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Abstract

This notes is ment to be a review of some basic inequalities and
bounds on Random variables. A basic understanding of probability
theory and set algebra might be required of the reader. This document
is aimed to provide clear and complete proof for some inequalities. For
readers familiar with the topics, many of the steps might seem trivial.
None the less they are provided to simplify the proofs for readers new
to the topic. This notes also provides to the best of my knowledge,
the most generalized statement and proof for Symmetrization lemma. 1
also provides the less famous but geralized proof for Jensen’s inequality
and logarithmic sobolev inequality. Refer [2] for a more detailed review
of many of these inequalities with examples demonstrating their uses.

1 Preliminary

Throughout this notes we shall consider a probability space (2, &, P) where
) is the sample space, £ is the event class which is a 0 —algebra on 2 and P
is a probability measure. Further, we shall assume that there exists a borel
measurable function mapping every point w € € to a real number uniquely
called a random variable. We shall call the space of random variables X
(note that X C R). Further, we shall assume that all the functions and sets
defined in the notes are measurable under the probability measure P.

2 Chebychev’s Inequality

Let us start this notes by proving what is refered to as Chebychev’s Inequal-
ity in [3]. Note, often by Chebychev’s inequality an inequality derived from
the below proved theorem is used. However [3] refers to this inequality as
Tchebycheff’s Inequality and the same is followed in this notes.



Theorem 1 For somea € X where X C R, let f be a non-negative function
such that {f(x) > b|Vx > a} , whereb € Y where Y C R. Then the following

inequality holds,
E
P(x > a) < %
Proof Let set X; = {x : > a&x € X} therefore we have,
X CX

Since f is a non-negative function, taking the lebesgue integral of the func-
tion over sets X; and X we have,

/fdPZ/ fap>b [ apr
X X1

X1
where [y, dP = P(X1). However the lebague integral over probability mea-
sure of a function is its expectation. Hence we have,
E{f(x:xz€ X)} >bP(Xy)
= B{f(2)} = bP( > )

and hence
E{f(2)}

P(x>a) <
(2>a) < —

(1)
|

Now let us suppose that the function f is monotonically increasing. There-
fore for every x > a, f(z) > f(a). In (1) use b = f(a). Therefore we

get
E
f(a)
From this we can get the well known inequalities like
E
Px>a)< {z}
a

called Markov inequality which holds for a > 0 and nonnegetive z,

P(lz — E(z)| > a) < B{jz - E(x)|*} _ Var{xz}

- a? a?
often called the Chebychev’s Inequality' and the Chernoff’s bound
E’ ST
P(z>a) < ¢ (3)
eS(Z

n this note, Var{} and o are used interchangeably for variance



3 Information Theoretic Bounds

3.1 Jensen’s Inequality

Here we shall state and prove a generalized, measure theoretic proof for
Jensen’s inequality. In general, in probability theory, a more specific form
of Jensen’s inequality is famous. But before that we shall first define a con-
vex function.

Definition A function ¢(z) is defined to be convex in interval (a,b) if for
every point z’ in the interval (a,b) there exists an m such that

¢(z) > m(x —a’) + ¢(a') (4)
for any = € (a,b) R

Note that this definition can be proved to be equivallent to the definition
of convex function as one in which the value of the function for any point
in the interval of convexity is always below the line segment joining the end
points of any subinterval of the convex interval containing that point. We
chose this particular definition for simplyfying the proof of Jensen’s inequal-
ity. Now without further a due, let us move to stating and proving Jensen’s
Inequality. (Note: Refer [4] for a similar generalized proof for Jensen’s In-
equality.)

Theorem 2 Let f and p be measurable functions of x which are finite a.e.
on A C R™. Now let fu and p be integrable on A and p > 0. If ¢ is a
function which is convex in interval (a,b) which is the range of function f
and [, ¢(f)u exists then,

Jafry o Jadl)n

2 Jam "= Jum

()

Proof From our assumptions, the range of f is (a,b) which is the interval
in which ¢(z) is convex. Hence, consider the number,

o fAfU
v Jan




Clearly it is within the interval (a,b). Further, from Equation (4) we have
for almost every x,

¢(f(x)) = m(f(z) —2') + ¢(a")
Multiplying by p and integrating both sides we get,

Jomzm([ gu=o [ w+oe) [ n

Now see that [, fu— 2’ [, p =0 and hence we have,

[ othu= o) [

hence we get the result,

[4¢(f)n2¢(fAfM)Au

Jar
[ |

Now note that if p is a probability measure then, [, = 1 and since
expected value is simply lebesgue integral of function w.r.t. probability
measure, we have

Elo(f(2))] = o(E[f(2)]) (6)

for any function ¢ convex for the range of function f(z).

