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Abstract

We propose a new framework called recursive lattice reduction for finding short non-zero
vectors in a lattice or for finding dense sublattices of a lattice. At a high level, the framework
works by recursively searching for dense sublattices of dense sublattices (or their duals) with
progressively lower rank. Eventually, the procedure encounters a recursive call on a lattice L
with relatively low rank k, at which point we simply use a known algorithm to find a shortest
non-zero vector in L.

We view this new framework as complementary to basis reduction algorithms, which similarly
work to reduce an n-dimensional lattice problem with some approximation factor γ to a lower-
dimensional exact lattice problem in some lower dimension k, with a tradeoff between γ, n, and
k. Our framework provides an alternative and arguably simpler perspective, which in particular
can be described without explicitly referencing any specific basis of the lattice, the Gram-
Schmidt orthogonalization, or even projection (though, of course, concrete implementations of
algorithms in this framework will likely make use of such things).

We present a number of specific instantiations of our framework to illustrate its usefulness.
Our main concrete result is an efficient reduction that matches the tradeoff between γ, n, and
k achieved by the best-known basis reduction algorithms (in terms of the Hermite factor, up to
low-order terms) across all parameter regimes. In fact, this reduction also can be used to find
dense sublattices with any rank ℓ satisfying min{ℓ, n− ℓ} ≤ n− k + 1, using only an oracle for
SVP (or even just Hermite SVP) in k dimensions, which is itself a novel result (as far as the
authors know).

We also show an extremely simple reduction that achieves the same tradeoff (up to low order
terms) in quasipolynomial time, and a reduction from the problem of finding dense sublattices of
a high-dimensional lattice to the problem of finding dense sublattices of lower-dimensional lat-
tices. Finally, we present an automated approach for searching for algorithms in this framework
that (provably) achieve better approximations with fewer oracle calls.
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1 Introduction

A lattice L ⊂ Rd is the set of all integer linear combinations of n linearly independent basis vectors
B = (b1, . . . ,bn) ∈ Rd×n, i.e.,

L := {z1b1 + z2b2 + · · ·+ znbn : zi ∈ Z} .

We call n the rank of the lattice and d the dimension (or sometimes the ambient dimension). We
often implicitly assume that d = n (which is essentially without loss of generality, by identifying
span(L) with Rn).

The most important geometric quantities associated with a lattice L ⊂ Rd are the length
of a shortest non-zero lattice vector, λ1(L) := miny∈L̸=0

∥y∥, and the determinant, det(L) :=

det(BTB)1/2. (Here and throughout this paper, ∥x∥ := (x21 + · · · + x2d)
1/2 means the Euclidean

norm.) The determinant is best viewed as a measure of the global density of a lattice, with lattices
with smaller determinant being more dense, while λ1(L) is similarly a measure of the local density.
These two quantities are related by Hermite’s constant, which is defined as

δn := sup
L⊂Rd: rank(L)=n

λ1(L)2/det(L)
2
n ,

This is a very well studied quantity. Indeed, Minkowski’s celebrated first theorem tells us that
δn ≤ O(n), and the Minkowski-Hlawka theorem tells us that δn ≥ Ω(n). So, we know that
δn = Θ(n).

In this work, we are interested in the γ-Hermite Shortest Vector Problem (γ-HSVP) for γ =
γ(n) ≥

√
δn. The input in γ-HSVP is a basis for a lattice L ⊂ Rn, and the goal is to find a non-zero

lattice vector y ∈ L̸=0 such that ∥y∥ ≤ γ ·det(L)1/n.1 The parameter γ is called the approximation
factor or sometimes the Hermite factor. Notice that a solution is guaranteed to exist if and only if
γ ≥
√
δn.

This problem is central to lattice-based cryptography, which is in the process of widespread
deployment [NIS22]. In particular, the best known attacks on lattice-based cryptography essentially
work via reduction to γ-HSVP for γ = poly(n). Thus, precise estimates of the time complexity of
γ-HSVP are necessary for assessing the security of these schemes. (See, e.g., [ACD+18].)

Algorithms for γ-HSVP have a very rich history.2 In the hardest possible case when γ =√
δn, the fastest known algorithm for HSVP runs in 2Θ(n)-time [AKS01], with a long line of work

improving on the constant in the exponent [PS09, MV10b, MV10a, ADRS15, ALS21] (and another
long line of work on heuristic algorithms [NV08, Laa15, BDGL16], and yet another long line of
work on algorithms that do not quite achieve γ =

√
δn but do come very close, e.g., achieving

γ ≤
√
δn · poly(log n) [LWXZ11, WLW15, AUV19, ALS21]). The case of larger γ (say γ > n1/2+ε)

is more relevant to the current work, and we discuss it in depth below.

1In Section 2.5, we discuss the relationship between HSVP and the Shortest Vector Problem, in which the goal
is to find a non-zero lattice vector whose length is within a certain factor of the shortest such vector in the lattice.

2Most of the algorithms that we list here were originally presented as algorithms for the Shortest Vector Problem
(SVP). We are describing them as algorithms for HSVP, since this is what interests us (and, indeed, what is typically
relevant to cryptographers). See Section 2.5 for more discussion about the relationship between SVP and HSVP.
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1.1 Basis reduction algorithms

The first non-trivial3 algorithm for γ-HSVP for larger γ ≫
√
δn was the celebrated LLL algorithm

by Lenstra, Lenstra, and Lovász [LLL82]. Their algorithm runs in polynomial time and achieves
an approximation factor of γ = 2O(n). Indeed, forty years later, essentially all known non-trivial
algorithms for γ-HSVP for large γ ≫

√
δn still use the technique introduced by LLL: basis reduction.

So, in some (imprecise) sense, basis reduction is the only known framework for solving approximate
lattice problems, and the community has spent the past forty years generating a beautiful body of
literature devoted to perfecting this technique [Sch87, SE94, GN08b, GN08a, HPS11, MW16]. (See
[Wal20] for a recent popular survey.)

At a high level, basis reduction algorithms work to progressively find a shorter basis for the input
lattice L ⊂ Rn by solving exact SVP instances on carefully chosen lattices with rank k ≥ 2, where
k < n is known as the block size. Since the fastest known algorithms for

√
δk-HSVP on lattices

with rank k run in time 2Θ(k) (ignoring lower-order terms), the specific relationship between the
block size k and approximation factor γ is quite important. Basis reduction achieves a smooth
tradeoff, yielding an efficient reduction from γBR-HSVP on lattices with rank n to

√
δk-HSVP on

lattices with rank k that achieves

γBR ≈ δ
n−1

2(k−1)

k ≈ k
n
2k .

See, e.g., [GN08a, MW16, ALNS20, Wal20, ALS21]. (For cryptography, we are mostly concerned
with the case when k is rather large, e.g., k = Cn for some not-too-small constant C > 0.)

In more detail (which is not actually necessary for understanding the rest of this paper), basis re-
duction algorithms work by attempting to find a “good” basis of the given lattice (and in particular,
a basis whose first vector b1 is quite short) by manipulating the Gram-Schmidt orthogonalization
of the basis, b̃1 := b1, b̃2 := Π{b1}⊥(b2), . . . , b̃n := Π{b1,...,bn−1}⊥(bn), where Π{b1,...,bi}⊥ repre-
sents projection onto the subspace orthogonal to b1, . . . ,bi. The idea behind all basis reduction
algorithms is to make earlier Gram-Schmidt vectors b̃i shorter at the expense of making later Gram-
Schmidt vectors b̃j for j > i longer.4 In particular, one hopes to make the first Gram-Schmidt

vector b̃1 = b1 short, since it is actually a lattice vector (while all other Gram-Schmidt vectors
are projections of lattice vectors, which are typically not themselves lattice vectors). To make b̃i

shorter relative to later Gram-Schmidt vectors, basis reduction algorithms rely on the fact that
b̃i is contained in a lattice with rank k whose determinant is ∥b̃i∥ · · · ∥b̃i+k−1∥. Using an oracle
for
√
δk-HSVP on rank-k lattices allows us to find a non-zero vector in this lattice that is short

relative to the geometric mean of ∥b̃i+1∥, . . . , ∥b̃i+k−1∥. We can then substitute that vector for b̃i.
By doing this many different times with i = 1, . . . , n− k + 1, we can hope to eventually guarantee
that ∥b̃1∥, ∥b̃2∥, . . . , ∥b̃k∥ are not that large relative to the determinant of the lattice. And, with
one more call to an HSVP oracle on the lattice generated by b1, . . . ,bk (whose determinant is
∥b̃1∥∥b̃2∥ · · · ∥b̃k∥), we can find a relatively short lattice vector.

So, the high-level goal of basis reduction algorithms is to find a rank-k sublattice L′ ⊂ L with
low determinant (the lattice generated by b1, . . . ,bk above) and then to use a HSVP oracle on rank-

3By specifying “non-trivial” algorithms for γ-HSVP for γ ≫
√
δn here and elsewhere, we mean to exclude algo-

rithms that work by simply solving γ′-HSVP with γ′ ≈
√
δn on the input lattice. E.g., it is “trivial” to solve, say,

2n-HSVP by simply running, say, the
√
δn-HSVP algorithm from [AKS01] on the input lattice. Of course, we do not

mean to suggest that the [AKS01] algorithm is trivial or that it is trivial to solve
√
δn-HSVP!

4The product of the lengths of the Gram-Schmidt vectors is the determinant of the lattice, and therefore cannot
be changed without changing the lattice. So, if one wishes to make earlier Gram-Schmidt vectors shorter, one must
lengthen later Gram-Schmidt vectors.
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k lattices to find a short non-zero vector in L′ (though basis reduction algorithms are not typically
described in this way). However, the details matter quite a bit in basis reduction, and they get
complicated quickly. As a result, analyzing these algorithms can be rather difficult, because the
effect of each oracle call on the lengths of the different Gram-Schmidt vectors is difficult to control.

In fact, the best basis reduction algorithms are heuristic, meaning that we do not know how to
prove their correctness [CN11]. And, our best way of analyzing the behavior of these algorithms is
via sophisticated computer simulations [GN08b, CN11].5

2 An overview of recursive lattice reduction

In this work, we present a new framework for reductions from γ-HSVP on rank-n lattices to
√
δk-

HSVP on rank-k lattices, which we call recursive lattice reduction.6 This new framework maintains
the high-level idea that, in order to find a short vector in a high-rank lattice, one should first find
a dense lower-rank sublattice L′ ⊂ L and then find a short vector in L′. And, our framework
therefore is rather similar to basis reduction.

However, our framework is in some sense more flexible than basis reduction. E.g., we do not
require that L′ has rank precisely k. And, we do not even require that the algorithm explicitly
works with a basis—let alone the Gram-Schmidt orthogonalization. (This is why we are careful to
call this recursive lattice reduction, and not to call it basis reduction.) This independence from
the specific representation of the lattice makes our reductions very easy to describe at a high level.
(Of course, any actual concrete implementation of our reductions will have to represent the lattice
in some way—probably with a basis, and perhaps even using the Gram-Schmidt orthogonalization
to perform basic operations on the lattice. But, our framework is agnostic to such choices, and we
instead view the specific choice of representation as an implementation detail.)

The basic idea behind our framework is as follows. Our reductions A(L, aux) take as input a
lattice L ⊂ Rn and some simple auxiliary information aux. If the lattice L has sufficiently small
rank n ≤ k, then we of course use an oracle call to find a short vector. Otherwise, the reduction
makes (at least) two recursive calls. The first recursive call is used to find a sublattice L′ ⊂ L with
rank less than n and relatively small determinant. The next recursive call is simply A(L′, aux′).

