
Sincronia: 
Near-Optimal Network Design for Coflows

Saksham Agarwal Akshay Narayan Rachit Agarwal David Shmoys Amin Vahdat

Shijin Rajakrishnan


Joint work with



The Flow Abstraction

Optimized for Flow-level performance

FTP Email HTTP…

Traditional Applications:

Care about performance


of individual flows

Good Match



Is Flow Still the Right Abstraction?

Distributed Applications:

Care about performance 

for a group of flows

…

R R … R

M M … M

Bulk Synchronous Model

M: Mappers

  R: Reducers

T T … T T

T … T

T

Partition Aggregate Model

T: Tasks

FTP Email HTTP…

Traditional Applications:

Care about performance


of individual flows

Optimized for Flow-level performance

Mismatch



The Coflow abstraction

Collection of semantically related flows [Chowdhury & Stoica, 2012]

…

…

…

…

Coflow 1

Coflow 2 Coflow 3

Allows applications to more precisely express their performance goals



•Big-switch model


•Clairvoyant scheduler


▪ Coflow details known at arrival time:


➢ Source-destination for each flow

➢ Size of each flow

➢ Coflow weight


• Metric – coflow completion time: Time when all flows complete

Network and Coflow Model
Ingress ports

Egress ports

•Big-switch model

▪ Ingress and egress ports


➢ Equal bandwidth

▪ Congestion only at ingress, egress ports


➢ Packet spraying

➢ Full bisection bandwidth


▪ Needed only for theoretical guarantees

1

2’2

1’DC Fabric
3

1

11

2

4

Virtual output queuesGoal: Minimize Average Weighted Coflow Completion Time (CCT)



Prior Results

Practical, Near-Optimal Network Design for Coflows?

Impossibility Results
• NP-hard • <2x approximation hard    

Systems/

Theory State-of-the-art Performance 

Guarantees

Runs on 
Existing 

Transport

Work 
Conserving

Starvation 
Avoiding

Systems Varys

[SIGCOMM ‘14]

Theory
On Scheduling 

Coflows

[IPCO ‘17] (4-apx)


Not Starvation Free:

Tradeoff between 


starvation freedom and CCT optimization

Involves complex 

per-flow rate allocation mechanism

When all coflows arrive at time 0;

Can be extended to general setting



Given a set of coflows,

ANY per-flow rate allocation mechanism that is 


work-conserving 

produces average CCT within 4x of optimal

Sincronia: 

 Given a set of coflows and a “right” ordering,

ANY per-flow rate allocation mechanism that is 


work-conserving & order-preserving

produces average CCT within 4x of optimal

Guarantees 4-approximation for (weighted) average CCT
1

2

•Per-flow rate allocation irrelevant

•Transport layer agnostic


Two key results



Systems/

Theory Name Performance 

Guarantees

Runs on 
Existing 

Transport

Work 
Conserving

Starvation 
Avoiding

Systems Varys

Theory On Scheduling 
Coflows

Systems Sincronia

(4-apx)


(4-apx)


Sincronia – Near-Optimal Network Design

Also outperforms state-of-the-art across evaluated workloads 



• Algorithm – BSSI


▪ Bottleneck, Select, Scale, Iterate


▪ SRPT-first style algorithm

Sincronia Design

Coflow Scheduling

• Priorities set from order


• Flows offloaded to transport layer


• No explicit per-flow rate allocation


Set of 

coflows

Ordered

set of 


coflows

Priorities

on flows

Coflow

ordering

Flow

Schedulin

g

33

2
2 2

1
11



Bottleneck-Select-Scale-Iterate (BSSI)
• Find BOTTLENECK port


• SELECT (weighted) largest job


▪  Ordered last


• SCALE weights of remaining jobs


• ITERATE on unscheduled jobs

1

2’2

1’
1

2

1’

2’

1

2

1’

2’

Ordering not important

1

2

1’

2’



BSSI in Action

• Bottleneck

• Select


▪ Ordered Last


• Scale

• Iterate

1

2’2

1’

1

2

1’

2’

Order:

Weights: 1 1 1
¼ 0 ¾ 
0 0 ⅜  Find port handling


largest number of packets
Select coflow with 


largest size-to-weight ratio
Scale weight of each coflow


(at bottleneck port)
Iterate on 


unscheduled coflows

Weight ← Weight(1 – )


Weight ← Weight(1 – )

Size
Weight

Size
Weight

Size
Weight

Size
Weight

 = 3


 = 4


 = 1


Size
Weight

Size
Weight

Size
Weight

 = 8


 = 4


Size
Weight

Size
Weight

1
3
4Weight ←          ×  (1 – )

 
                   

#packets = 4

#packets = 8

#packets = 5

#packets = 7



End-to-End Design(Offline)

1

2’2

1’

Order:

Host 1 Host 2

Transport Transport

1 1 1 1 1 2 2 3 33

• Each host knows ordering


• Flows get priority of coflow


• Offloads to priority enabled transport layer

1 2 3

BSSI



Per-flow Rate Allocation is Irrelevant

1

2’2

1’

• Intuition: Sharing bandwidth does not help CCT


• Order-preserving schedule:


Flow blocked iff ingress or egress port serving higher-ordered flow


 Given the BSSI ordering,

ANY per-flow rate allocation mechanism that is


work conserving & order-preserving

produces average CCT within 4x of optimal

Shared bandwidth

t=1

½ 

½ 

t=2

½ 

½ 

t=1

1

t=2

1 



Avoiding per-flow rate allocation: Implications
• Implement on top of any transport layer


▪ E.g. pFabric, pHost, TCP


• Design and implementation independent of


▪ Network Topology


▪ Location of Congestion

▪ Paths of Coflows


•More scalable  


▪ No reallocations upon coflow arrivals/departures

Details in paper



Handling Arbitrary Arrival Times

0 1 2 4 8

0 1 2 4 8

• Framework: Khuller, Li, Sturmfels, Sun, Venkat, ‘18


• Time divided into epochs


• In each epoch


▪ Choose subset of unscheduled jobs

▪ Schedule in next epoch using offline alg.


Provides 12-competitive performance

(details in paper)



Evaluation Overview
• Testbed implementation on top of TCP


▪ Evaluate impact of in-network congestion, and hardware constraints 


• Simulations

▪ Coflows arrive at time 0


▪ Coflows arrive at arbitrary times

▪ Sensitivity analysis 


➢Coflow sizes, structure, # of coflows


➢Network topologies, Oversubscription ratios, Network load


➢…
All simulations, workloads, and implementations are open-

sourced on Sincronia website



Simulation Results  
 Offline

0

2.3

4.5

6.8

9

Average 90th 
percentile

99th 
percentile

Facebook trace

1000 coflow trace

2000 coflow trace

OCT: Completion time 
of a coflow in an 

unloaded network
Sincronia not only provides near-optimal guarantees, 


but also improves upon state-of-the-art design in practice
Key to performance gains: medium-sized coflows

526 coflow trace [Varys]



Simulation Results  
 Online

0

1

2

3

4

1000 coflow trace

2000 coflow trace

Average 90th 
percentile

99th 
percentile

Slowdown

Network Load = 0.9

Even at such high network loads, 

Sincronia achieves CCT close to that of an unloaded network



Implementation Results
Implemented on top of TCP

• 16-server Fat tree topology


▪ Full bisection bandwidth


▪ 20 PICA8 switches


➢ Supports 8 priority levels


• DiffServ for priority scheduling


 



Implementation Results

0

40

80

120

160
- Unfair Evaluation


• TCP not designed for coflows

• TCP not designed to minimize CT


+ Compare against existing designs


• E.g. Varys reports 1.85x improvement

             at mean and at tails


	

Average 90th percentile 99th percentile

526 coflow trace

Sincronia achieves significant improvements over existing network 
designs even with a small number of priority levels



Summary• Sincronia – a network design for coflows


• 4x within optimal

• No per-flow rate allocation

Name Performance 
Guarantees

Run on existing 
Transport Work Conserving Starvation 

Avoiding

Varys

On Scheduling 
Coflows

Sincronia

(4-apx)


(4-apx)


• Paper discusses number of open problems



Thanks!



Future Work
• Strengthen theoretical guarantees


• Other metrics?


• Flow time, stretch,…


• More general topologies?


• Bridge gap between upper and lower bounds for approximation



Sincronia + pFabric

pFabric

Main Challenge: Coflow ordering → Flow priorities

End hosts put flow priorities in packet headers

priority = remaining bytes in flow

+ Sincronia

priority = coflow ordering



Sincronia + pHost

pHost

Main Challenge: Coflow ordering → Flow priorities

Receiver assigns tokens, sources send one packet per token

priority = decided by receiver

+ Sincronia

priority = receiver sends tokens in coflow order

	 	  sender uses received tokens for flows in the coflow order



Sincronia + TCP

TCP

Main Challenge: Coflow ordering → Flow priorities

priority = set using bits in DiffServ

+ Sincronia

priority = coflow order entered in DiffServ

Fixed priority levels (hardware limitation, p=8)

First p priorities = coflow order, Remaining priorities = p



Sincronia: End to End Design



Bottleneck-Select-Scale-Iterate (BSSI)
• Find BOTTLENECK port


• SELECT (weighted) largest job


▪  Ordered last


• SCALE weights of remaining jobs


• ITERATE on unscheduled jobs

1

2’2

1’
1

2

1’

2’

1

2

1’

2’

Ordering not importantChallenges

•“Size” of coflow

•Port Interactions Coflow sizes: now at a per-port granularity

1

2’2

1’