Now a function ¢(x) is convex if ¢'(x) exists and is monotonically in-
creasing and if second derivative exists and is nonnegetive. Therefore we
can conclude that the function —log = is a convex function. Therefore by
Jensen’s inequality, we have

E[-log f(x)] > log E[f(x)]

Now if we take function f(z) to be the probability result we get the result
that Entropy H (P) is always greater than or equal to 0. If we make f(x) the
ratio of two probability measures dP and d@Q, we get the result that relative
entropy or KL divergence of two distributions is always non negetive. That
is

D(PIQ) = Erflog G 1) = tog Erl GoT) = tog(BqldQa)) =0
Therefore,
D(PQ) >0



3.2 Han’s Inequality

We shall first prove the Han’s Inequality for entropy and then usingthe
result, we shall prove the Han’s Inequality for relative entropy.

Theorem 3 Let x1,x3, ..., T, be discrete random variables from sample space
X. Then

1 n
H(xy,.oyap) <

n—1F¢*
(3

Proof Note that D(Px y||Px x Py) = H(X) — H(XY). Since we already
proved that Relative entropy is non-negetive, we have, H(X) > H(X|Y).
This in a vague way means that information (about some variable Y') can
only reduce entropy or uncertainity (H (X|Y')), which makes intutive sense.
Now consider the entropy,

H(:L‘l,...,:Eifl,.%‘prl,...,l‘n) (7)
1

H(xl, ey xn) = H(:L‘l, ey L1 Tt 1y ey xn) + H(:Eilfl,‘l, ey L1, T 1, ,:En)
Since we have already seen that H(X) > H(X|Y), applying this we have,
H(x1,.,mp) < H(T1, o0, B 1, Tig 1, ooy Tn) + H (w21, 00 251)

Summing both sides upto n we get

n
nH(xl, ,.’Iin) < ZH(.’L’l, ey Ti—1, T4 1, ,l‘n) + H(l‘i|l‘1, ...,.’Ei_l)
=1

Now note that by definition of conditional entropy, H(X|Y) = H(X,Y) —

H(Y). Therefore extending this to many variables we get the chain rule of

entropy as,
n

H(zy,...,zp) = ZH(xib:l, ey Tj—1)
i=1

Therefore using this chain rule,
n
nH(xy,...,2,) < ZH(ml, ey Ty L1y ey L) + H (21, ooy Tp)
=1
Therefore,

1
-1

n
Z H(-le cees Li—15 Tt 1y -ey ZEn)
i=1

3



Now we shall prove the Han’s inequality for relative entropies. Let
! = 1,9, ...,zy be discrete random variables from sample space X just
like in the previous case. Now let P and @) be probability distributions in
the product space X™ and let P be a distribution such that W) =
dPi(z1) dP>(z2) . dPn(wn) !

. That is distribution P assumes independence of the

dx1 dxo
variables (z1, ... xn) with the probability density function of each variable
T; as dP (I) Let () = (T1, ey Tim1, Tig1, -, Tn). Now with this setting we

shall state and prove Han’s relative entropy inequlity.

Theorem 4 Given any distribution @Q on product space X™ and a distribu-
tion P on X™ which assumes independence of variables (x1, ..., xy)

1 = 7 7
DQIIP) < —— > D(QW||PY) (8)
=1
where
Q(Z)(.’E(Z)) :/ dQ(l‘ly-"7Ii*1)mia$i+17"'7$n)dx'
X dx? ¢
and