In our instantiations, we use the auxiliary input aux to do two things: (1) to keep track of the
rank of the sublattice that we are currently looking for; and (2) to control the running time of the
reduction (and its subsequent recursive calls).

As we will see, this is a sufficiently modular and simple paradigm to allow for computer-aided
search of the space of reductions in this framework. For example, one can write a simple computer
program that takes as input a rank n, block size k, and a bound T on the number of allowed oracle

5Gama and Nguyen’s elegant slide reduction algorithm [GN08a] is a bit of an exception—i.e., it is a basis reduction
algorithm that can be analyzed quite simply. However, its performance in practice still lags behind heuristic basis
reduction algorithms whose behavior is not nearly so well understood. One can modify slide reduction to improve its
performance [Wal21], but at the expense of losing the simple proof of correctness.

6The word “reduction” has two meanings here, as it often does in the literature on basis reduction. First, it simply
means a “reduction” in the traditional computer science sense: an algorithm for one problem that requires access
to an oracle that solves another problem. Second, it means “reduction” in a sense that is specific to the context
of lattices; “reduction” in this sense describes a procedure that slowly reduces the lengths of lattice vectors (or the
density of sublattices). This double meaning can be rather confusing at times—e.g., “basis reduction algorithms”
should perhaps be more accurately be called “basis reduction reductions,” but this terminology is of course quite
cumbersome. Here, we are using the term “reduction” rather ambiguously, in analogy with basis reduction. It is an
open question whether the authors will regret our use of this ambiguous terminology.
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calls. The program will output a description of a reduction from γ-HSVP in n on rank-n lattices
to
√
δk-HSVP on rank-k lattices, together with an approximation factor γ that the reduction is

guaranteed to achieve. Furthermore, the value of γ will be optimal, in some (admittedly rather
weak) sense. (Specifically, it will be optimal among all reductions that fit into our framework.)

Below, we build up the details of our framework slowly by introducing progressively more so-
phisticated examples. We first develop a simple and natural (and novel) reduction in the framework,
in Section 2.1. Then in Sections 2.2 and 2.3, we provide a high-level overview of the more sophisti-
cated reductions whose details we leave for the sequel. Section 2.3 (and the corresponding formal
details in Section 5) in particular shows a reduction from the problem of finding dense sublattices
of rank-n lattices to the problem of finding a short vector in rank-k lattices, which is itself a novel
result (to the authors’ knowledge).

We note that throughout this paper, our purpose is to illustrate what is possible to do with this
framework, rather than to optimize parameters. And we are particularly uninterested in optimizing
the precise running time of our reductions. We have therefore made little attempt to, e.g., choose
optimal constants. And, in order to make our presentation as simple as possible, we have resisted
the urge to include optimizations that one absolutely would wish to include if one were to implement
these algorithms. (As one rather extreme example, the astute reader might notice that all of our
reductions as described run the LLL algorithm many more times than is truly necessary—sometimes
running the LLL algorithm up to n times on the same lattice! Again, we have resisted the urge to
optimize away such inefficiencies.)

2.1 A first example

To illustrate the new framework, consider the following simple (and novel) idea for a reduction from
γ-HSVP on a rank n lattice to

√
δk-HSVP on rank k lattices. Indeed, the reduction is sufficiently

simple that we will provide a complete description and analysis here in this overview.
The idea is for the reduction to take as input a lattice with rank n and to find a sublattice

L′ ⊂ L with rank n − 1 and with relatively small determinant. The reduction then calls itself
recursively on L′, therefore finding a short non-zero vector in L′, which is of course also a short
non-zero vector in L.

To make the above precise, we first explain how to find a dense sublattice L′ ⊂ L with rank n−1
of L. We do this using duality and recursion. In particular, it is a basic fact that the dual L∗ of a
lattice L is itself a lattice with det(L∗) = 1/ det(L) and with the property that every (primitive)
sublattice L′ of L with rank n − 1 is simply the intersection L′ = L ∩w⊥ of L with the subspace
w⊥ orthogonal to some non-zero dual vector w ∈ L∗. (See Section 3.1 for a formal definition of the
dual lattice L∗ and of primitivity, and for a discussion of many related properties.) Furthermore,
det(L′) = ∥w∥ det(L) (assuming that w is primitive). Therefore, finding a dense sublattice L′ ⊂ L
with rank n − 1 is equivalent to finding a short non-zero dual vector w. (This basic fact is used
quite a bit already in basis reduction algorithms, e.g., in [GN08a, MW16].)

So, to find such a dense sublattice L′, it suffices to find a short vector in the dual. We would like
to do this by simply calling our reduction recursively on L∗. However, this would obviously lead to
an infinite loop! Indeed, to find a short vector in L, a naive implementation of this procedure would
attempt to find a short vector in L∗ by attempting to find a short vector in L, etc! The solution is to
add a depth parameter τ as auxiliary input to the reduction. Intuitively, when the depth parameter
is larger, the reduction takes more time but achieves a better approximation factor γ (i.e., finds
shorter vectors). The hope is that the recursive call on L∗ can afford a worse approximation factor,

4



i.e., the short vector in L∗ does not need to be quite as short as our final output vector. We can
therefore make the recursive call on the dual lattice L∗ with a lower depth parameter, and avoid
the infinite loop.

To finish specifying the reduction, we need to define two base cases. In one base case, the input
lattice has rank n = k, in which case the reduction simply uses its

√
δk-HSVP oracle on rank-k

lattices to output a short non-zero lattice vector in L. In the other base case, the depth parameter
τ is zero, in which case the algorithm uses an efficient procedure such as the LLL algorithm to
output a not-too-long vector in the lattice.

Here is pseudocode for the reduction A(L, τ) described above.

1. Base cases:

(a) If τ = 0, run LLL on L and output the resulting vector.

(b) If rank(L) = k, use an oracle for
√
δk-HSVP to output a short non-zero lattice vector in

L.

2. Compute w← A(L∗, τ − 1) and output y← A(L ∩w⊥, τ).

Notice how simple this reduction is! It can be described in three short lines of pseudocode,
and it makes no mention of a basis or the Gram-Schmidt orthogonalization. Of course, an actual
implementation of this algorithm would need some way to represent the lattice L and some way
to compute a representation of L′ = L ∩ w⊥, which might be best done with bases and the
Gram-Schmidt orthogonalization. But, while bases and Gram-Schmidt vectors are fundamental
to understanding any basis-reduction algorithm, in this new framework, we view such things as
low-level implementation details. This level of abstraction allows us to specify such reductions
remarkably succinctly, as above.

Analyzing this reduction is also relatively simple, and we therefore give a complete analysis
here in the overview. Specifically, let γ(n, τ) be the approximation factor achieved by the above
reduction when the input lattice has rank n and the depth parameter is τ . By definition, we have

∥y∥/det(L) 1
n ≤ γ(n− 1, τ) · det(L′) 1

n−1 / det(L) 1
n

= γ(n− 1, τ) · (∥w∥ · det(L)) 1
n−1 / det(L) 1

n

= γ(n− 1, τ)
(
∥w∥/det(L∗) 1

n

) 1
n−1

≤ γ(n− 1, τ)γ(n, τ − 1)
1

n−1 .

In other words, γ(n, τ) satisfies the recurrence

γ(n, τ) ≤ γ(n− 1, τ)γ(n, τ − 1)
1

n−1 ,

with base cases γ(k, τ) ≤ √δk and, say, γ(n, 0) ≤ 2n (by LLL). (The fact that the γ(n, τ − 1) term
comes with such a small exponent in the recurrence relation intuitively explains why we can afford
to use a lower depth parameter in the recursive call on L∗.) A simple induction argument then

shows that, e.g., γ(n, τ) ≤ δ
(n−1)/(2(k−1))
k · 2n3/2τ .
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This analysis is much simpler than the similar analysis for basis reduction algorithms, and for
τ ≳ 3 log n, it matches the approximation factor γBR achieved by basis reduction up to (insignifi-
cant) low-order terms (which are also present in the basis reduction algorithms, and which can be
controlled by taking τ to be a bit larger).

One can similarly analyze the number of oracle calls T (n, τ) made by the reduction (which is
the same as the running time up to a polynomial factor, if we count each oracle call as a unit-cost
operation) via the recurrence T (n, τ) = T (n, τ − 1) + T (n − 1, τ) with base cases T (n, 0) = 0
and T (k, τ) = 1. It is easy to check that this recurrence is solved by the binomial coefficients
T (n, τ) =

(
n−k+τ−1

τ−1

)
≈ nτ . In particular, for τ ≈ 3 log n, we get a running time of nΘ(logn).

This is already quite interesting, since in the context of cryptography (in which the oracle is
often instantiated with a 2Θ(n)-time algorithm) a factor of nΘ(logn) in the running time is not
particularly significant. But, it’s not ideal, and we would certainly prefer to find a variant of this
reduction that achieves essentially the same approximation factor with only polynomial running
time (counting oracle calls as a unit-cost operation).

Fortunately, this is possible, as we describe below.

2.2 An efficient reduction to a harder problem (and from a harder problem)

Intuitively, the reason that the above reduction requires superpolynomial time is because it produces
a rather unbalanced binary tree of recursive calls with height n − k ≈ n when the input lattice L
has rank n. We would of course prefer a more balanced tree with height O(log n). Of course, the
reason that the depth of the tree is so large is because the sublattice L∩w⊥ has rank just one less
than L. I.e., we reduce the rank of the lattice by one in each step, and therefore it takes n − k
steps to get down to rank k. We would of course prefer to reduce the rank more quickly, perhaps
reducing the rank by a constant factor at every step, or more accurately, reducing by a constant
factor the difference n− k between the current rank n and the rank k in which our oracle works.

So, suppose instead of finding a single short non-zero vector w ∈ L∗, we found a whole dense
sublattice L′ ⊂ L∗ with rank ℓ∗ ≥ 1, i.e., a sublattice L′ of the dual with relatively small deter-
minant. Just like before, the intersection L ∩ (L′)⊥ of L with the subspace orthogonal to L′ is
a sublattice of L, now with rank n − ℓ∗. Furthermore, we have det(L ∩ (L′)⊥) = det(L′) det(L)
(provided, again, that L′ is primitive, which we may assume without loss of generality; see Sec-
tion 3.1). So, finding a dense sublattice with rank n − ℓ∗ in L is exactly equivalent to finding a
dense sublattice with rank ℓ∗ in L∗.

We therefore generalize the reduction from the previous section by switching the oracle for γ-
HSVP with an oracle for the γ-Densest Sublattice Problem (γ-DSP). In this problem, the input is
a basis for a lattice L ⊂ Rn and also a rank ℓ with 1 ≤ ℓ ≤ n− 1. The goal is to find a sublattice
L′ of L with rank ℓ with det(L′) ≤ γ det(L)ℓ/n. Notice that when ℓ = 1, this is exactly γ-HSVP.
However, the problem is still interesting for larger ℓ. (Indeed, γ-DSP has been studied quite a bit,
e.g., in [DM13, LN14, Dad19, Wal21, LW23].) For example, it is relatively easy to see that the
LLL algorithm solves γ-DSP with an approximation factor of γ ≤ 2ℓ(n−ℓ). (See Sections 2.4 and 3.2
for more discussion of DSP.)

This leads naturally to the following idea. To solve a DSP instance (L, ℓ) where L has rank
n, we first recursively solve the DSP instance (L∗, ℓ∗) for some ℓ∗ (and, of course, lower depth
parameter), receiving as output a dense dual sublattice L′ ⊂ L with rank ℓ∗. We then recursively
solve the DSP instance (L∩ (L′)⊥, ℓ), where the lattice L∩ (L′)⊥ has rank n− ℓ∗. In particular, if
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we choose ℓ∗ to be, say, ⌈(n − k)/20⌉, then the difference n − k will shrink by a factor of at least
19/20 at every step.

