
Sincronia:
Near-Optimal Network Design for Coflows

Saksham Agarwal Akshay Narayan Rachit Agarwal David Shmoys Amin Vahdat

Shijin Rajakrishnan

Joint work with

The Flow Abstraction

Optimized for Flow-level performance

FTP Email HTTP…

Traditional Applications:
Care about performance

of individual flows

Good Match

Is Flow Still the Right Abstraction?

Distributed Applications:
Care about performance

for a group of flows

…

R R … R

M M … M

Bulk Synchronous Model

M: Mappers
 R: Reducers

T T … T T

T … T

T

Partition Aggregate Model

T: Tasks

FTP Email HTTP…

Traditional Applications:
Care about performance

of individual flows

Optimized for Flow-level performance

Mismatch

The Coflow abstraction

Collection of semantically related flows [Chowdhury & Stoica, 2012]

…

…

…

…

Coflow 1

Coflow 2 Coflow 3

Allows applications to more precisely express their performance goals

•Big-switch model

•Clairvoyant scheduler

▪ Coflow details known at arrival time:

➢ Source-destination for each flow
➢ Size of each flow
➢ Coflow weight

• Metric – coflow completion time: Time when all flows complete

Network and Coflow Model
Ingress ports

Egress ports

•Big-switch model
▪ Ingress and egress ports

➢ Equal bandwidth
▪ Congestion only at ingress, egress ports

➢ Packet spraying
➢ Full bisection bandwidth

▪ Needed only for theoretical guarantees

1

2’2

1’DC Fabric
3

1

11

2

4

Virtual output queuesGoal: Minimize Average Weighted Coflow Completion Time (CCT)

Prior Results

Practical, Near-Optimal Network Design for Coflows?

Impossibility Results
• NP-hard • <2x approximation hard

Systems/
Theory State-of-the-art Performance

Guarantees

Runs on
Existing

Transport

Work
Conserving

Starvation
Avoiding

Systems Varys
[SIGCOMM ‘14]

Theory
On Scheduling

Coflows
[IPCO ‘17] (4-apx)

Not Starvation Free:
Tradeoff between

starvation freedom and CCT optimization

Involves complex
per-flow rate allocation mechanism

When all coflows arrive at time 0;
Can be extended to general setting

Given a set of coflows,
ANY per-flow rate allocation mechanism that is

work-conserving
produces average CCT within 4x of optimal

Sincronia:

 Given a set of coflows and a “right” ordering,
ANY per-flow rate allocation mechanism that is

work-conserving & order-preserving
produces average CCT within 4x of optimal

Guarantees 4-approximation for (weighted) average CCT
1

2

•Per-flow rate allocation irrelevant
•Transport layer agnostic

Two key results

Systems/
Theory Name Performance

Guarantees

Runs on
Existing

Transport

Work
Conserving

Starvation
Avoiding

Systems Varys

Theory On Scheduling
Coflows

Systems Sincronia

(4-apx)

(4-apx)

Sincronia – Near-Optimal Network Design

Also outperforms state-of-the-art across evaluated workloads

• Algorithm – BSSI

▪ Bottleneck, Select, Scale, Iterate

▪ SRPT-first style algorithm

Sincronia Design

Coflow Scheduling

• Priorities set from order

• Flows offloaded to transport layer

• No explicit per-flow rate allocation

Set of
coflows

Ordered
set of

coflows

Priorities
on flows

Coflow
ordering

Flow
Schedulin

g

33

2
2 2

1
11

Bottleneck-Select-Scale-Iterate (BSSI)
• Find BOTTLENECK port

• SELECT (weighted) largest job

▪ Ordered last

• SCALE weights of remaining jobs

• ITERATE on unscheduled jobs

1

2’2

1’
1

2

1’

2’

1

2

1’

2’

Ordering not important

1

2

1’

2’

BSSI in Action

• Bottleneck
• Select

▪ Ordered Last

• Scale
• Iterate

1

2’2

1’

1

2

1’

2’

Order:

Weights: 1 1 1
¼ 0 ¾
0 0 ⅜ Find port handling

largest number of packets
Select coflow with

largest size-to-weight ratio
Scale weight of each coflow

(at bottleneck port)
Iterate on

unscheduled coflows

Weight ← Weight(1 –)

Weight ← Weight(1 –)

Size
Weight

Size
Weight

Size
Weight

Size
Weight

 = 3

 = 4

 = 1

Size
Weight

Size
Weight

Size
Weight

 = 8

 = 4

Size
Weight

Size
Weight

1
3
4Weight ← × (1 –)

#packets = 4

#packets = 8

#packets = 5

#packets = 7

End-to-End Design(Offline)

1

2’2

1’

Order:

Host 1 Host 2

Transport Transport

1 1 1 1 1 2 2 3 33

• Each host knows ordering

• Flows get priority of coflow

• Offloads to priority enabled transport layer

1 2 3

BSSI

Per-flow Rate Allocation is Irrelevant

1

2’2

1’

• Intuition: Sharing bandwidth does not help CCT

• Order-preserving schedule:

Flow blocked iff ingress or egress port serving higher-ordered flow

 Given the BSSI ordering,
ANY per-flow rate allocation mechanism that is

work conserving & order-preserving
produces average CCT within 4x of optimal

Shared bandwidth

t=1

½

½

t=2

½

½

t=1

1

t=2

1

Avoiding per-flow rate allocation: Implications
• Implement on top of any transport layer

▪ E.g. pFabric, pHost, TCP

• Design and implementation independent of

▪ Network Topology

▪ Location of Congestion
▪ Paths of Coflows

•More scalable

▪ No reallocations upon coflow arrivals/departures

Details in paper

Handling Arbitrary Arrival Times

0 1 2 4 8

0 1 2 4 8

• Framework: Khuller, Li, Sturmfels, Sun, Venkat, ‘18

• Time divided into epochs

• In each epoch

▪ Choose subset of unscheduled jobs
▪ Schedule in next epoch using offline alg.

Provides 12-competitive performance
(details in paper)

Evaluation Overview
• Testbed implementation on top of TCP

▪ Evaluate impact of in-network congestion, and hardware constraints

• Simulations
▪ Coflows arrive at time 0

▪ Coflows arrive at arbitrary times
▪ Sensitivity analysis

➢Coflow sizes, structure, # of coflows

➢Network topologies, Oversubscription ratios, Network load

➢…
All simulations, workloads, and implementations are open-

sourced on Sincronia website

Simulation Results
 Offline

0

2.3

4.5

6.8

9

Average 90th
percentile

99th
percentile

Facebook trace

1000 coflow trace

2000 coflow trace

OCT: Completion time
of a coflow in an

unloaded network
Sincronia not only provides near-optimal guarantees,

but also improves upon state-of-the-art design in practice
Key to performance gains: medium-sized coflows

526 coflow trace [Varys]

Simulation Results
 Online

0

1

2

3

4

1000 coflow trace

2000 coflow trace

Average 90th
percentile

99th
percentile

Slowdown

Network Load = 0.9

Even at such high network loads,
Sincronia achieves CCT close to that of an unloaded network

Implementation Results
Implemented on top of TCP
• 16-server Fat tree topology

▪ Full bisection bandwidth

▪ 20 PICA8 switches

➢ Supports 8 priority levels

• DiffServ for priority scheduling

Implementation Results

0

40

80

120

160
- Unfair Evaluation

• TCP not designed for coflows
• TCP not designed to minimize CT

+ Compare against existing designs

• E.g. Varys reports 1.85x improvement
 at mean and at tails

Average 90th percentile 99th percentile

526 coflow trace

Sincronia achieves significant improvements over existing network
designs even with a small number of priority levels

Summary• Sincronia – a network design for coflows

• 4x within optimal
• No per-flow rate allocation

Name Performance
Guarantees

Run on existing
Transport Work Conserving Starvation

Avoiding

Varys

On Scheduling
Coflows

Sincronia

(4-apx)

(4-apx)

• Paper discusses number of open problems

Thanks!

Future Work
• Strengthen theoretical guarantees

• Other metrics?

• Flow time, stretch,…

• More general topologies?

• Bridge gap between upper and lower bounds for approximation

Sincronia + pFabric

pFabric

Main Challenge: Coflow ordering → Flow priorities

End hosts put flow priorities in packet headers

priority = remaining bytes in flow

+ Sincronia
priority = coflow ordering

Sincronia + pHost

pHost

Main Challenge: Coflow ordering → Flow priorities

Receiver assigns tokens, sources send one packet per token

priority = decided by receiver

+ Sincronia
priority = receiver sends tokens in coflow order
 sender uses received tokens for flows in the coflow order

Sincronia + TCP

TCP

Main Challenge: Coflow ordering → Flow priorities

priority = set using bits in DiffServ

+ Sincronia
priority = coflow order entered in DiffServ

Fixed priority levels (hardware limitation, p=8)

First p priorities = coflow order, Remaining priorities = p

Sincronia: End to End Design

Bottleneck-Select-Scale-Iterate (BSSI)
• Find BOTTLENECK port

• SELECT (weighted) largest job

▪ Ordered last

• SCALE weights of remaining jobs

• ITERATE on unscheduled jobs

1

2’2

1’
1

2

1’

2’

1

2

1’

2’

Ordering not importantChallenges
•“Size” of coflow
•Port Interactions Coflow sizes: now at a per-port granularity

1

2’2

1’