, : AP(Z1, ooy Tim1, Ty Tik 1y vy Ty
PO (0 :/ 3o s T s Tn) g
(:E ) " d.’E? T

Proof By definition of relative entropy,

Q dQ
dac

dQ  , dP

D(QIIP) = [ dQtog 09(dQ) ~ grclog( et (9)

dz}

In the above equation, consider the term an @y log(d—P))d:I:’f. From our

assumption about P we know that

dP(x}) _ dPy(x1) dPy(x)  dP,(xy,)
dx? dxy dza T dx,

Now P®(z®) = [, P21 i1 TiTik 1) g therefore,

dz¥

P(z})  dP(x;) dP (2(0)
det  dx; dz®

Therefore using this we get

aQ,

Xn d:c

(3) ((0)
g et = 13 [ 5% oo T g S




dQW 1P a) 1 odQ, dP(}). .
Z/xmdmw L D s

Rearranging the terms we get,

dQ dP( ) / d@ﬁ dP@)(x(i)) Q)

Now also note that by Han’s inequlity for entropy,

dqQ ,  dQ(zf / Q(2 Q(i) @) o)
- a d K3
xXn dz?l g( d Z n d:L‘(/L d.j[j(z) ) o

Therefore when we consider relative entropy given by Equation (9) we get,

D(Q||P)
Q) dQ(i)(z( , dQ(z dp(i) (a;(i))
*n—1/XMZd<z ) n_1/anz pROEL

Thus finally simplifying we get the required result as

n

D@QIIP) < -3 DEQU|IPY)
=1
[ |

4 Inequalities of Sums of Random Variables

4.1 Hoeffding’s Inequality

Theorem 5 Let be independent bounded random wvariables such that the
random variable x; falls in the interval [p;,q;]. Then for any a > 0 we have

242

P wi— B(Y w) > a) <e i)
i=1 i=1

Proof Form the Chernoff’s bound given by (3) we get,

Ees(z—E(z))

esa

P(x—E(z)>a) <

()



Let S, = Y7 ; ;. Therefore we have,

Ees(Sn—E(5n))
eSCL

P(S, — E(S,) >a) <

< es ﬁ Ees(zifE(zi)) (10)
i=1
Now Let y be any random variable such that p <y < ¢ and Fy = 0. Then
for any s > 0 due to convexity of exponential function we have

sy S y_Pesq+ q_yesp
q—p q—p

e

Taking expectation on both sides we get,

Ee®Y <

Now let o = —£. Therefore,

q-p’
Ee’ < (aes(qu +(1— a))efsa(qu)
= e < eloglae’™ P4 (1-a))—sa(q—p)
= Be® < e?W) (11)

Where the function ¢(u) = log(ae® + (1 — a)) — uc and u = s(q — p).
Now using Taylor’s theorem, we have for some 7,

132
é(z) = $(0) + 2¢'(0) + 50" () (12)

But we have ¢(0) = 0 and ¢'(x) = — a. Therefore ¢'(0) = 0 Now,

ae
ae®+(1—a)

a(l —a)e”

P = T ot e

If we consider ¢”(x) we see that the function is maximum when

" (z) = a(l —a)e” B 202(1 — a)e®® _
(1-—a+ae®)?  (1—a+ ae?)d
= e’ = l1-a
!



Therefore, for any x

/1 ((1—04)2)_1
¢ (@Sm—z

Therefore from (12) and (11) we have

w2

Ee%Y <es
Therefore for any p <y <gq

s2(a=p)?

Ee® <e s (13)

Using this in (10) we get,

T D)
8

P(S, — E(Sy) > a) <e *%°

Now we find the best bound by minimizing the L.H.S. of the above equation
w.r.t s. Therefore we have

n [ 2
deSQZizl ;ql Pi) _sa

dor (ai—py)? n _p)2
o _ es2+—sa(25 i=1 (QZ pl) —a)=0
Therefore for the best bound we have
4a
S=m e
>i (g — pi)
and correspondingly we get
_ 242
P(S, — E(Sp) > a) < e 2uimt @r)? (14)

Now an interesting result from the Hoeffding’s inequality often used in
learning theory is to bound not the differnce in sum and its corresponding
expectation but the emperical average of loss function and its expectation.
This is done by using (14) as,

_ 2(an)2
P(Sn - E(Sn) > na) <e Zi:l (ai=ps)?
. 2(aN)2
- P(& o E(Sy) >a)<e Doy (ai—pi)?
n n

Now E,x = % denotes the emperical average of x and % = FEx. There-

fore we have -

2n“a

P(En(z) — B(z) > a) < e S @n? )



4.2 Bernstein’s Inequality

Hoeffding’s inequality does not use any knowledge about the distribution of
variables. The Bernstein’s inequality [7] uses the variance of the distribution
to get a tighter bound.

