Sincronia:
Near-Optimal Network Design for Coflows

Shijin Rajakrishnan

Joint work with

Saksham Agarwal  Akshay Narayan Rachit Agarwal David Shmoys Amin Vahdat




The Flow Abstraction
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Is Flow Still the Right Abstraction?
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The Coflow abstraction

Collection of semantically related flows [Chowdhury & Stoica, 2012]
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Allows applications to more precisely express their performance goals



Network and Coflow Model  Egressports
«Big-switch model
Big-switch model Ingress ports
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[Goal: Minimize Average Weighted Coflow Completion Time (CCT) }




Prior Results

Impossibility Results
e NP-hard e <2x approximation hard
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Sincronia:
Two key results

Guarantees 4-approximation for (weighted) average CCT J

«Per-flow rate allocation irrelevant
«Transport layer agnostic



Sincronia - Near-Optimal Network Design
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Also outperforms state-of-the-art across evaluated workloads




Sincronia Design
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Bottleneck-Select-Scale-lterate (BSSI)

e Find BOTTLENECK port
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BSSI in Action
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End-to-End Design(Offline)
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« Flows get priority of coflow

« Each host knows ordering

« Offloads to priority enabled transport layer



Per-flow Rate Allocation is Irrelevant
e Intuition: Sharing bandwidth does not help CCT

e Order-preserving schedule:

Flow blocked iff ingress or egress port serving higher-ordered flow
Shared bandwidth |,
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Avoiding per-flow rate allocation: Implications

e Implement on top of any transport layer

=« E.g. pFabric, pHost, TCP
e Design and implementation independent of

= Network Topology
= Location of Congestion
= Paths of Coflows

e More scalable

[ Details in paper}

= No reallocations upon coflow arrivals/departures



Handling Arbitrary Arrival Times

e Framework: Khuller, Li, Sturmfels, Sun, Venkat, ‘18

e Time divided into epochs

e In each epoch

= Choose subset of unscheduled jobs
= Schedule in next epoch using offline alg.

Provides 12-competitive performance
(details in paper)




Evaluation Overview

 Testbed implementation on top of TCP
= Evaluate impact of in-network congestion, and hardware constraints

« Simulations
= Coflows arrive at time 0
= Coflows arrive at arbitrary times
= Sensitivity analysis
>Coflow sizes, structure, # of coflows
>Network topologies, Oversubscription ratios, Network load

All simulations, workloads, and implementations are open-
sourced on Sincronia website




Simulation Results
Offline
526 coflow trace [Varys]
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Simulation Results
Online
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Even at such high network loads,
Sincronia achieves CCT close to that of an unloaded network




Implementation Results

Implemented on top of TCP
e 16-server Fat tree topology
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Implementation Results

- Unfair Evaluation

o TCP not designed for coflows
« TCP not designed to miinimize CT

+ Comparg 2 ﬁ”&% existing designs
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Sincronia achieves significant improvements over existing network

designs even with a small number of priority levels




e Sincronia — a network d§sli’émgp§)ﬁ¥ws

e 4x within optimal
e No per-flow rate allocation
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e Paper discusses number of open problems
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Future Work

 Strengthen theoretical guarantees

e Other metrics?

e Flow time, stretch,...
« More general topologies?

e Bridge gap between upper and lower bounds for approximation



Sincronia + pFabric

Main Challenge: Coflow ordering - Flow priorities

End hosts put flow priorities in packet headers

priority = remaining bytes in flow

priority = coflow ordering



Sincronia + pHost

Main Challenge: Coflow ordering - Flow priorities

Receiver assighs tokens, sources send one packet per token

priority = decided by receiver

priority = receiver sends tokens in coflow order
sender uses received tokens for flows in the coflow order



Sincronia + TCP

Main Challenge: Coflow ordering - Flow priorities

priority = set using bits in DiffServ

Fixed priority levels (hardware limitation, p=8)

priority = coflow order entered in DiffServ

First p priorities = coflow order, Remaining priorities = p



Incronia: End to End Design

Central Coordinator
Running BSSI
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Bottleneck-Select-Scale-lterate (BSSI)

e Find BOTTLENECK port
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Coflow sizes: now at a per-port granularity