To make sense of this, we will need base cases like before for when the depth parameter τ drops
to zero and when the rank n drops to k. In particular, when the depth parameter τ drops to zero,
we simply run the LLL algorithm like we did before (though we now use it to find a whole dense
sublattice, rather than a single short vector).

However, we also need to handle a new corner case: if ℓ > n− ℓ∗, then the above does not make
sense, since our recursive call we will be asking for a rank-ℓ sublattice of a lattice with rank n− ℓ∗,
which is less than ℓ! (Notice that, even if we start running this reduction with ℓ = 1, some of the
calls in our recursive tree will have much larger ℓ.) To fix this, we need some way to convert DSP
instances with ℓ nearly as large as n to DSP instances with much smaller ℓ.

Of course, duality allows us to do this! That is, if ℓ is getting too large relative to n, then
instead of directly finding a dense rank-ℓ sublattice of the primal lattice L, we (recursively) find a
dense sublattice L′ of the dual L∗ with rank n − ℓ and output L ∩ (L′)⊥. We call this a duality
step. In this way, we can always keep ℓ small enough. Specifically, in the below we simply apply
this duality step whenever ℓ > n/2, which is sufficient in this context. (In the more sophisticated
reduction described in Section 5, we are much more careful about when we apply this duality step.)

When n drops to k, we will call an oracle that solves γ-DSP on rank-k lattices with γ as small
as possible. This use of a DSP oracle is a major drawback of this reduction (which we will fix
below) for two reasons. First, DSP is a seemingly harder problem than HSVP, and the known
algorithms that solve DSP are notably slower than the known algorithms for HSVP. Indeed, the
fastest known algorithm for finding an exact densest sublattice with rank ℓ in n dimensions runs in
time ℓΘ(nℓ) [DM13], which in the worst case gives nΘ(n2). So, our DSP oracle calls might need to
run in time kΘ(k2), compared to 2Θ(k) for HSVP oracle calls. (See Section 2.4 for more discussion.)
Second, it is not as clear how small we can take γ to be for our γ-DSP oracle. The analogue of
Hermite’s constant δn in this setting is Rankin’s constant,

δn,ℓ := sup
L∈L (n)

min
L′⊆L

rank(L′)=ℓ

det(L′)2

det(L) 2ℓ
n

.

Rankin’s constant is not nearly as well understood as Hermite’s constant (except for δn,n = 1 and
δn,1 = δn,n−1 = δn). Instead, δn,ℓ is only known up to a constant factor in the exponent, δn,ℓ =
nΘ(ℓ(n−ℓ)/n) (though the best known upper and lower bounds on this constant factor in the exponent
are not so far from each other [HS07]). However, a reasonable guess is that δn,ℓ ≈ nℓ(n−ℓ)/(2n). (See,
e.g., [SW14] and the references therein.) For now, let us therefore simply suppose that we have
access to an oracle that solves kℓ(k−ℓ)/(2k)-DSP oracle that works on rank-k lattices.7

With all of this out of the way, we can finally present our reduction A(L, ℓ, τ), as below. Here,
we leave ℓ∗ unspecified, so that we actually give a family of algorithms depending on how ℓ∗ is
chosen (possibly depending on ℓ, n, k, and τ).

1. Base cases:

7Because of the uncertainty in Rankin’s constant, we do not know whether this is even possible—i.e., there might
be rank-k lattices that do not even have a dense enough sublattice for this to work. So, in Section 4 we are more
careful about this, but in this less formal overview we proudly forge ahead under this simplifying assumption. We
will anyway later show how to replace the DSP oracle with an HSVP oracle by carefully modifying the reduction.
Once we have removed DSP oracle calls, this issue with Rankin’s constant will go away.
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(a) If ℓ > n/2, output L ∩ A(L∗, n− ℓ, τ)⊥, where n := rank(L).
(b) If n = k, use an oracle for kℓ(k−ℓ)/(2k)-DSP to output a dense sublattice of L with rank

ℓ.

(c) If τ = 0, run LLL on L and output the lattice generated by the first ℓ vectors of the
resulting basis.

2. Compute L′ ← A(L∗, ℓ∗, τ − 1) and output L′′ ← A(L ∩ (L′)⊥, ℓ, τ).

Notice that the reduction is still quite simple. And, the analysis of the approximation factor
γ(n, ℓ, τ) achieved by this algorithm is quite similar to the above. In particular, a similar argument
to the above shows that γ(n, ℓ, τ) satisfies the recurrence

γ(n, ℓ, τ) ≤ γ(n− ℓ∗, ℓ, τ)γ(n, ℓ∗, τ − 1)
ℓ

(n−ℓ∗) , (1)

and after plugging in the base cases a simple argument shows that, e.g.,

γ(n, ℓ, τ) ≤ k
ℓ(n−ℓ)

2k · 2
n2ℓ(n−ℓ)

Cτ

provided that, after applying duality, we maintain the invariant that ℓ + ℓ∗ ≤ (2 − C)n for some
constant 1 < C < 2. Specifically, if we take τ ≥ Ω(log n) and ℓ = 1, we get essentially the same
approximation factor as before. (See Section 4 for a full analysis of the algorithm with a specific
choice of ℓ∗.)

The benefit of this approach is, of course, that the running time is much better. In particular,
notice that if we take ℓ∗ ≥ β · (n− k) for some constant 0 < β < 1/2, then the recursive calls made
by the reduction form a binary tree with height bounded by

h := ⌈log1/(1−β)(n)⌉+ τ = O(log n) + τ ,

so that the running time of the reduction is bounded by 2h ·poly(n) ≤ 2τ ·poly(n) (again, counting
oracle calls as unit cost). Taking τ = Θ(log n) gives a reduction that achieves essentially the same
approximation factor as before but now runs in polynomial time.

2.3 Getting an efficient reduction (from either HSVP or DSP) to HSVP! And,
letting a computer find reductions for us.

The reduction described in the previous section does not achieve what we are truly after, since it
requires an oracle for DSP, rather than HSVP (and since, in order to get the claimed approximation
factor, it relies on an unproven conjecture about Rankin’s constant). However, our framework offers
a lot of flexibility that we have not yet exploited. In particular, we can be more careful about our
choice of ℓ∗, and more importantly, we can try to be more clever about when we apply the duality
step. Perhaps a particularly clever set of choices here will allow us to achieve a good approximation
factor with a good running time while simultaneously managing to always have ℓ = 1 whenever we
make a recursive call with rank k.

To see why this might be possible, suppose that at some step in the reduction there is a
recursive call with parameters (n, ℓ) = (2k + 1, k). (Here, we are ignoring the depth parameter τ
for simplicity.) If we choose ℓ∗ = k here, then our reduction will make two recursive calls, with
parameters (n, ℓ) respectively equal to (k + 1, k) and (2k + 1, k). Since the latter recursive call is
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the same as where we started (though, of course, the depth parameter will be lower), we can safely
ignore it—if we can make the reduction work from where we started, then we should be able to
make it work here too. For the call with (n, ℓ) = (k + 1, k), notice that after a duality step this
becomes (n, ℓ) = (k + 1, 1). We can then make a recursive call with ℓ∗ = 1 to get down to a base
case of (k, 1), which is what we want! (The other recursive call on the dual will produce another
(k + 1, 1) node, which we have just shown how to handle.) Once we see that we can do this with
(n, ℓ) = (2k + 1, k), we can think about clever choices of ℓ∗ that allow us to eventually get to this
point from other values of (n, ℓ), etc. As it happens, this is possible if min{ℓ, n − ℓ} ≤ n − k + 1,
as we show in Section 5.

Unfortunately, things are a bit more subtle than we are suggesting here because one must still
worry about keeping the approximation factor down. In particular, the recurrence satisfied by our
approximation factor given in Equation (1) is not favorable when we take ℓ ≈ ℓ∗ ≈ n/2 like we
did above. In general, we need to keep the exponent ℓ/(n − ℓ∗) from Equation (1) low. However,
this issue can be overcome via careful choices of parameters. In particular, in Section 5 we show
a concrete polynomial-time reduction from γ-HSVP on rank-n lattices to

√
δk-HSVP on rank-k

lattices that achieves an approximation factor of γ = (1 + o(1)) · δ(n−1)/(2(k−1))
k .

In fact, we achieve an approximation factor of δ
ℓ(n−ℓ)/(2(k−1))
k · 21/poly(n) for DSP whenever

1 ≤ min{ℓ, n − ℓ} ≤ n − k + 1 (and not just the HSVP case, which corresponds to ℓ = 1). (In
particular, when n ≥ 2k, this works for all ℓ.) And, notice that we do this with only an oracle for
HSVP on rank-k lattices (and not a DSP oracle)! As far as we know, no such reduction appeared
in prior work.8

On using automated search to find such reductions. Finally, we note that for any fixed rank
n, block size k, and number of oracle calls C, we can simply compute the “best possible” reduction
of this form in the following sense. We can find a reduction that in C oracle calls provably achieves
an approximation factor γ(n, ℓ, C) satisfying

γ(n, ℓ, C) = min
{
γ(n, n− ℓ, C), min

1≤ℓ∗≤n−k
min
C∗≤C

γ(n− ℓ∗, ℓ, C − C∗)γ(n, ℓ∗, C∗)
ℓ

n−ℓ∗
}
, (2)

with base cases given by γ(k, 1, C) =
√
δk for C ≥ 1 and γ(n, ℓ, C) = 2ℓ(n−ℓ) if either C = 0 or n = k

and ℓ /∈ {1, n − 1} (i.e., the algorithm applies LLL if it runs out of oracle calls or it reaches rank
k but requires a dense sublattice with rank ℓ > 1 rather than simply a short vector). Equation (2)
formally captures the idea that the reduction may either apply a duality step (which explains the
γ(n, n− ℓ, C) term) or choose the best possible rank ℓ∗ of a dense dual sublattice to find and the
best possible number of oracle calls C∗ to allocate to finding such a dense dual sublattice.

Indeed, using a simple dynamic programming algorithm, one can compute γ(n, ℓ, C) in time
Õ(n3C2). For reasonable parameters, this running time is far less than the time required to instan-
tiate the

√
δk-HSVP oracle. If we restrict our algorithm to a sparse subset of possible choices for

C∗, then one can also compute very good upper bounds on γ(n, ℓ, C) (together with a reduction
witnessing this upper bound) in time n3 · poly(log n, logC), which is quite practical even for quite
large numbers. See Section 6.

8Of course, essentially every basis reduction algorithm solves some form of DSP for some fixed rank ℓ, typically
ℓ = k—since all basis reduction algorithms fundamentally work by first finding a dense lower-rank sublattice L′ of the
input lattice L and then finding a short vector in L′—but this is of course very different from solving DSP for many
different choices of ℓ. There is also a heuristic reduction from DSP to (H)SVP in [Wal21, LW23]. And, a reduction
from DSP to (H)SVP with a worse approximation factor is implicit in [HS07].
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From this perspective, the specific reduction that we presented and analyzed in Section 5 is
perhaps best viewed as a proof of a specific upper bound on the true optimal value of γ(n, ℓ, C).
Indeed, we discovered the specific approach used in Section 5 by first studying the reductions
returned by an automated procedure!

See Section 6 for discussions of how to further generalize this. E.g., there we study reductions
that work with “variable block size k” by explicitly modeling the running time of the rank-k oracle.

