Sincronia:
Near-Optimal Network Design for Coflows

Shijin Rajakrishnan

Joint work with

Saksham Agarwal Akshay Narayan Rachit Agarwal David Shmoys Amin Vahdat

The Flow Abstraction

4 .]] ™\ T
Traditional Applications: s
Care about performance RS

e ‘

S of individual flows) | i

A Q T

Good Match

\{ Optimized for Flow-level performance]

Is Flow Still the Right Abstraction?

\

Tradltlonal
Care about
of individual flows

&6

J

Bulk Synchronous Model

DRYAD

|str|buted Applications:)

[Optimized for Flow-level performance]4

The Coflow abstraction

Collection of semantically related flows [Chowdhury & Stoica, 2012]

Coflow 1

Coflow 2 Coflow 3

@-0—@-

Allows applications to more precisely express their performance goals

Network and Coflow Model Egressports
«Big-switch model
Big-switch model Ingress ports
-CIairv@gfeﬁ'@ golderfiiRss ports

> 1 DC Fabric
EBﬂ
or each
= Ee@e? BREH By
= El |dth
. Mé’!ﬁ@ hen all flows complete

[Goal: Minimize Average Weighted Coflow Completion Time (CCT) }

Prior Results

Impossibility Results
e NP-hard e <2x approximation hard

Runs on .
Systems/ Performance Work Starvation

State-of-the-art Existing

Theory Guarantees Conserving Avoiding

Transport

Varys
SYSLeMS 1 GcomM “14] * v v
On Scheduling
Theory Coflows \/ x x
[IPCO ‘17] (4-apx)
, —_—
. When all coflows arrive at time O; X WA !S?J
Practi . .
Can be extended to general setting echanism

< J

Sincronia:
Two key results

Guarantees 4-approximation for (weighted) average CCT J

«Per-flow rate allocation irrelevant
«Transport layer agnostic

Sincronia - Near-Optimal Network Design

Runs on
Systems/ Performance . .- Work Starvation
Existing : s 4
Theory Guarantees Conserving Avoiding
Transport

Systems Varys

On Scheduling
Urzeny Coflows (4{px) x x x
Systems Sincronia (4_a/p) \/ \/ \/

Also outperforms state-of-the-art across evaluated workloads

Sincronia Design

Ordered
DWEICHEC
“coflows
2
Cofl .
e Algorithm —B 0 O.W e Priori Schedulin order
ordering

= Bottleneck, Select, Scale, Iterate . Flows offlo&ded to[“allﬂlkpér} layer

- > PTfinﬁt sfyle algorithm * No explicit per-flowsa Tal (cation
l ; 2 I

A1 7v)

Bottleneck-Select-Scale-lterate (BSSI)

e Find BOTTLENECK port

. %1' 7t job :11 [.
. Ordered las X > :1’ =) [[:-:_12]

* " Ing jobs
e | B |2

 ITERATE on unscheduled jobs | | |

Ordering not important

BSSI in Action

+ Bottleneck |

e Select
« Ordered Last

i Weights:
Weig 6’51%11{/Ve|ght(— Weght) : m

e Scale
e |terate
a Slze _q)
ScaIeSmId@MﬁzﬁM@ﬂow
U 4

#packets =4
| I
SiZe #packets = ?] &
— "We i
B ”p)ackets =
Size A 12’
Weigh#packets = 7 |

Size

Size
Weight

2 oa 7]

0L OX %
Order: >l >

End-to-End Design(Offline)

Vg Y e

o BB el

4 Host 1
1 1T
IO TEN oo

« Flows get priority of coflow

« Each host knows ordering

« Offloads to priority enabled transport layer

Per-flow Rate Allocation is Irrelevant
e Intuition: Sharing bandwidth does not help CCT

e Order-preserving schedule:

Flow blocked iff ingress or egress port serving higher-ordered flow
Shared bandwidth |,

1
/ &

: - A -1
& = A Y iven the rderKTg; — b
ANY éjr-flgw rate allocaflon meckanism thatis 1

2 . :
ork conserving | | or ler-| res rvir

j—2%

t=2

N produces average CCT Within 45°of optiffial B

Avoiding per-flow rate allocation: Implications

e Implement on top of any transport layer

=« E.g. pFabric, pHost, TCP
e Design and implementation independent of

= Network Topology
= Location of Congestion
= Paths of Coflows

e More scalable

[Details in paper}

= No reallocations upon coflow arrivals/departures

Handling Arbitrary Arrival Times

e Framework: Khuller, Li, Sturmfels, Sun, Venkat, ‘18

e Time divided into epochs

e In each epoch

= Choose subset of unscheduled jobs
= Schedule in next epoch using offline alg.