Theorem 6 Let xq,xo, ..., z, be independent bounded random variables such
that Ex; = 0 and |z;| < ¢ with probability 1 and let 0* = L 7 Var{z;}
Then for any a > 0 we have

12  ne?
Pl as g < T
1=

Proof We need to re-estimate the new bound starting from (10). Let
X s"2E(2)
Iy = Z R
= rlo;
where 0 = Ex?. Now €% = 1 4+ 2 + 322, Z-. Therefore,
00 E(x"
FEes% =1 +3E-Ti + Zﬂ
r=2 rl

Since Fx; = 0 we have,
Ee’® =1+ F;s%0?

< eFis2ai2

Consider the term Ex}. Since expectation of a function is just the Lebesgue
integral of the function with respect to probability measure, we have Ex] =
Ip gv;_lxi. Using Schwarz’s inequality we get,

_ _ 1 1
B = [ i e < ([ Jar B el
P P P

= Bx} < oi( [ o)
P

Proceeding to use the Schwarz’s inequality recursively n times we get

14112, an-l _ont1_ 1
Brj <ot ([T
P

10



N n+1__ 1
BT Sk

Now we know that |z;| < ¢. Therefore
onp_on+l_q 1 n n+1__ 1
([ a0 < (@)

Hence we get
1n
Bal < {077 )r-2an)y

Taking limit n to infinity we get

_1n
Ezx} < limnﬂoo{af(1 2 )g(’"_Z—gLn)}

= Eal < o2 (16)
Therefore,
i " 2E ) o ST—20_2§T—2
F 1
| 2
Bl rlo;
Therefore,

1 X s'¢" 1
Fi < = 55(e* —1-s50)
52¢2 72 7! $2¢;
Applying this to (16) we get,

22 (e —1—s9)

Ex; <e " %2

m

Now using (10) and the fact that 02 = 7= we get,

P(S, >a) <e %’ "7 22 (17)

Now to obtain the closest bound we minimize R.H.S w.r.t s. Therefore we
get

2((6Sg 1— sc)) _sa

deS no 2.2

_68 no 2((“71*%)) sa, o,(s€” —%)

ds N (no™(

Therefore to get a tighter bound we have

11



Therefore we have !
s = —log(ﬁ +1)
S n

o2
Using this s in (17) we get
P(Sy > a) < 25 Gz —loal 5 +1) - SHog(25-+)

no? (_as _joo(-aS. 4 1) _as ag
< e 7 ‘no? log(-27+1)——5log(-25+1))

Let H(z) = (14 x)log(1 + z) — x Therefore we get

o2 1 ac
P(S, >a) < oz HS) a8

This is called the Bennett’s inequality [?]. We can derive the Bernstien’s
inequality by further bounding the function H(z). Let function G(x) =
322 We see that H(0) = G(0) = H'(0) = G'(0) = 0 and we see that
2 z+3

H'(z) = rh and G (x) = ﬁ Therefore H”(0) > G"(0) and further
if f*(x) of a function f represents the nt" derivative of the function then
we have H™(0) > G™(0) for any {n > 2}. Therefore as a consequence of

Taylor’s theorem we have
H(z) > G(x)Vx >0

Therefore applying this to (18) we get

n 7710‘2 (3
P(Z x; >a)<e 2 Gooz)
i

n a2
P30 > ) < e
i
Now let @ = ne. Therefore,

2.2

" —€" N
P>z > ne) < enestane®

(2

Therefore we get,
2

1 « __ne
P(= E x; > €) < e 207+2¢/3 (19)
n “
=1

An interesting phenomenon here is that if o < € then the upper bound
2 . . .
grows as e~ "¢ rather than e as suggested by Hoeffding’s inequality (14).

12



5 Inequalities of Functions of Random Variables

5.1 Efron Stien’s Inequality

Till now we only considered sum of R.V.s. Now we shall consider functions

of R.V.s. The so called Efron Stien inequality due to Michael Steel in [13] given
below is one of the tightest bounds known.

