Passwords

Tom Ristenpart
CS 6431
The game plan

• Basics, history
 – Morris and Thompson 1979
• The research landscape
• Current practices in industry
• Measuring password distributions:
 – Florencio & Herley (client-side measurement)
 – Bonneau (server-side measurement)
 – Understanding password strength metrics
Password use cases

- OS login
- Website / service login
- PINs
- Encryption

Authentication
Confidentiality
Morris-Thompson paper

Register:
tom, pw

Authentication service

login:
tom, pw'

Store tom, pw in some form.

Check that pw' = pw

What are security threats?
Brute-force attacks

• Offline brute-force attacks
 – Compromise database
 – E.g.: “cracking” via dictionary attacks
 – Countermeasures: hash passwords with purposefully slow-to-compute cryptographic hash function
 (was: MD5, SHA-1 now: argon2, scrypt)

• Online brute-force attacks
 – E.g: Submit guesses to web site
 – Countermeasures: Rate limit, account lockout

• Shoulder surfing, compelled password disclosure, malware, side-channels, ...
Brute-force attacks

• **Offline brute-force attacks**
 – Compromise database
 – E.g.: “cracking” via dictionary attacks
 – *Countermeasures*: hash passwords with purposefully slow-to-compute cryptographic hash function
 (was: MD5, SHA-1 now: argon2, scrypt)

• **Online brute-force attacks**
 – E.g: Submit guesses to web site
 – *Countermeasures*: Rate limit, account lockout

• **Shoulder surfing, compelled password disclosure, malware, side-channels, ...**
Offline brute-force attacks

\[h_1 = H(pw_1) \]
\[h_2 = H(pw_2) \]
\[\ldots \]
\[h_m = H(pw_m) \]

Dictionary:
List of probable passwords
or way of generating them

Nowadays:
Use password leaks to inform dictionary

Check if any guesses equal any of \(h_1, \ldots, h_m \)
“Human beings being what they are, there is a strong tendency for people to choose relatively short and simple passwords that they can remember. “

[Morris, Thompson 1979]
“The results were disappointing, except to the bad guy.”

“In a collection of 3,289 passwords gathered from many users over a long period of time,

15 were a single ASCII character;
72 were strings of two ASCII characters;
464 were strings of three ASCII characters;
477 were strings of four alphameric;
706 were five letters, all upper-case or all lower-case;
605 were six letters, all lower-case.”

[Morris, Thompson 1979]

86% crackable
Morris, Thompson suggest:

- Slow hashing (they called it encryption)
- Less predictable passwords (pw requirements)
- Salt before hashing
- Use custom version of DES to avoid hardware
- Avoid timing attacks to distinguish bad login

“We did not attempt to hide the security aspects of the operating system, thereby playing the customary make-believe game in which weaknesses of the system are not discussed no matter how apparent.”
The research landscape since 1979...

- **Understanding user password selection**
 - Measuring password strength [see citations in Bonneau paper], [Li, Han ‘14], [CMU papers]
 - Measuring password reuse
- **Usability**
 - Strength meters, requirements, etc. [Komanduri et al. ‘11] [Dell’Amico, Filippone ‘15] [Wheeler ‘16] [Melicher et al. ‘16]
 - Password expiration [Zhang et al. ‘12]
 - Typo-tolerance [Chatterjee et al. ‘16]
- **Password transmission, login logic**
 - Single sign-on (SSO) technologies
 - Password-based authenticated key exchange [Bellovin, Merritt ‘92]
- **Password hashing**
 - New algorithms [PKCS standards], [Percival ‘09], [Biryukov, Khovratovich ‘15]
 - Proofs [Wagner, Goldberg ‘00] [Bellare, Ristenpart, Tessaro ‘12]
- **Improving offline brute-force attacks**
 - Time-space trade-offs (rainbow tables) [Hellman ‘80], [Oeschlin ‘03], [Narayanan, Shmatikov ‘05]
 - Better dictionaries [JohntheRipper], [Weir et al. ‘09], [Ma et al. ‘14]
- **Password managers**
 - Decoy-based [Bojinov et al. ‘10], [Chatterjee et al. ‘15]
 - Breaking password managers [Li et al. ‘14] [Silver et al. ’15]
 - Stateless password managers [Ross et al. ’05]
Password hashing