2.4 Some more context, and the relationship with prior work

Of course, our recursive lattice reduction framework shares much in common with basis reduction.
At a very high level, both paradigms work to find a short non-zero vector in a lattice L by first
finding a dense lower-rank sublattice L′ ⊂ L and then finding a short non-zero vector in L′. So, one
could argue that recursive lattice reduction is essentially a repackaging of basis reduction (though
we do not know of a direct way to view our framework in terms of basis reduction—or vice versa,
see Section 7). We instead think of it as a closely related but novel framework, which we hope will
lead to a better understanding of lattice problems (and therefore to a better understanding of the
security of lattice-based cryptography).

In this section, we simply describe some of the basis reduction algorithms that use particularly
similar ideas to those in this work. (Of course, a full survey of the extensive literature on basis
reduction is far beyond the scope of this paper.) As we discuss in Section 7, we expect that
additional ideas used in basis reduction should be useful in our new framework as well.

The technique of moving between the primal and the dual in an effort to find short vectors is well
known in the basis reduction literature. Indeed, the basis reduction literature now contains many
examples of algorithms that, like us, move between the primal and the dual in order to convert
between low-rank dense sublattices of the dual and high-rank dense sublattices of the primal via
the identity

det(L ∩ (L′)⊥) = det(L) det(L′)
for a (primitive) dual sublattice L′ ⊂ L∗. In particular, the special case when L′ is generated
by a single vector plays a prominent role in both Gama and Nguyen’s celebrated slide reduction
algorithm [GN08a] and Micciancio and Walter’s beautiful self-dual BKZ algorithm [MW16]. Indeed,
both of these algorithms repeatedly use this identity in order to use an oracle for HSVP on rank-k
lattices to find a dense rank-(k − 1) sublattice in some rank-k lattice lattice (where the rank-k
lattice is itself some projection of a sublattice of the input lattice L). (Of course, in both cases, the
algorithms are described in terms of the behavior of the Gram-Schmidt vectors, and not directly
in terms of (projections of) sublattices. One can also argue that essentially all basis reduction
algorithms implicitly use duality whenever they use projection, via the identity (L ∩ (L′)⊥)∗ =
Π(L′)⊥(L∗).) The more general technique when L′ has higher rank has also been used in basis
reduction algorithms, including algorithms that explicitly work to find dense sublattices of a rank-
n lattice using an oracle to find dense sublattices of lower-rank lattices [LN14, LW23], as well as
algorithms that use an oracle for finding dense sublattices of low-rank lattices in order to eventually
find a short lattice vector in a rank-n lattice [Wal21, LW23].

DSP, the computational problem of finding dense sublattices of a given rank ℓ, has been the
subject of a number of works in the basis reduction literature. Li and Nguyen showed how to
generalize Gama and Nguyen’s slide reduction algorithm [LN14] to reduce γ-DSP with parameters

n and ℓ ≤ k to
√

δk,ℓ-DSP with parameters k and ℓ, where γ ≈ δ
(n−ℓ)/(2(k−ℓ))
k,ℓ . This is essentially
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the same high-level result that we achieve in our DSP-to-DSP reduction (described at a high level
in Section 2.2 and in detail in Section 4), except that (1) Li and Nguyen require that ℓ ≤ k and
that n mod k is divisible by ℓ; (2) they only require a DSP oracle that finds rank-ℓ sublattices of
rank-k lattices, while we require one that finds rank-ℓ′ sublattices for all 1 ≤ ℓ′ < k; and (3) their
approximation factor also only depends on δk,ℓ, while ours depends on δk,ℓ′ for all ℓ

′ (unsurprisingly,
given (2)). Walter [Wal21] and Li and Walter [LW23] later showed variants of the algorithm with
better performance (at least heuristically). The same works also gave heuristic arguments that
suggested that (H)SVP algorithms could be used in place of the DSP oracle, at the price of slightly
increasing the approximation factor, and that this technique of finding dense sublattices using an
(H)SVP algorithm on rank-k lattices can even be favorably used for solving HSVP on higher-rank
lattices. In other words, they showed (heuristically) that it is sometimes preferable to use an HSVP
oracle to find whole dense sublattices, rather than just a single short vector, even when the final
goal of the algorithm is to find a single short vector. This latter result is (roughly) analogous to our
main reduction, which similarly uses DSP as an intermediate problem in a reduction from HSVP
on rank-n lattices to HSVP on rank-k lattices.

There are also algorithms for DSP that do not really use basis reduction. Dadush and Micciancio
gave an ℓO(nℓ)-time algorithm for finding the exact densest sublattice with rank ℓ [DM13]. And,
Dadush gave an elegant 2O(n)-time algorithm that finds a sublattice L′ ⊆ L with the property that
det(L′)1/rank(L′) is within a polylogarithmic factor of the minimum possible [Dad19]. (Notice that
this algorithm does not allow us to choose the rank ℓ of the resulting sublattice. E.g, for some
input lattices L, the algorithm might simply return L itself, or a rank-one sublattice, or anything
in between. In particular, it is not clear how to make use of this algorithm as an oracle in either
our framework or in basis reduction.)

Finally, we note that recursive approaches for basis reduction algorithms have also been con-
sidered in the literature [NS16, KEF21, RH23]. One might reasonably guess that our “recursive
lattice reduction” framework is quite similar to these “lattice basis reduction algorithms that use
recursion,” but in fact the use of recursion in these algorithms is fundamentally different from that
in our framework. The algorithms from prior work are still largely iterative, and in particular still
aim to iteratively improve the quality of a basis at each step. Recursion in these works is used pri-
marily as a tool for minimizing the precision necessary in the Gram-Schmidt computations. Indeed,
the resulting pattern of oracle calls is quite similar to the pattern in purely iterative basis reduction
algorithms. Furthermore, all of these works focus on block size k = 2, while we are interested in
larger block size (and we currently do not know of any particularly interesting instantiation of our
framework with block size k = 2; see Section 7).

2.5 On SVP vs. HSVP

The reductions that we describe solve HSVP, i.e., the problem of finding a short non-zero vector
in a rank−n lattice L relative to the (normalized) determinant det(L)1/n. One can also consider
the γ-approximate Shortest Vector Problem (γ-SVP), in which the goal is to find a non-zero lattice
vector y ∈ L̸=0 such that ∥y∥ ≤ γλ1(L), where λ1(L) := minx∈L ̸=0

∥x∥. I.e., γ-SVP asks for a
non-zero lattice vector whose length is within a factor γ of the shortest in the lattice.

SVP is arguably the more natural problem, and is more discussed in the literature—at least in
literature that is less concerned with cryptography. However, in cryptography, HSVP is typically
the more important problem, and one typically judges the performance of an algorithm based on
its Hermite factor, i.e., based on how well it solves HSVP. This is because in cryptography one
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typically encounters random lattices, which have λ1(L) ≈
√
n/(2πe) · det(L)1/n ≈

√
δn det(L)1/n.

(However, this is not always the case. E.g., some cryptography uses lattices with planted short
vectors, or planted dense sublattices.) Indeed, in heuristic analysis of lattice algorithms, one often
assumes not only that the input lattice L satisfies λ1(L) ≈

√
n/(2πe) ·det(L)1/n, but also that this

holds for all lattices L′ encountered by the algorithm’s subroutines.
There seems to be some consensus among experts that γ-HSVP for nearly minimal γ ≈

√
δn is

likely to be more-or-less as hard to solve as γ′-SVP for γ′ not much larger than one, in the sense
that the fastest algorithms for γ′-SVP should be essentially as fast as the fastest algorithms for
γ-HSVP for such small values of γ, γ′.9 But, the situation for larger approximation factors is less
clear. Notice that there is a trivial reduction from γ

√
δn-HSVP to γ-SVP. Furthermore, there is a

(non-trivial) reduction due to Lovász from γ2-SVP to γ-HSVP. So, our reductions can be composed
with Lovász’s to achieve reductions that solve γ2-SVP (granted, at the expense of a factor of O(n)
in the running time and number of oracle calls, since Lovász’s reduction requires O(n) calls to a
γ-HSVP oracle). However, many basis reduction algorithms that solve γBR-HSVP can also be used
to solve (γ2BR/

√
δk)-SVP in essentially the same running time, provided that the rank-k

√
δk-HSVP

oracle is replaced by a rank-k exact SVP oracle (which is anyway what is used in practice).
So, while we essentially match the Hermite factor γBR of basis reduction, we do not know how

to use our framework to match the approximation factor γ2BR/
√
δk that can be achieved for SVP. A

similar situation holds for Micciancio and Walter’s self-dual BKZ algorithm [MW16], i.e., self-dual
BKZ solves γBR-HSVP but is not known to solve (γ2BR/

√
δk)-SVP).

The same story more-or-less applies for DSP as well. In particular, we describe DSP as the
problem of finding a dense sublattice that is dense relative to the determinant of the input lattice.
But, one can also consider the version of DSP in which the goal is to find a dense sublattice of rank
ℓ whose determinant is small relative to the minimum possible. If one wishes to distinguish between
the two versions, one might use “RDSP” to refer to the version in which the density is relative to
the determinant (where the R is in honor of Rankin).

3 Preliminaries

Given a lattice L ⊆ Rd, its dual is L∗ := {w ∈ span(L) : ∀y ∈ L, ⟨w,y⟩ ∈ Z} . Although this is
somewhat nonstandard, it will be useful to generalize this definition to arbitrary sets S ⊆ Rd in
the following natural way:

S∗ := {w ∈ span(S) : ∀y ∈ S, ⟨w,y⟩ ∈ Z} .

We say that a sublattice L′ of a lattice L is primitive if L′ = L∩ span(L′). And, we call a vector
y ∈ L primitive if the sublattice generated by the vector is primitive.

3.1 Duality and sublattices

Central to our results is a notion of duality for sublattices. Specifically, if L′ is a sublattice of L, then
L∗∩(L′)⊥ is a sublattice of the dual lattice L∗. Moreover, the duality map (L,L′) 7→ (L∗,L∗∩(L′)⊥)

9However, currently the fastest known algorithm with proven correctness for
√
δn · poly(logn)-HSVP runs in time

2n/2+o(n) [ALS21], while the fastest known algorithm with proven correctness for poly(logn)-SVP (or even O(1)-
SVP) runs in time 20.802n [LWXZ11, WLW15, AUV19]. This seems to be more about our proof techniques than the
inherent difficulty of the two problems, however.
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is an involution on the set of (lattice, primitive sublattice) pairs, that preserves a natural notion of
the relative density of L′ in L. In this section, we state and prove these properties of the duality
map.

Lemma 3.1. Suppose that L′ of rank ℓ is a sublattice of L of rank n. Then Π(L′)⊥(L) is a lattice
with rank n− ℓ, and

Π(L′)⊥(L)∗ = L∗ ∩ (L′)⊥.

Proof. We may assume without loss of generality that L is full-rank (d = n). If L is not full-rank,
simply rotate L so that it is orthogonal to the last d − n coordinates and drop these coordinates;
the statement to prove is invariant under rotation.

To simplify the notation, we will write Π = Π(L′)⊥ . First we will prove that Π(L)∗ = L∗∩(L′)⊥.
Indeed, both sets are subsets of (L′)⊥. But for any w ∈ (L′)⊥ and y ∈ Rd, ⟨w,Π(y)⟩ = ⟨Π(w),y⟩ =
⟨w,y⟩. It follows that for all w ∈ (L′)⊥, ⟨w,Π(y)⟩ is an integer simultaneously for all y ∈ L if and
only if w ∈ L∗. Thus

Π(L)∗ = span(Π(L)) ∩
(
L∗ ∩ (L′)⊥

)
.