Theorem 7 Let S : X" — R be a measurable function which is invari-
ant under permutation and let the random wariable Z be given by Z =
S(x1,x2,....xpn). Then we have

Var(2) < 1S B2 - 22
=1

DN | —

where Z] = S(x1, ..., @}, ..., xy) where {x},...x),} is another sample from the

same distribution as that of {x1,...xn}

Proof Let
EiZ = E[Z|SC1, ooy Lj—1y Ti+1, ,1‘”]

and let V = 7 — EZ. Now if we define V; as
‘/Z' = E[Z|$1, ,ZEZ] - E[Z|3?1, ...,Ii_l],Vi = 1, 1

then V =31, V; and

Var(z) = BV = E[(3 V) = B> V2] + 2[5 ViV

=1 =1 ©>7

Now E[XY] = E[E[XY|Y]] = E[YE[X|Y]], therefore E[V;V;] = E[V;E[V|x1, ...

But since i > j E[Vj|z1,...,2;] = 0. Therefore we have,

n n

Var(Z) = E[Y_ V7] = Y BIV?)

Now let £ ; represent expectation w.r.t variables {xi,...,z;}

Var(Z) =Y E[(E[Z|x1, ...,x] — E[Z|z1, ..., xi1])]
i=1

13

axl]]



Tit1

= Z Emzl [(E n [Z|JZ1, ,33@] — Ea:f [Z|IJZ1, ...,xifl])Z]
i=1

E [(Em;t+1 [Z|$1, ceey xz] - Exn [E'g,;Z [Zl:l?l, ceey 1‘1;1“)2]

Zl i+1

I
R
i M:
n

However, x“ is a convex function and hence we can apply Jensens inequality
(6) and hence get,

n

VCL’I“(Z) S ZE P [(Z — Ewl [Z|$1, ceey Li—1y Li41, ,l‘n])z]

T1:Ti41
i=1
Therefore,
Var(2) <) E|(Z - Ei[Z])%]
i=1

Where E;[Z] = E[Z|x1, ..., Xi—1, Tit1, ---, Tp). Now let z and y be 2 indepen-
dent samples from the same distribution.

B(z —y)? = E[2* +y* — 22y] = 2E[2?] — 2(E[x])?

Hence, if 2 and y are 1.1.d’s, then Var{z} = E[%(z — y)?]. Thus we have,
) ) n_1p 2
Ei((Z - Ei|Z]))7] = §Ez[(Z - ;)]

Thus we have the Efron-Stein inequality as

1 ,
Var(Z) = 5 ;E[(Z - Zj)’] (20)

[ |
Notice that if function S is the sum of the random variables the inequality

becomes an equality. Hence the bound is tight. It is often refered to as
jacknife bound.

5.2 McDiarmid’s Inequality

Theorem 8 Let S : X" — R be a measurable function which is invari-
ant under permutation and let the random wariable Z be given by Z =
S(x1,x2,....xpn). Then for any a > 0 we have




whenever the function has bounded difference [10]. That is
supxlw,xmxﬂS(:rl,xz, s Tp) = S(T1, ey Ty oy )| <
,Tpn) where {2, .2} is a sample from the same

! __ /
where Z; = S(x1, ..., 2}, ...

distribution as {x1,...xn}
Proof Using Chernoff’s bound (3) we get
P(Z — E[Z] > a) < e~%aePlZ—E]
Now let,
‘/Z' = E[Z|$1, 7377,] - E[Z|371, ...,Ii_l],Vi = 1, N

then V =31, V; = Z — E[Z]. Therefore,
P(Z - E[Z] > a) < e **Ele2oi=*Vi] = ¢~ ] E[e*"] (21)

Now Let V; be bounded by the interval [L;, U;]. We know that |Z —Z])| < g,
hence it follows that |V;| < ¢; and hence |U; — L;| < ;. Using (13) on E[e®"/]

we get,
2 2 2 2
s7(U;—Ly) 57S

Ele?Vi]<e s <e’s

Using this in (21) we get,

n S2§i2 n §Z~2
P(Z-E[Z]>a)<e ®][e= = s 2im §sa
i=1

Now to make the bound tight we simply minimize it with respect to s.
Therefore to do that,

2s 2 —a=0
28
i=1
N 4q
5= =3
i=15;

Therefore the bound is given by,

(i)’ X - ()
P(Z —E[Z] > a) < e 2i=1" - POUNE

15



= P(Z—E[Z] > a) < _(2“3

Hence we get,

P(Z - E|Z]| > a) < 26_(21 157 (22)
n

5.3 Logarithmic Sobolev Inequality

This inequality is very useful in deriving simple proofs for many known
bounds using a method famous as Ledoux method [11]. Before jumping into
the therem, let us first prove a useful lemma.

