instance in the test set is usually
processed independently. Hence, the overall cost of inference
is linear in the size of the test set. Thus approaches that
bring down the linear cost of testing are complementary to
our efforts at improving the quality of predictions.

Bridging DBs and Big Data Pipelines: The rela-
tional algebra formulation of our inference procedures draws
connections with probabilistic databases and data prove-
nance, and could be used as computationally-efficient infer-
ence methods for these problems as well.

6. RELATED WORK
In different domains, pipelines take different shapes. Li

et al. [16] have developed a model of shallow and broad
pipelines for scene understanding in computer vision, while
NLP pipelines are typically deep e.g., Machine Translation,
Semantic Role Labeling, Relation Extraction and Opinion
Extraction [27, 10, 5]. In Natural Language Processing,
UIMA [12], GATE [8] and more recently CURATOR [6]
provide several components that can be plugged into a con-
figurable pipeline. Our approach to improve inference in
pipelines is orthogonal to their implementations, and can be
incorporated into each of these frameworks seamlessly.

Beam search has been used commonly in combination
with algorithms for efficient inference [28]. To propagate
the outputs in the beam efficiently, a number of efficient
structures have been devised to compactly encode certain



families of distributions [21, 17]. Efficient encodings for top-k
lists can improve the scalability of our approach as well.

Adaptively sub-sampling data while training models with
bounded loss guarantees during inference is a way to trade-
off training efficiency with inference fidelity [9]. Researchers
have attempted to migrate code to FPGAs and GPUs [7] and
devised parallel implementations of expensive analysis tasks
[18, 19]. Our approach is complementary to these efforts,
and promises to trade-off efficiency and performance during
inference in a graceful manner.

An alternative to propagating the top-k outputs would
be to sample from the posterior distribution of probabilis-
tic models [10]. However we recognize that most practical
components do not support such an operation. Other work
alleviates the cascading error problem by routing the eventual
outputs back as inputs to the pipeline [16]. These iterative
methods do not have clear guarantees on convergence or on
the quality of inference. Finally, other groups have recog-
nized that canonical inference ignores the scores s(y) that
components provide. These scores can be incorporated as fea-
tures for downstream tasks [3] or used to iteratively constrain
outputs of upstream tasks in subsequent passes [13]. Another
approach to the cascading error problem is performing joint
inference across multiple stages of the pipeline, as done for
joint entity and relation extraction [30]. However, this is
limited to certain kinds of probabilistic models and to small
pipelines, due to the complexity of joint inference.

7. CONCLUSIONS
We propose a probabilistic graphical model that allows

principled reasoning about Big Data Pipelines. The model
provides a well-founded interface between pipeline compo-
nents that accounts for uncertainty, while maintaining modu-
larity that enables reuse of pipeline components. Abstracting
pipeline components behind an API that is already widely
supported by off-the-shelf components, the paper demon-
strated how Top-k inference, Beam search, and Adaptive
beam selection can provide improved prediction performance
and robustness of the overall pipeline. More generally, we
anticipate that this probabilistic model of Big Data Pipelines
will be useful in many other ways (e.g., the global tuning of
pipelines based on partial training data). This work was sup-
ported in part by NSF Awards IIS-1012593 and IIS-0911036.
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