But span(Π(L)) = (L′)⊥. Hence Π(L)∗ = L∗ ∩ (L′)⊥, as claimed.
It remains to show that Π(L) is a lattice with rank n − ℓ. We will first show that Π(L)∗ has

these properties! Indeed, Π(L)∗ = L∗ ∩ (L′)⊥ is a lattice, since it is a subgroup of a lattice. And
L∗∩(L′)⊥ has rank at most n−ℓ, because it is contained in a (n−ℓ)-dimensional subspace; namely,
the intersection of the n-dimensional subspace span(L∗) with the complement of its ℓ-dimensional
subset subspace span(L′). To see that it has rank at least n − ℓ, notice that for every linearly
independent set of lattice vectors y1, . . . ,yn ∈ L there exists a dual vector that has non-zero
inner product with y1 and inner product zero with y2, . . . ,yn. Thus, fixing any basis for (L′) and
extending it to a set of n linearly independent vectors in L, we can find n − ℓ dual vectors in
L∗ ∩ (L′)⊥ that are all linearly independent.

It is clear that span(Π(L)) has dimension exactly n − ℓ. It follows that span(Π(L∗)) =
span(Π(L)). It is clear from this combined with the definition of dual set that Π(L) ⊆ (Π(L)∗)∗.
But (Π(L)∗)∗ is a lattice, because Π(L)∗ is. Thus Π(L) is a subgroup of a lattice, and therefore is
also a lattice.

Lemma 3.2. Suppose that L′ of rank ℓ is a primitive sublattice of L of rank n. Then, for any basis
(b1, . . . ,bℓ) of L′, there exists bℓ+1, . . . ,bn such that (b1, . . . ,bn) is a basis of L.

Proof. By Lemma 3.1, Π(L′)⊥(L) is a lattice with rank n−ℓ. Therefore, it has a basis (b′
1, . . . ,b

′
n−ℓ).

For i ∈ [n − ℓ], let bℓ+i ∈ L be such that Π(L′)⊥(bℓ+i) = b′
i. Suppose for contradiction that

(b1, . . . ,bn) is not a basis for L, that is, that there is some vector y ∈ L such that y = a1b1 +
· · · + anbn and not all ai are integers. Since Π(L′)⊥(y) = aℓ+1b

′
1 + · · · + anb

′
n−ℓ ∈ Π(L′)⊥(L),

it follows that aℓ+1, . . . , an are all integers. Thus, one of a1, . . . , aℓ is not an integer. But then
v := a1b1 + · · · + aℓbℓ is a point in L ∩ span(L′) which is not an integer linear combination of
b1, . . . ,bℓ, contradicting that L′ is a primitive sublattice.

Lemma 3.3. Suppose that L′ of rank ℓ is a primitive sublattice of L of rank n. Then L′′ :=
L∗ ∩ (L′)⊥ is a rank (n− ℓ) primitive sublattice of L∗ satisfying det(L′′) = det(L∗) · det(L′).

Proof. By Lemma 3.1, L′′ = Π(L′)⊥(L)∗, where Π(L′)⊥(L) is a lattice of rank n − ℓ. Hence L′′ is
also a lattice of rank n − ℓ. And it is a primitive sublattice of L∗ by definition, since it is the
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intersection of L∗ with a subspace. It remains to verify the determinant identity. Let b1, . . . ,bn

be a basis for L such that b1, . . . ,bℓ is a basis for L′, as guaranteed by Lemma 3.2. Then det(L) =
det((b1, . . . ,bℓ)) ·det((Π(L′)⊥(bℓ+1), . . . ,Π(L′)⊥(bn)). The latter projected basis is evidently a basis
for Π(L′)⊥(L), so this equation can be written as det(L) = det(L′) · det(Π(L′)⊥(L)). Substituting in
det(L) = 1/det(L∗) and det(L′′∗) = 1/ det(L′′), we get 1/ det(L∗) = det(L′)/ det(L′′), which upon
rearranging yields the claimed identity.

We remark that a basis for L′′ can be efficiently computed given bases for L and L′.
Given a rank-ℓ sublattice L′ of a lattice ℓ of rank n, define γ(L,L′) = det(L′)/det(L)ℓ/n.

Lemma 3.4. For all n ≥ ℓ ≥ 1, the duality map (L,L′) 7→ (L∗,L∗ ∩ (L′)⊥) is an involution on the
set of (lattice, primitive-sublattice) pairs, that preserves γ.

Proof. Fix a lattice L, which we may again assume is full-rank without loss of generality. Let
L′′ := L∗ ∩ (L′)⊥. Lemma 3.3 shows that L′′ is primitive. It also implies that the approximation
factor is preserved:

γ = γ(L′′,L∗) := det(L′′)/ det(L∗)n−ℓ
n

= det(L∗) · det(L′)/det(L∗)n−ℓ
n

= det(L)n−ℓ
n · det(L′)/det(L)

= det(L′)/ det(L) ℓ
n

= γ(L′,L).

It remains to show that duality is an involution, that is, L′ = L∩(L∗∩(L′)⊥)⊥. But since L∗∩(L′)⊥
is rank n− ℓ, span(L∗∩ (L′)⊥) = span((L′)⊥). Thus (L∗∩ (L′)⊥)⊥ = span(L′), so the desired claim
is simply L′ = L ∩ span(L′), which holds by the definition of primitive sublattice.

3.2 The Densest Sublattice Problem (DSP)

Definition 3.5. For n ≥ ℓ ≥ 1 and γ ≥ 1, the (n, ℓ, γ)-approximate densest sublattice problem
((n, ℓ, γ)-DSP) is defined as follows. The input is (a basis for) a full-rank lattice L ⊂ Rn. The
output is (a basis for) a sublattice L′ ⊆ L of rank ℓ satisfying γ(L′,L) ≤ γ.

We refer to γ(L′,L) as the approximation factor achieved by L′. It is convenient to write
(n, ℓ, γ)-DSP(L) for the set of solutions of (n, ℓ, γ)-DSP on input L. For our results, we need two
important properties of (n, ℓ, γ)-DSP. First, from Lemma 3.4, it is immediate that (n, ℓ, γ)-DSP
enjoys the following self-duality property.

Corollary 3.6. Let L′ be a primitive sublattice of L. Then L′ ∈ (n, ℓ, γ)-DSP(L) if and only if
L∗ ∩ L′⊥ ∈ (n, n− ℓ, γ)-DSP(L∗).

Second, (n, ℓ, γ)-DSP behaves nicely under composition, in the following sense.

Lemma 3.7. Suppose that L′ ∈ (n,m, γ1)-DSP(L), and L′′ ∈ (m, ℓ, γ2)-DSP(L′). Then

L′′ ∈
(
n, ℓ, γ2 · γ

ℓ
m
1

)
-DSP(L) .
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Proof. We may directly calculate

γ(L′,L′′) · γ(L,L′) ℓ
m = (det(L′′)/det(L′) ℓ

m ) · (det(L′)/det(L)m/n)
ℓ
m

= det(L′′)/ det(L) ℓ
n =: γ(L,L′′) .

4 Reducing approximate DSP to DSP

We show a reduction from approximate DSP on rank-n lattices to DSP on rank-k lattices for k < n.
This reduction is interesting in its own right, but we also note that the reduction and analysis serve
as a useful warmup for Section 5. On input a (basis for a) lattice L with rank n, an integer ℓ with
n > ℓ ≥ 1, and an integer τ ≥ 0, the reduction A(L, ℓ, τ) behaves as follows.

1. Duality step: If ℓ > n/2, output L ∩ A(L∗, n− ℓ, τ)⊥.

2. Base cases:

(a) DSP: If n = k, use an oracle for γ = γ(k, ℓ)-DSP to output a dense sublattice of L with
rank ℓ.

(b) LLL: If τ = 0, run LLL on L and output the lattice generated by the first ℓ vectors of
the resulting basis.

3. Recursive step: Otherwise, output A(L ∩ A(L, ℓ∗, τ − 1)⊥, ℓ, τ), where ℓ∗ = ⌈(n− k)/20⌉.

Theorem 4.1. Let L be a lattice with rank n ≥ k ≥ 10, τ ≥ 0, and 1 ≤ ℓ < n. Then on input
(L, ℓ, τ), the above reduction A runs in time poly(n) · 2τ , and returns L′ ⊂ L with rank ℓ with

γ′ := detL′/(detL)ℓ/n ≤ α
ℓ(n−ℓ)
k · 2

ℓ(n−ℓ)n2

2τ/2 ,

where
αk := max

1≤ℓ′<k
γ(k, ℓ)

1
ℓ′(k−ℓ′) .

We remark that if the DSP oracle is exact, that is, γ(k, ℓ) =
√
δk,ℓ for all 1 ≤ ℓ < k, we have

αk = k1/k and therefore γ′ = kΘ(ℓ(n−ℓ)/k) (where the hidden constant in the exponent is unknown
but likely about 1/2).

4.1 Proof of Theorem 4.1

In the recursive step, we call the inner recursive call a “right child” and the outer recursive call
a “left child,” and we write the parameters associated with the right child as (nR, ℓR, τR) and
similarly for the left child (nL, ℓL, τL).

We first observe that the reduction maintains the invariants that n ≥ k and and that 1 ≤ ℓ < n.
It is trivial to see that the reduction maintains the invariant that 1 ≤ ℓ < n by simply noting
that in the recursive step the right child has ℓR := ℓ∗ = ⌈(n − k)/20⌉ and nR = n ≥ k, which
certainly satisfies this. The left child has ℓL = ℓ ≤ n/2 (since if ℓ > n/2, we would have applied
a duality step and not a recursive step) and nL = n − ℓ∗ = n − ⌈(n − k)/20⌉ > n/2 ≥ ℓL and
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also nL = n− ⌈(n− k)/20⌉ ≥ k. Duality does not affect these invariants, so all steps maintain the
invariants.

We next prove that the reduction runs in the claimed time. Notice that the right child has
τR = τ − 1, and the left child has nL − k ≤ 19(n − k)/20. The duality step does not affect n − k
or τ . It immediately follows that the tree of recursive steps has height O(log n) + τ . The total
number of nodes in this tree is therefore bounded by poly(n) · 2τ . Furthermore, the number of
duality nodes is at most the number of recursive steps, so the total number of calls to A is bounded
by poly(n) · 2τ and the running time of the reduction is similarly bounded by poly(n) · 2τ .

Finally, we bound the approximation factor. To that end, let γ′(n, ℓ, τ) be the approximation
factor achieved by the above reduction when called on a lattice with rank n with parameters (ℓ, τ).
We prove by induction on n and τ that

γ′(n, ℓ, τ) ≤ f(n, ℓ, τ) := α
ℓ(n−ℓ)
k · 2

ℓ(n−ℓ)n2

2τ/2 ,

as needed. Indeed, it is trivial to check that the base cases satisfy this, since the LLL algorithm
satisfies, e.g., γ′(n, ℓ, 0) ≤ 2ℓ(n−ℓ) ≤ f(n, ℓ, 0) [PT09], and by definition the output of the DSP

oracle satisfies γ′(k, ℓ, τ) ≤ γ(k, ℓ) ≤ α
ℓ(k−ℓ)
k ≤ f(k, ℓ, τ). Furthermore, the duality step does not

change either γ′ or f , so we may ignore duality steps.
It remains to handle recursive steps. By Lemma 3.7, in a recursive step, γ satisfies the recurrence

γ′(n, ℓ, τ) ≤ γ′(n− ℓ∗, ℓ, τ) · γ′(n, ℓ∗, τ − 1)
ℓ

n−ℓ∗ .