Lemma 9 For any positive random variable y and o > 0 we have
E{ylog y} — Ey log By < E{ylogy — ylog a —(y—a)} (23)
Proof For any (x > 0 ) we have, log © < x — 1. Therefore,

l —<——1
OgEy Ey

Therefore, N
Ey logE—y <a—FEy
adding E{ylog y} on both sides we get,
Ey loga — Ey logEy + E{ylog y} < o — Ey + E{ylog y}
Therefore simplifying we get the required result as
E{ylog y} — Ey log Ey < E{ylogy — ylog a— (y —a)}
[ |

Now just like in the previous two sections, let S : X™ — R be a mea-
surable function which is invariant under permutation and let the random
variable Z be given by Z = S(x1, xz, ...y Tp). Here we assume independence
of (1,2, ..., xn). ZI = S(x1,..., 2}, .. a:n) where {z], ...} } is another sam-
ple from the same distribution as that of {z1,...z,}. Now we are ready to
state and prove the logarithmic Sobolev inequality.

16



Theorem 10 If function ¥(x) = e* —x — 1 then,
sE{Ze’?Y — E{e*Z}log E{e’?} < iE{essz(—s(Z - 7))} (24)
i=1

Proof From Lemma 1 (Equation(23)) we have for any positive variable Y
and a =Y/ >0,

E{Ylog Y} —E;Y log E;Y < E{YlogY — YlogY] — (Y —Y/)}
Now let Y = ¢4 and Y/ = e°%i then,
E{Ylog Y} — EY log BiY < E{e®?(sZ — sZ) — e’ (1 — e¥47%)}
Writing it in terms of function ¥ (x) we get,
E{Ylog Y} — EY log BY < Ef{e?y(—s(Z - Z)}  (25)

Now let measure P denote the distribution of (x1, ..., ;) and let distribution
Q@ be given by,

dQ(x1, ..., xpn) = dP(z1, ..., k)Y (21, .0y Tp)
Then we have,
D(Q||P) = Eq{log Y} = Ep{Ylog Y} = E{Ylog Y'}
Now since Y is positive, we have
D(Q||P) > E{Ylog Y} — EYlog EY (26)

However by Han’s inequality for relative entropy, rearranging Equation (8)

we have,
n

D(QI|P) < Z (QIIP) = D(QWIPY) (27)

Now we have already shown that D(Q||P) = E{Ylog Y} and further,
E{E;i{Ylog Y}} = E{Ylog Y} therefore, D(Q||P) = E{E;{Ylog Y}}. Now
by definition,

M_/ dQ(x1, .y Ti—1, Tj, Tig 1, -y Tn)
X

: du;
dz () dz? v

_ / Y (21, ey ©p ) AP (X1, oy T 1y Ty Tt 1y oeey T

dx;
dz? ‘

17



Due to the independence assumption of the sample, we can rewrite the above
as,

dQW (£(1) dP(x1, ., Ti—1, Tit1,

= o /}(Y(xl,...,xn)da(x,)

_ dP(z1, ..., xi_1,_$i+17 ey xn)EiY
dz(®

Therefore D(Q®||P®) is given by,

D(QW|| Py = /X _ EiYlog E;YdP(z') = E{E;Ylog E;Y'}

Now using this we get,
n . . n

> D@IIP) = D@QY|IPY) =" E{Ei{Ylog Y}} — E{E;Ylog E;Y'}

i=1 =1
Therefore, using this in Equation (27) we get,

D(QIIP) < 3. B{E{Ylog Y}} — B{E:Ylog E,Y}
i=1
and using this inturn with Equation (26) we get,
E{Ylog Y} — EYlog EY < ZE{Ei{Ylog Y} — E;Ylog E;Y'}
i=1