- Recall Morris, Thompson goal: slow down brute-force attacks
- PKCS#5 approach:

\[h = H^c(pw \| \text{salt}) \]

\[H : \{0,1\}^* \rightarrow \{0,1\}^n \] is cryptographic hash function (e.g., SHA-256)

salt should be random bit string large enough to be unpredictable
Password hashing

• Recall Morris, Thompson goal: slow down brute-force attacks
• The role of salts:
 – Prevents use of time-memory trade-offs (rainbow tables)
 – Cracking m accounts requires m times the work

\[
h_1 = H^c(pw_1, salt_1) \\
h_2 = H^c(pw_2, salt_2) \\
... \\
h_m = H^c(pw_m, salt_m)
\]

Proofs:
See [Bellare, Ristenpart, Tessaro ‘12]
Linked in circa 2012 stored passwords as which of:

- pw
- MD5(pw)
- H(salt,pw)
- H^c(salt,pw)

2012: 6.5 million hashes leaked onto Internet
90% cracked in 2 weeks

2016: 177.5 million more hashes leaked
98% cracked in 1 week

http://arstechnica.com/security/2016/06/how-linkedins-password-sloppiness-hurts-us-all/
Facebook password “onion”

```php
$cur = 'password'
$cur = md5($cur)
$salt = randbytes(20)
$cur = hmac_sha1($cur, $salt)
$cur = remote_hmac_sha256($cur, $secret)
$cur = scrypt($cur, $salt)
$cur = hmac_sha256($cur, $salt)
```

Split-trust model:
must compromise both servers to mount offline brute-force
Understanding password strength

(1) Empirical studies of user passwords
 Leaks
 Instrumentation of large web systems (Bonneau paper)
 Instrumentation of clients (Florencio & Herley)

(2) Develop probabilistic model of passwords
 \[pw_1, pw_2, \ldots, pw_N \]
 \[p(pw_i) = p_i = \text{probability user selects password } pw_i \]
 \[\sum_{i} p_i = 1 \]

(3) Use p to educate brute-force crackers, strength meters
Internet users ditch “password” as password, upgrade to “123456”

Contest for most commonly used terrible password has a new champion.

by Jon Brodkin - Jan 20 2014, 4:00pm GMT

290729 123456 79076 12345 76789 123456789 59462 password 49952 iloveyou 33291 princess 21725 1234567 20901 rockyou 20553 12345678 16648 abc123 16227 nicole 15308 daniel 15163 babygirl 14726 monkey 14331 lovely 14103 jessica

Rockyou data breach:
32 million social gaming accounts

Most common password used by almost 1%

[Bonnoeu 2012]
69 million Yahoo! Passwords
1.1% of users pick same password
Rockyou empirical probability mass function

(Only first 5,000 points shown)
Florencio & Herley study

• Instrument Windows Live toolbar
 – 544,960 clients opted-in to study

• Captured passwords typed into browser
 – Hashed and stored locally
 – Sent report to server about (quantized) password strength, associated URL, etc.
Florencio & Herley 2007

- Avg user:
 - Has 6.5 passwords, each used at 3.9 different sites
 - Has 25 accounts requiring passwords
 - Types 8 passwords per day
 - Selects 40.54 “bitstring” password

- ~1.5% of Yahoo users forget their passwords each month (!)
Rockyou empirical probability mass function

(Only first 5,000 points shown)
Bonneau Yahoo password study

• Instrument login infrastructure
 – 69 million accounts monitored
• Hash passwords with key $H(K,pw)$ and store result in histogram
• Throw away K
 – Can’t do brute-force attacks later on
 – Only learn empirical distribution of passwords
• Also stored some demographic information
• How do we measure strength of password distribution?
Password strength metrics

• Florencio and Herley approach?
 – Alphasize(pw) = sum of the sizes of character classes observed in password
 • Hello12! Has alphabet size = 26 + 26 + 10 + 22 = 84
 – Bitstrength(pw) = Alphasize(pw)^\text{len}(pw)

• Simpler than classical NIST entropy estimate
Password strength metrics

Let \mathcal{X} be password distribution. Passwords are drawn iid from \mathcal{X}. N is size of support of \mathcal{X}. p_1, p_2, \ldots, p_N are probabilities of passwords in decreasing order.