By induction, we have

γ′(n, ℓ, τ) ≤ f(n− ℓ∗, ℓ, τ)f(n, ℓ∗, τ − 1)
ℓ

n−ℓ∗

= α
ℓ(n−ℓ−ℓ∗)+ℓ∗ℓ
k · 2ℓ(n−ℓ∗−ℓ)(n−ℓ∗)2/2τ/2+ℓ∗ℓn2/2τ/2−1/2

= α
ℓ(n−ℓ)
k · 2

ℓ

2τ/2
(
√
2ℓ∗n2+(n−ℓ∗−ℓ)(n−ℓ∗)2)

.

Therefore,

β := 2τ/2 · log(γ′(n, ℓ, τ)/f(n, ℓ, τ))
≤
√
2ℓℓ∗n2 + ℓ(n− ℓ∗ − ℓ)(n− ℓ∗)2 − ℓ(n− ℓ)n2

= ℓℓ∗(ℓ∗(3n− ℓ∗) + ℓ(2n− ℓ∗)− (3−
√
2)n2)

Finally, recalling that ℓ ≤ n/2 and ℓ∗ = ⌈(n− k)/20⌉ ≤ n/10, we see that

β ≤ ℓℓ∗ · (3n2/10 + n2 − (3−
√
2)n2) ≤ 0 ,

i.e., γ′(n, ℓ, τ) ≤ f(n, ℓ, τ), as needed.

5 Reducing HSVP (and even DSP!) to HSVP

We now show how to modify the reduction from the previous section into a reduction from approx-
imate DSP on rank-n lattices to HSVP on rank-k lattices for k < n. (In other words, we show how
to replace the DSP oracle from the previous section with an HSVP oracle.) The high-level idea is
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simply to modify the above reduction in such a way that, whenever we make a recursive call with
n = k, we will always have ℓ = 1 or ℓ = n− 1. (Notice that ℓ = n− 1 is just as good as ℓ = 1, since
after applying duality, we have ℓ′ = n − ℓ = 1. Of course, we must do this while maintaining the
invariant that ℓ∗ is typically a constant fraction of n− k, so that the depth of the tree will still be
logarithmic in n − k.) To do so, it suffices to design our recursive calls to maintain the invariant
that

∆ := n− k + 1−min{ℓ, n− ℓ} ≥ 0 . (3)

Notice that this is quite a natural condition to impose, given that we wish to have min{ℓ, n−ℓ} = 1
when n = k.

Let’s refer to the inner call made by a recursive call as its left child, with parameters nL, ℓL, τL,
and ∆L := nL − k −min{ℓL, nL − ℓL}+ 1; similarly, we’ll refer to the outer call as the right child
and denote its parameters by nR, ℓR, and so on. (This terminology of “right and left children” of
course comes from thinking of the recursion tree that our reduction follows.) Since right children
have rank nR = n and ℓR = ℓ∗, maintaining Equation (3) for right children simply amounts to
choosing ℓ∗ ≤ (n− k) + 1. We actually take ℓ∗ ≈ (n− k)/20 to be much smaller than this, so this
is fine.

On the other hand, left children have nL := n − ℓ∗ and ℓL = ℓ. In particular, notice that if
ℓ ≥ n/2, then ∆L := nL − k + 1 − (nL − ℓ) = ∆, so that ∆L ≥ ∆, and we clearly maintain (3)
for left children. On the other hand, if ℓ < n/2, then (ignoring the corner case when ℓ < n/2 but
ℓL ≥ nL/2, which never actually occurs in our reduction), we have

∆L = nL − k + 1− ℓ = ∆− ℓ∗ ,

so that ∆L is decreasing in this case, which could be bad.
To deal with this issue, we simply “make sure that whenever we make a recursive call with

ℓ ≤ n/2, ∆ must be larger than ℓ∗.” To do that, we simply apply duality whenever ℓ ≤ n/2 and
∆ is small. This amounts to applying duality whenever ℓ is nearly as large as n− k. (Notice that
this is actually quite a natural way to keep min{ℓ, n− ℓ} small.)

In this way, we are able to guarantee that whenever we have n = k, we must have either ℓ = 1
or n− ℓ = 1. (The above description ignores the fact that we must of course maintain the invariant
that ℓ < n. In order to account for that, we also apply duality if, say, ℓ ≳ n− (n− k)/10.)

But, we must still of course worry about the approximation factor achieved by this approach. In
particular, recall that the recurrence relation for our approximation factor in the previous section
was

γ(n, ℓ, τ) ≤ γ(n− ℓ∗, ℓ, τ)γ(n, ℓ∗, τ − 1)ℓ/(n−ℓ∗) .

Unsurprisingly, we obtain essentially the same recurrence here. But, in the previous section, we
kept the exponent ℓ/(n − ℓ∗) < C for some constant C < 1, and intuitively, this meant that
the contribution of the right child to the approximation factor was somehow significantly smaller
than the contribution of the left child. (And, of course, this is made formal in our analysis of the
recurrence.) This is what justified taking depth parameter τR = τ − 1 for the right child.

However, with our new approach, we can no longer guarantee that this exponent ℓ/(n− ℓ∗) is
always small. In particular, though we would like to apply duality whenever, say, ℓ > n/2 in order
to keep ℓ small and therefore keep this exponent bounded, we cannot apply duality when ℓ ≲ k,
since this could bring us back to the case min{ℓ, n− ℓ} ≳ n−k that we were trying to avoid above.
When n < 2k, we could have both ℓ > n/2 and ℓ ≲ k, in which case it is not clear what to do.
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In this rather frustrating corner case, we simply do not lower τ for the right child (or the
left child, for that matter), i.e., we take τR = τ instead of τR = τ − 1. This might seem like it
would substantially increase the running time of our algorithm, or even lead to an infinite loop!
Intuitively, this is not a problem because the case when ℓ > n/2 but ℓ ≲ k is relatively rare, and
indeed, we formally show that our running time is essentially unaffected by this (by showing that
the grandchildren of any such node must either have lower τ or substantially smaller n− k).

5.1 The algorithm

On input a (basis for a) lattice L of rank n, an integer ℓ with n > ℓ ≥ 1, and an integer τ ≥ 0, the
reduction A(L, ℓ, τ) behaves as follows.

1. Duality step: If max{1, (n− k)/5} < ℓ < n/2 or ℓ ≥ n−max{1, (n− k)/10},
output L ∩ A(L∗, n− ℓ, τ)⊥.

2. Base cases:

(a) SVP: If n = k and ℓ = 1, use an oracle for γ = γ(k)-HSVP to output (the lattice
generated by) a short vector in L.

(b) LLL: If τ = 0, run LLL on L and output the lattice generated by the first ℓ vectors of
the resulting basis.

3. Recursive step: Otherwise, set ℓ∗ = ⌈(n− k)/20⌉ and return A(L ∩A(L∗, ℓ∗, τ − b)⊥, ℓ, τ),
where b = 1 if ℓ < n/2 and b = 0 otherwise.

Theorem 5.1. Let L be a lattice with rank n ≥ k ≥ 10, and τ ≥ 0, and suppose that 1 ≤ ℓ ≤
n − k + 1. Then on input (L, ℓ, τ), A runs in time poly(n) · 4τ , and returns L′ ⊂ L with rank ℓ
satisfying

γ′ := detL′/(detL) ℓ
n ≤ γ(k)

ℓ(n−ℓ)
k−1 · 2

ℓ(n−ℓ)n2

2τ .

5.2 Proof of Theorem 5.1

First, we must check that all calls to A have n ≥ k and n > ℓ ≥ 1. The initial call satisfies
these conditions by assumption, so we need only check the children of a call that does satisfy
these conditions. We can ignore the duality step, since interchanging ℓ with n − ℓ leaves the two
conditions unchanged. The right child of a recursive case clearly satisfies the conditions, since
1 ≤ ⌈(n − k)/20⌉ < n (recalling that ℓR = ⌈(n − k)/20⌉ and nR = n). So, it only remains to
consider the left child of a recursive case, which has nL = n − ⌈(n − k)/20⌉. Clearly nL ≥ k.
Moreover, the duality step ensures that ℓL = ℓ < n −max{1, (n − k)/10} ≤ nL, as needed. (I.e.,
if ℓ were larger than this, we would have applied duality. So, we never reach a recursive call with
ℓ ≥ n−max{1, (n− k)/10}.)

Next, we must verify that any recursive call with n = k must have ℓ = 1 or ℓ = n − 1. This
follows as an immediate corollary of the following lemma, which formalizes the discussion about ∆
above.

Lemma 5.2. All recursive calls satisfy the invariant min{ℓ, n− ℓ} ≤ n− k + 1.
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Proof. As in Equation (3) above, we define

∆(n, ℓ) := n− k −min{ℓ, n− ℓ}+ 1 ,

and we note that it suffices to prove that ∆ is non-negative for all recursive calls. The initial call to
A satisfies the invariant by assumption, so we need only check that the children of a call with non-
negative ∆(n, ℓ) will have ∆(nL, ℓL) ≥ 0 and ∆(nR, ℓR) ≥ 0. We can again ignore the duality step,
because interchanging ℓ and n − ℓ clearly does not affect ∆. The right children of recursion steps
trivially satisfy ∆(nR, ℓR) ≥ 0, by our choice of ℓR = ℓ∗ = ⌈(n − k)/20⌉ ≤ n − k + 1 = nR − k+1.
Furthermore, if ℓ ≥ n/2, then the left child of a recursion step has nL = n − ℓ∗ and ℓL = ℓ and
therefore must satisfy

∆(nL, ℓL) = nL − k − (nL − ℓ) + 1 = n− ℓ∗ − k − (n− ℓ∗ − ℓ) + 1 = ∆+ ℓ∗

So, if ℓ ≥ n/2 for a recursion step and the recursion step has non-negative ∆, then so will its
children.

It remains to show that if a recursion step has ℓ < n/2, then its left child still satisfies the
invariant. To see this, notice that if ℓ ≤ n/2, ∆ is actually quite large. Indeed, because of the
duality step, we only reach a recursion step when with ℓ ≤ n/2 if we in fact have the stronger
condition that ℓ ≤ max{(n− k)/5, 1}. This is enough to infer that the left child has non-negative
∆, since nL := n− ⌈(n− k)/20⌉ ≤ n− ⌈(nL − k)/20⌉ and

ℓL := ℓ ≤ max{(n− k)/5, 1} ≤ (nL + (nL − k)/20− k)/5 + 1 ≤ nL − k + 1 ,

as needed.

Next we would like to argue that the total number of recursive calls is appropriately bounded.

Lemma 5.3. The total number of recursive calls made by the algorithm is bounded by 4τ ·poly(n).

Proof. Notice that it suffices to argue that the total number of recursion steps in any path in the
tree is bounded by 2τ +O(log n). (Indeed, since every duality step is followed by a recursion step,
it suffices to prove that the number of recursion steps and base cases is bounded by 4τ · poly(n).
Of course, the size of a binary tree is at most 2 · 2h, where h is the height of the tree, so the total
number of base cases and recursion steps is bounded by 2 · 2h, where h is the length of the longest
path of recursion steps.)

Define the potential Φ for a recursive call with parameter n, ℓ, and τ as

Φ = τ + 20 log(n− k + 1) .

Notice that the potential of a child is always at most the potential of its parent. Thus it suffices
to argue that every recursion step’s grandchildren have potential Φ′ ≤ Φ− 1. Indeed, if this holds,
then a simple induction argument shows the desired bound on the number of recursion steps in any
path.