Using the above with Equation (25) and substituting Y with e*? we get the
first required result as,

sE{Ze*?} — E{e*? }og E{e*?} < iE{eszw(—s(Z - ZN}

i=1
[ |
6 Symmetrization Lemma
The symmetrisization lemma is probably one of the easier bounds we re-
view in this notes. However, it is extremely powerful since it allows us to

bound the difference between of emperical mean of a function and its ex-
pected value, using the difference between emperical means of the function
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for 2 independent samples of the same size as the original sample. Note
that in most literature, the symmetrization lemma stated and proved only
bounds zero one functions like loss function or the actual classification func-
tion. Here we derive a more generalized version where we prove the lemma
for bounding the difference between expectation of any measurable function
with bounded variance and its emperical mean.

Lemma 11 Let f : X — R be a measurable function such that Var{f} <
C. Let E,{f} be the emperical mean of the function f(x) estimated using
a set (x1, T2, ..., xy) of n independent identical samples from space X. Then

for any a >0 if n > i—? we have,

P(IE{f} = Es{f}| >a)  (28)

N | —

PUB 1) - B ()] > 5a) >

where En/{f} and En,/{f} stand for emperical mean of the function f(x)

estimated using samples (z,xh, ...,x}) and (2, xh, ..., xll) respectively

Proof By the definition of probability,
P(|B, E(f} > 2a)= [ 1 P
(B = BN 2 50 = [ Vsiin-sog

Where function 1, is 1 for any z > 0 and 0 otherwise. Since X?” is the
product space X™ x X™ using Fubini’s theorem we have,

A/ ~ I 1 o /! /
P(|En {f} - by {f}| > 5@) - /X” n 1[‘En/{f}_gn”{f}‘_%a}dp dp

Now since the set Y = {(x1, Zo, ..., zp) : |[E{f} — Eo{f}| > a} is a subset of
X™ and term inside the integral is always non-negetive,

~ ! ~ N ].
- > Zq) > L - "d P’
Now let Let Z = {(21,22, ..., xn) : |Eo{f} — E{f(2)}| < 2}. Clearly for any
sample (x1,x2,...,xay), if (x1,22,....,2,) € Y and (zp41, Tnt2, -, Ton) € Z

it implies that (x1, 9, ..., x2,) is a sample such that |Enl{f} — En//{f}\ >3
Therefore, coming back to the integral since Z C X™ |

/! / /! /
/Y / B B -1 AR 2 /Y /Z1[\En/{f}—En”{f}\—%a]dP P
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Now since the integral is over Y and Z half spaces as we saw earlier,

/! / ' /! /

= [ PUES (s} - BUAY < qayaP
Y

Therefore,

1" 1! ~ 1 /
/Y/ Y. (-8 11y-1a 0740 2 /YP“E” {f} = B{f} = 50)dP
Now,

~ 1 Al 1
PE ()~ B{}] < 3a) = 1~ PUES {1} ~ BUfY| > 5a)
Using Equation (2) (often called the chebyshev’s inequality) we get,

AVar{f} < 4Cc

PB." () - B{fY > ga) < "ot < 28

na ~ na

8C

Now if we choose n such that n > e

as per our assumption then,

P(B (7}~ B{f}l > ga) < 5

Therefore,
~ I 1 1 1
PUB 1)~ BUY < o) 21— L =
Puting this back in the integral we get,
~ N 1 1 1
PUB (1} = B () 2 qa) = [ aP' =3 [ P’
2 y 2 2 Jy

Therefore we get the final result as,

P(|E{f} — En{f}| > a)

DN | —

(B (7}~ B (£} > 5a) >
[ |

Note that if we make the function f to be a zero one function then the

maximum possible variance is i. Hence if we set C' to % then the condition

under which the inequality holds becomes, n > a—22 Further note that if
we choose the zero one function f(z) such that it is 1 when say z is a
particular value and 0 if not, then the result basically bounds the absolute
difference between probability of the event of x taking a particular value and
the frequency estimate of x taking that value in a sample of size n using
the difference in the frequencies of occurance of the value in 2 independent

samples of size n.
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