Shannon entropy:

$$H_1(\mathcal{X}) = \sum_{i=1}^{N} -p_i \log p_i$$
Shannon entropy is poor measure (for password unpredictability)

\[N = 1,000,000 \]
\[p_1 = 1 / 100 \]
\[p_2 = (1 - 1/100)/999,999 \approx 1 / 2^{20} \]
\[\ldots \]
\[p_N = (1 - 1/100)/999,999 \approx 1 / 2^{20} \]

\[H_1(\mathcal{X}) \approx 19 \]

19 bits of “unpredictability”. Probability of success about \(1/2^{19}\)

What is probability of success if attacker makes one guess?

Shannon entropy is almost never useful measure for security
Password strength metrics

Beta-success rate:

$$\lambda_\beta(\mathcal{X}) = \sum_{i=1}^{\beta} p_i \quad \tilde{\lambda}(\mathcal{X}) = \log(\beta / \lambda_\beta(\mathcal{X}))$$

Alpha-work-factor:

$$\mu_\alpha(\mathcal{X}) = \min \left\{ j \left| \sum_{i=1}^{j} p_i \geq \alpha \right. \right\}$$

$$\tilde{\mu}_\alpha(\mathcal{X}) = \log(\mu_\alpha(\mathcal{X}) / \lambda_{\mu_\alpha}(\mathcal{X}))$$
Figure 3. Changing estimates of guessing metrics with increasing sample size M. Estimates for H_{∞} and $\hat{\lambda}_{10}$ converge very quickly; estimates for $\hat{\mu}_{0.25}$ converge around $M = 2^{22}$ (marked ×) as predicted in Section V-A. Estimates for H_0, H_1, and \hat{G} are not close to converging.
Figure 6. Guessing curve for Yahoo! passwords compared with previously published data sets and cracking evaluations.

Split effect, with male-chosen passwords being slightly more vulnerable to online attack and slightly stronger against offline attack. There is a general trend towards better password selection with users' age, particularly against online attacks, where password strength increases smoothly across different age groups by about a bit between the youngest users and the oldest users. Far more substantial were the effects of language: passwords chosen by Indonesian-speaking users were amongst the weakest subpopulations identified with $H_1 = 5.5$. In contrast, German and Korean-speaking users provided relatively strong passwords.

Users' account history also illustrates several interesting trends. There is a clear trend towards stronger passwords amongst users who actively change their password, with users who have changed passwords 5 or more times being one of the strongest groups. There is a weaker trend towards stronger passwords amongst users who have completed an email-based password recovery. However, users who have had their password reset manually after reporting their account compromised do not choose better passwords. As these password changes were voluntary, this trend doesn't relate mandatory password change policies, particularly as many users choose predictably related passwords when forced.

Users who log in infrequently, judging by the time of previous login before observation in our experiment, choose slightly better passwords. A much stronger trend is that users who have recently logged in from multiple locations choose relatively strong passwords. There is a weak trend towards improvement over time, with more recent accounts having slightly stronger passwords. Of particular interest to the security usability research community, however, a change in the default login form at Yahoo! appears to have had little effect. While Yahoo! has employed many slightly different login forms across its different services, we can compare users who initially enrolled using each of two standard forms: one of which has no minimum length requirement and no guidance on password selection, and the other with a 6 character minimum and a graphical indicator of password strength. This change made almost no difference in security against online guessing, and increased the offline metrics by only 1 bit.

Finally, we can observe variation between users who have...
Bonneau takeaways

- Use appropriate strength measures for password distributions
- Yahoo study: people pick lousy passwords
- What does Bonneau paper not give us?