It is easy to check that the left children of recursion steps have potential ΦL ≤ Φ − 1 . Fur-
thermore, when ℓ < n/2, the right children of recursion steps have ΦR ≤ Φ − 1 (since we lower
τ by one). So, when ℓ < n/2, both children already have smaller potential (and, since the po-
tential never increases, the same is true of grandchildren). However, right children of a recursion
step with ℓ ≥ n/2 have ΦR = Φ. So, to finish the proof, we must show that all children of a
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right child of such a recursion step have potential Φ′ ≤ ΦR − 1 = Φ − 1. But, to see this, it
suffices to notice that the right child of a recursion step with ℓ ≤ n/2 is either a base case (in
which case there are simply no grandchildren to worry about) or is itself a recursive step with has
ℓR = ℓ∗ = ⌈(n − k)/20⌉ < n/2 = nR/2. But, we have already seen that nodes with ℓ < n/2 have
children with strictly smaller potential. The result follows.

Finally, we bound the approximation factor. Let γ′(n, ℓ, τ) be the (worst-case) approximation
factor achieved by the reduction A(L, ℓ, τ) when its input lattice has rank n. It suffices to show
that

γ′(n, ℓ, τ) ≤ f(n, ℓ, τ) := γ(k)
ℓ(n−ℓ)
k−1 · 2

ℓ(n−ℓ)n2

2τ .

The proof is by induction on n and τ . The base cases are easy to check using the HSVP and
LLL guarantees γ′(k, 1, τ) ≤ γ(k), and γ′(n, ℓ, 0) ≤ 2ℓ(n−ℓ). So, we assume that the result holds
for all (n′, τ ′) < (n, τ) (under the lexicographic order). Notice that we can ignore duality steps, as
both γ and f are unchanged if we replace ℓ with n− ℓ.

By Lemma 3.7, in a recursive step, γ satisfies the recurrence

γ′(n, ℓ, τ) ≤ γ′(n− ℓ∗, ℓ, τ) · γ′(n, ℓ∗, τ − b)
ℓ

n−ℓ∗ .

Using the recurrence and the induction hypothesis we get

γ′(n, ℓ, τ) ≤ γ(k)
ℓ(n−ℓ)
k−1 · 2

ℓ(n−ℓ∗−ℓ)(n−ℓ∗)2
2τ

+ ℓℓ∗n2

2τ−b .

Therefore, we have

α := 2τ · log(γ′(n, ℓ, τ)/f(n, ℓ, τ))
≤ ℓ(n− ℓ∗ − ℓ)(n− ℓ∗)2 + 2b · ℓℓ∗n2 − ℓ(n− ℓ)n2

= ℓℓ∗ ·
(
2ℓn+ 3ℓ∗n− (3− 2b)n2 − (ℓ∗)2 − ℓℓ∗

)
.

When b = 0, we therefore have

α = ℓℓ∗(2n− ℓ∗)(ℓ+ ℓ∗ − n) ,

which is negative since we chose ℓ∗ = ⌈(n − k)/20⌉ and by the duality step we have ℓ < n −
max{1, (n − k)/10} ≤ n − ℓ∗. On the other hand, when b = 1, we have ℓ ≤ n/2 by definition,
but notice that by the duality step this actually implies that ℓ ≤ max{1, (n − k)/5} ≤ n/5 and
ℓ∗ = ⌈(n− k)/20⌉ ≤ n/20 + 1, so that

α < ℓℓ∗n(2ℓ+ 3ℓ∗ − n) < ℓℓ∗n(2n/5 + 3n/20 + 3− n) = ℓℓ∗n2(−9n/20 + 3) ,

which is clearly negative for n ≥ 10.
Therefore, α ≤ 0 in both cases, i.e., γ′(n, ℓ, τ) ≤ f(n, ℓ, τ), as needed. This completes the proof

of Theorem 5.1.
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6 Computer-aided search for reductions, and numerical compar-
isons

One feature of our DSP to DSP and DSP to HSVP reductions (and reductions in our framework
more generally), is that the approximation factors that they achieve satisfies a simple recurrence.
This means that concrete provable bounds on the approximation factor achieved by each recursive
call can be computed recursively, using exactly the same pattern of recursive calls as the reduction
itself. In this section, we illustrate how these concrete bounds can be used to (1) find optimal
parameters for the recursion; (2) compare variants of our reductions with each other; and (3)
compare our reductions to basis reduction. For simplicity, we will restrict our attention to the case
ℓ = 1, which corresponds to reducing from HSVP.

We stress that our purpose is to illustrate what is possible here, and certainly not to provide
a definitive analysis on the performance of our reductions (or the performance of basis reduction).
In particular, we do not wish to get caught up by thorny issues about (1) the precise value of
Hermite’s constant in different dimensions; (2) the precise time required to solve

√
δk-HSVP in k

dimensions; (3) the precise behavior of basis reduction, including the precise approximation factor
achieved by LLL; etc. So, when we encounter such issues, we endeavor to make choices (detailed in
Section 6.2) that yield bounds that are reasonable, simple, and provably correct (up to lower-order
terms in the running time of (H)SVP algorithms, which we do not attempt to model), but certainly
not optimal.10 We leave it to future work to consider such issues more carefully (mindful of the
ongoing effort to understand such issues in the context of basis reduction), and here simply show
what is possible when these issues are largely ignored.

With that disclaimer out of the way, we note that our framework is quite amenable to such
computations. First, not only can we obtain concrete bounds for a particular reduction with
particular parameter choices such as the one in Theorem 5.1, we can use dynamic programming to
compute the optimal approximation factor achievable (by a family of reductions that take roughly
the same form as that in Section 5) with a given number of oracle calls, along with a description
of the reduction achieving it. And, (in stark contrast to, e.g., simulations for basis reduction)
the resulting bound on the approximation factor is proven correct (assuming that one uses proven
bounds on Hermite’s constant and proven bounds on the approximation factor achieved by LLL
for the base cases—one can also of course plug in conjectured or heuristic bounds here).

Concretely, consider the following variant A(L, ℓ, C) of our DSP to SVP reduction in Section 5.
The reduction is underspecified; namely, the choices of whether to apply duality, and which values
ℓ∗ and C∗ to use in the recursive step, are left unspecified.

1. Duality step: Possibly choose to output L ∩ A(L∗, n − ℓ, C)⊥ (where n := rank(L)). Oth-
erwise, continue.

2. Base cases:

(a) LLL: If C = 0 or if n = k and ℓ > 1, run LLL on L and output the lattice generated by
the first ℓ vectors of the resulting basis.

10While this thicket of thorny issues is not ideal, we note that the situation is far worse in the context of basis
reduction. And, in some sense, these thorns are not the fault of the recursive lattice reduction framework. Indeed,
our first thorny issue—the imprecision in Hermite’s constant—of course comes with the territory (and is really rather
minor). The remaining thorny issues fundamentally boil down to difficulties in nailing down the behavior of algorithms
that are outside of our framework, specifically LLL and sieving.
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(b) SVP: If n = k and ℓ = 1, use an oracle for γ = γ(k)-HSVP to output (the lattice
generated by) a short vector in L.

3. Recursive step: Otherwise, choose integers 1 ≤ ℓ∗ ≤ n −max{ℓ + 1, k}, 0 ≤ C∗ ≤ C, and
output A(L ∩ A(L∗, ℓ∗, C∗)⊥, ℓ, C − C∗).

Notice that C bounds the number of HSVP oracle calls the reduction can make, since if C = 0 the
reduction must run LLL, and in the recursive step, the reduction must divide its budget C between
the two recursive calls. (And, note that the total running time of the reduction, is bounded by
C · poly(n), assuming that the trivial operation of applying the duality step twice in a row is never
chosen.)

Now we can define a quantity γ′(n, ℓ, C) that is the best provable bound (or, at least, the best
bound that one can derive via the basic recurrences that we use throughout this paper) on the
approximation factor the reduction can obtain, over all of its choices. In detail, the base cases are
γ′(n, ℓ, 0) := (4/3)ℓ(n−ℓ)/4 and γ′(k, 1, C) := γ(k), and for all other values,

γ′(n, ℓ, C) := min
ℓ̂∈{ℓ,n−ℓ}

min
1≤ℓ∗≤n−max{ℓ̂+1,k}

min
0≤C∗≤C

γ′(n− ℓ∗, ℓ̂, C − C∗) · γ′(n, ℓ∗, C∗)
ℓ̂

n−ℓ∗ .

The value γ′(n, ℓ, C), along with a description of the reduction achieving it (that is, the choices
of ℓ∗ and C∗ made by the reduction at each step) can then be straightforwardly computed by
dynamic programming in space Õ(n2C) and time Õ(n3C2).

We will also want to consider a variant of the above reduction that can make HSVP oracle calls,
not just on lattices with fixed rank k, but lattices of potentially different ranks. Of course, this does
not make much sense unless we also “charge our reduction more” for oracle calls on higher-rank
lattices. Concretely, suppose that γ(k)-HSVP can be solved in time T (k) with rank k lattices.
We modify the reduction as follows (renaming the parameter C to T for clarity): (1) we let the
condition for the LLL base case be simply T = 0, (2) we let the condition for the SVP base case be
simply ℓ = 1, and allow the reduction to choose whether to apply it or not, and (3) we allow the
reduction to choose any 1 ≤ ℓ∗ < n− ℓ in the recursive case. We also modify the definition of γ′ by
letting the SVP base case γ′(n′, 1, T ) = γ′(n′) apply for arbitrary rank n′, provided that T ≥ T (n′)
(and we modify the summation bounds on ℓ∗ in the recursive definition of γ′ to match the modified
reduction). With these modifications, T now bounds the running time of the algorithm obtained
by instantiating the oracle calls made by such a reduction using an oracle that runs in time T (n′)
(neglecting for simplicity the time taken by operations other than HSVP oracle calls).

6.1 Results

In Figures 1 and 2, we show a comparison between the explicit reduction described in Section 5 and
the optimized reduction found by a coarse-grained version of the automated procedure described
above, with parameters (n, k) = (50, 10) and (n, k) = (100, 30).11 (The approximation factors
achieved and number of oracle calls needed by the explicit reduction from Section 5 were computed
by solving the associated recurrences exactly.) These plots show that the computer-generated
reduction rather massively improves upon the explicit reduction described in Section 5.

Figure 3 shows some of the actual recursive tree in one of the reductions generated by our
automated procedure. Notice that the parameters chosen here are significantly more subtle than

11See Section 6.2 for details on the coarse-grained approach.
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Figure 1: A comparison of tradeoffs between the approximation factor γ and the running time (measured by
the number of HSVP oracle calls C) when reducing γ-HSVP with rank n = 50 to

√
δk-HSVP with rank k = 10.

The blue dotted curve is our recursive DSP to HSVP reduction with nearly optimal parameters chosen by
computer search. The red stars show the tradeoff achieved by the recursive reduction of Theorem 5.1.
The orange curve is an upper bound on the approximation factor obtained by slide reduction from [Wal21,
Corollary 1], which we include to provide (rough) context. The blue, orange, and red curves all converge to
the green dotted line as the running time grows large.
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Figure 2: A similar comparison to Figure 1, but with n = 100 and k = 30.
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n = 50
ℓ = 1

C = 40000

n = 35
ℓ = 1

C = 10000

n = 50
ℓ = 15

C = 30000

n = 20
ℓ = 1

C = 1000

n = 35
ℓ = 15

C = 9000

n = 37
ℓ = 15

C = 10000

n = 50
ℓ = 13

C = 20000

. . . . . . . . . . . .