Provides 12-competitive performance
(details in paper)

Evaluation Overview

 Testbed implementation on top of TCP
= Evaluate impact of in-network congestion, and hardware constraints

« Simulations
= Coflows arrive at time 0
= Coflows arrive at arbitrary times
= Sensitivity analysis
>Coflow sizes, structure, # of coflows
>Network topologies, Oversubscription ratios, Network load

All simulations, workloads, and implementations are open-
sourced on Sincronia website

Simulation Results
Offline
526 coflow trace [Varys]

| ~

6-8 - Facebook trace

CCT(Varys) 4 . 1000 coflow trace
CCT(Sincron@g)T (Varys)
CCT(Sincronia) & I . 2000 coflow trace
0 II u [| -
2 10 212 214 216 218
Average 90" 0CT BH§9”‘
percentile percentile

(OCT: Completion time)

\
ﬂ

)

Simulation Results
Online

Network Load = 0.9]

. 1000 coflow trace

CCT __ slowdown

ASASES 2000 coflow trace
OCT 2 []

Average 90th 99th
percentile percentile

Even at such high network loads,
Sincronia achieves CCT close to that of an unloaded network

Implementation Results

Implemented on top of TCP
e 16-server Fat tree topology

X [X X
=« Full bisection bandwidth — ——
X 1K (26 G 0 X (G [
« 20 PICAS8 switches
> Supports 8 priority levels D6 9.6 5 6 [0 6 o 9. €
o DiffServ for priority scheduling & o/\a o/\o c/\o J\o O/\o c/\o &

Implementation Results

- Unfair Evaluation

o TCP not designed for coflows
« TCP not designed to miinimize CT

+ Comparg 2 ﬁ”&% existing designs

CCT(Sincronia) *
e E.g. Varysreports 1.85x improvement

at mean and at4€mils

. 526 coflow trace

Average 90th percentile 99th percentile

a D
Sincronia achieves significant improvements over existing network

designs even with a small number of priority levels

e Sincronia — a network d§sli’émgp§)ﬁ¥ws

e 4x within optimal
e No per-flow rate allocation

Performance Run on existing Starvation
Work Conserving
Guarantees Transport Avoiding

Varys
On Scheduling
Coflows (44)() x x X
Sincronia (4-‘a/p><) \/ / \/

e Paper discusses number of open problems

Thanks!

Future Work

 Strengthen theoretical guarantees

e Other metrics?

e Flow time, stretch,...
« More general topologies?

e Bridge gap between upper and lower bounds for approximation

Sincronia + pFabric

Main Challenge: Coflow ordering - Flow priorities

End hosts put flow priorities in packet headers

priority = remaining bytes in flow

priority = coflow ordering

Sincronia + pHost

Main Challenge: Coflow ordering - Flow priorities

Receiver assighs tokens, sources send one packet per token

priority = decided by receiver

priority = receiver sends tokens in coflow order
sender uses received tokens for flows in the coflow order

Sincronia + TCP

Main Challenge: Coflow ordering - Flow priorities

priority = set using bits in DiffServ

Fixed priority levels (hardware limitation, p=8)

priority = coflow order entered in DiffServ

First p priorities = coflow order, Remaining priorities = p

Incronia: End to End Design

Central Coordinator
Running BSSI

Unordered Ordered
Coflows Coflows
AN
| App | App
Sincronia Daemon Sincronia Daemon
Unordered Unordered
Coflows PRPPS Coflows
Set Priorities Set Priorities
Ordered Ordered
Coflows Coflows

| Transport Layer Transport Layer

Bottleneck-Select-Scale-lterate (BSSI)

e Find BOTTLENECK port

] %1' vt job :1 L s
J 2 D | 2
= Ordered las # qr # E—
. Hﬁ 2 2"Ing jobs
dz' EEEEE-EN)

 ITERATE on unscheduled jobs \

Ordering not important

Coflow sizes: now at a per-port granularity