Figure 3: The first few recursive calls of our recursive DSP to HSVP reduction, with optimal parameters
(up to some rather aggressive rounding) discovered by computer search. Each recursive call is labeled with
the input rank n, output rank ℓ, and the budget C (of running time measured in HSVP oracle calls) allocated
to the call. The initial parameters n = 50, ℓ = 1, C = 40000 correspond to the regime of Figure 1 where
the approximation factor achieved by the recursive reduction has gotten quite close to its value as C goes to
infinity (i.e., where the blue curve has more-or-less merged with the green curve).
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Figure 4: A comparison of tradeoffs between the approximation factor γ and the running time T for solving
γ-HSVP with rank n = 50, in the simplified model where we assume that an HSVP oracle call with rank k
takes time 2k, and we neglect the time taken by all other operations. All curves correspond to our recursive
HSVP to HSVP reduction with nearly optimal parameters chosen by computer search. The blue curve is
allowed to make HSVP oracle calls with arbitrary rank k (provided 2k is less than its time budget T ), whereas
the others are only allowed to make HSVP oracle calls with a certain fixed rank k.
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Figure 5: A similar comparison to Figure 4, but with n = 100 and k = 30.
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the simple ones that we chose in Section 5. In particular, ℓ∗ (the value of ℓ taken by the right node)
is clearly not just a fixed function of n, and the allocation of oracle calls is similarly subtle–often
larger for the right node than the left.

We also include in Figures 1 and 2 Walter’s [Wal20, Corollary 1] closed-form (proven) upper
bound on the approximation factor achieved by (a variant of) Gama and Nguyen’s slide reduction
algorithm as a function of the number of oracle calls [GN08a]. We stress that this is only meant
to provide some rather rough context, to show that our (computer-generated) reduction is roughly
comparable to prior work. In particular, while the plots might suggest that our reduction outper-
forms slide reduction when the number of oracle calls is rather small, we do not claim that this is
actually true. (Slide reduction is not well studied in the setting where the number of oracle calls
is significantly less than the number needed to converge. We in particular do not know if Walter’s
estimate is tight in the regime where the number of oracle calls is small.)

In Figures 4 and 5, we show comparisons between the performance of different computer-
generated reductions in our framework. In particular, we compare the time-approximation-factor
tradeoff achieved by our computer-optimized reductions with different fixed oracle sizes k (for
n = 50 in Figure 4 and n = 100 in Figure 5), as well as the tradeoff achieved by allowing the
algorithm to adaptively choose the rank k in which the HSVP oracle is run, as discussed above. As
we discuss more in Section 6.2, we used quite a crude cost model of 2k computational operations
for
√
δk-HSVP oracle calls on rank-k lattices (and no cost for all other operations). (We found that

changing this cost model did not change the results qualitatively.)
Again, the resulting plots show that substantial improvement can be made by allowing for oracle

sizes with different ranks.

6.2 Technical details

LLL oracle The LLL algorithm, viewed as a γLLL-DSP oracle, provably achieves approximation
factor at most [PT09]

γLLL ≤ (4/3)
ℓ(n−ℓ)

4 .

We use this bound for the approximation factor achieved by the LLL oracle.12

SVP oracle. We assume an exact HSVP oracle, achieving approximation factor γ =
√
δk in

dimension k. We use known exact values of δk in dimensions k ≤ 8. For k > 8, we use the best
known asymptotic upper bound on δk, due to Blichtfeld [Bli29]:

δk ≤
2

π
Γ(2 + k/2)

2
k ,

where Γ(x) is the gamma function.13

As a rough and simple guess for the running time T required to solve (H)SVP in dimension k,
we use T = 2k.14

12In practice, LLL is known to perform much better than this [NS06]. So, one might instead plug in heuristic
bounds on the approximation factor achieved by LLL.

13There is a lower bound of Γ(k/2 + 1)2/k/π, so Blichfeldt’s bound is tight up to a factor of 2 + o(1). One might

reasonably guess that the right answer is closer to Γ(k/2 + 1)
2
k /π.

14This is approximately the running time of state-of-the-art (provable) exact SVP algorithms [ADRS15], which runs
in time 2k+o(k). But, we are not being too precise—in particular, dropping the unspecified 2o(k) factor. One might
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Approximate minimization. Though computer-aided search for optimal recursive reductions
in our framework is relatively efficient, finding the exact minimum via dynamic programming
still requires non-trivial amounts of time and memory. The results presented here are therefore
only approximate minima (upper bounds on the true minimum), generated by only searching for
reductions where the budget C of HSVP oracle calls allocated to a given recursive call cannot be an
arbitrary integer, but instead must be chosen from a smaller “coarse” set of values. (Our approach
to the running time budget T is similar.) Experimentally, for the small values of n for which we
tested this directly, the upper bounds obtained this way were not much worse than the optima
obtained by exact search, so we felt they sufficed for these proof-of-concept illustrations.

In more detail, the coarse sets of values we use are of size O(logC) (or O(log T )), and they
consist of all integers ≤ C (≤ T ) that can be written in base b with all non-leading digits 0. (For
example, choosing b = 10 gives 0, 1, . . . , 9, 10, 20, . . . , 90, 100, . . . and so on up to C.) We used
b = 10 for Figure 3 (in order to display nice round numbers) and b = 8 for Figures 1, 2, 4 and 5
(in order to display evenly spaced points on our log plots). The reduction is allowed to split C into
C∗ and C ′ with C∗ + C ′ = C, which means that when C = x · ba, if the leading digit x is 1 the
reduction can choose only C∗ = y · ba−1 for any y ∈ {0, . . . , b− 1}, and when x > 1, the reduction
can choose only C∗ = z · ba for some 0 ≤ z ≤ x.

7 Directions for future work

We expect there to be much future work on this new paradigm. Indeed, we largely view this work as
introducing new ideas that we hope and expect others will expand upon. We detail some potential
future directions below.

New algorithms in this framework. Perhaps the most natural direction for future work is to
investigate more (hopefully better) instantiations of the framework that we have introduced. For
example, while we only considered binary recursion trees, one can consider trees with larger degree.
One can also consider algorithms that incorporate projection more directly (in close analogy with
basis reduction algorithms). E.g., one could consider algorithms that find a dense sublattice of
L with rank ℓ by first finding a dense sublattice L′ with rank ℓ′ < ℓ, finding a dense sublattice
L′′ ⊂ Π(L′)⊥(L) with rank ℓ − ℓ′, and then “lifting” the result to a sublattice L̂ ⊂ L with rank

ℓ such that L′ ⊂ L̂ and Π(L′)(L̂) = L′′. It would be interesting both to study such approaches
theoretically and to incorporate them into automated searches for better-performing reductions in
this framework.

Recursive lattice reduction and basis reduction. It would also be quite interesting to
provide a better understanding of the relationship between our new framework of recursive lattice
reduction and the pre-existing framework of basis reduction. As we discussed in Section 2.4, the
two frameworks feel quite similar and achieve more-or-less the same results, but we know of no
formal relationship between them. In particular, we do not know whether common basis reduction
algorithms can be captured in our framework, and we view this as a major open question. For

instead plug in estimates for, e.g., heuristic sieving algorithms—or, in low dimensions, even for heuristic enumeration
algorithms. Here, we only wish to give a qualitative picture of how our algorithm behaves when we allow oracle calls
in different dimensions. (This qualitative picture is unchanged when we change how we model the running time of
the oracle.)
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example, all of our instantiations of recursive lattice reduction require the use of the LLL algorithm
as a subprocedure (as we also discuss in Section 2.4). Ideally, we would like to show that something
like the LLL algorithm itself can be captured in our framework (or a natural generalization of it),
to remove this dependency. In particular, we would at least like to match the approximation factor
achieved by LLL without using LLL as a subroutine.15

Failing that, one could also consider explicitly using other basis reduction algorithms as sub-
procedures in our framework. E.g., one could imagine including the possibility of running basis
reduction algorithms instead of some of the recursive calls—in particular in automated searches for
the best reductions, as in Section 6. Perhaps such an algorithm can achieve better performance? Or
perhaps one can achieve better performance in basis reduction by using recursive lattice reduction
as a subprocedure there? Perhaps there are more general combinations of the two techniques that
are interesting as well.

There are also various tricks for speeding up basis reduction algorithms that we currently do not
know how to apply in our framework. For example, basis reduction algorithms are often applied
progressively, in that one reduces the basis with progressively larger block size, obtaining shorter
and shorter vectors [AWHT16]. This effectively lowers the number of high-dimensional oracle calls
at the expense of using many lower-dimensional oracle calls. While the technique we discuss in
Section 6 of using oracle calls with different dimensions is similar to this at a high level, it is not
clear that they are truly analogous to progressive basis reduction algorithms. As another example,
Walter [Wal21] and Li and Walter [LW23] showed that it can be favorable to use the HKZ-reduced
bases that one can easily generate with an SVP oracle to get a coarse solution to DSP. Perhaps
similar tricks are possible here?

More generally, modern basis reduction algorithms are quite sophisticated and highly optimized—
from high-level optimizations like the progressive reduction described above or optimizations that
take into account the fact that the length of an output vector is not fixed but rather is a random
variable [YD18] to low-level (but important and very clever!) optimizations related to precision
issues [NS09, Ste10, RH23]. We hope that similarly sophisticated optimizations can and will be
applied in our framework. (The fact that many of the techniques for controlling precision issues
use recursion [NS16, KEF21, RH23] seems promising—at least superficially.)

And, for practical performance, one should of course introduce heuristics into the study of this
framework. We hope that in our setting one can reap the tremendous benefits that heuristics
have provided in our understanding of basis reduction without quite needing to completely sacrifice
the simple presentation and analysis that our framework provides. In particular, one can hope
that it would be sufficient to, e.g., apply heuristics about Hermite’s constant, the approximation
factor achieved by LLL, and the other “thorny issues” discussed in Section 6 without, e.g,, making
additional heuristic assumptions about the behavior of reductions in our framework.

Recursive reduction of algebraic lattices. Additionally, one might ask how this new frame-
work applies to algebraically structured lattices, such as embeddings of ideals in number fields

15We do note that there is a certain weak sense in which our framework captures LLL. If one instantiates any of our
algorithms with block size k = 2 and replaces calls to LLL with some hypothetical algorithm achieving approximation

factor 2n
C

for any constant C, then it is not hard to see that one obtains an algorithm more-or-less matching the
performance of LLL. I.e., one can use our framework to generically convert any efficient algorithm with approximation

factor 2n
C

to one with approximation factor 2O(n).

30



or module lattices over the ring of integers. These lattices play a crucial role in lattice-based
cryptography, and their reduction remains an active area of research.

It is known that the LLL algorithm [LPSW19] and the slide-reduction algorithm [MS20] can
be readily adapted to this context. Furthermore, [KEF20] have explored recursion techniques
leveraging the algebraic structure of this class of lattices to enhance the efficiency of the LLL
algorithm. Investigating the potential interaction between our recursive framework and the inherent
recursive structure of module lattices could yield improvements to such results.

Lattice reduction with few oracle calls. Finally, we note that our framework places new
emphasis on the performance of reductions that make very few oracle calls. In particular, because
of the recursive nature of our reductions, the final approximation factors that we obtain would be
improved quite a bit if we could greatly improve the approximation factor achieved by reductions
using, e.g., just one oracle call. More generally, our framework makes very concrete the intuitive
notion that an improvement to the fastest running time needed to solve (H)SVP for some ranks
and approximation factors can yield similar improvements for other ranks and running times. This
further motivates further study of lattice reduction in all parameter regimes (even rather strange
regimes, like the regime of one oracle call).
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with rational coefficients. Math. Ann., 261(4):515–534, 1982. 2

[LN14] Jianwei Li and Phong Q. Nguyen. Approximating the densest sublattice from Rankin’s
inequality. LMS J. of Computation and Mathematics, 17(A):92–111, 2014. 6, 10

[LPSW19] Changmin Lee, Alice Pellet-Mary, Damien Stehlé, and Alexandre Wallet. An LLL
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