
Valg: A Fast Reinforcement Learning Based
Runtime Verification Tool for Java

Shinhae Kim
sk3364@cornell.edu
Cornell University

Ithaca, New York, USA

Saikat Dutta
saikatd@cornell.edu
Cornell University

Ithaca, New York, USA

Owolabi Legunsen
legunsen@cornell.edu
Cornell University

Ithaca, New York, USA

Abstract

Runtime Verification (RV) dynamically monitors whether traces—
sequences of program events like method calls—violate formal spec-
ifications. RV helped find many bugs, but it incurs high runtime
overheads. Prior work showed that 99.87% of monitored traces are
redundant: they are identical to the other 0.13%. So, we recently
proposed a new technique based on reinforcement learning (RL) to
speed up RV by reducing redundantmonitoring. This paper presents
Valg, a tool that implements the technique for Java. Compared to
our previous prototype, Valg adds (i) per-spec hyperparameters,
(ii) RL trajectory saving, (iii) offline hyperparameter tuning, and
(iv) performance optimizations. We also integrate Valg with the
main development branch of JavaMOP and TraceMOP, two state-
of-the-art RV tools, and fix a long-standing specification bug. On
56 open-source projects, Valg with tuned hyperparameters is up to
4.2x and 1.9x faster than our prototype when applied to JavaMOP
and TraceMOP, respectively, and improves unique trace preserva-
tion by up to 94.5pp. Valg’s offline hyperparameter tuning is orders
of magnitude faster than our prototype’s online tuning, and our
optimizations make JavaMOP, TraceMOP, and Valg faster. Valg
is open-sourced at: https://github.com/SoftEngResearch/tracemop,
and a video demo can be found at: https://youtu.be/_QCyHaa_ICc.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging;

Keywords

Runtime Verification, Software Testing, Reinforcement Learning
ACM Reference Format:

Shinhae Kim, Saikat Dutta, and Owolabi Legunsen. 2026. Valg: A Fast
Reinforcement Learning Based Runtime Verification Tool for Java. In 2026
IEEE/ACM 48th International Conference on Software Engineering (ICSE-
Companion ’26), April 12–18, 2026, Rio de Janeiro, Brazil. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3774748.3787620

1 Introduction

Runtime Verification (RV) [11, 15, 17] monitors program executions
against formal specifications (specs). An RV tool takes a program
and specs as inputs, and instruments the program so that spec-
relevant events, e.g., method calls, are signaled at runtime. Then, RV

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE-Companion ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2296-7/2026/04
https://doi.org/10.1145/3774748.3787620

• Integration with main JavaMOP/TraceMOP development branch
• Per-spec hyperparameter selection and/or disabling
• RL-trajectory saving for the sequence of decision-making steps
• Offline hyperparameter tuning using RL-trajectories
• Performance optimizations on JavaMOP and TraceMOP
• Bug fix in the ListIterator_Set spec

Table 1: Summary of Valg’s new features.

creates monitors at runtime to check event sequences, i.e., traces,
against the specs, and report any violations. RV found hundreds of
bugs by monitoring passing tests in many projects against specs of
JDK API usage protocols [19–21]. But, despite extensive research
on speeding up RV, e.g., [6–10, 12, 16], a recent study showed that
RV overhead can be still as high as 5,000x, or 27 hours, and that
99.87% of monitored traces during testing are redundant [13].

Motivated by these findings, we recently proposed a new tech-
nique to speed up RV during testing by reducing redundant moni-
toring [18]. That technique formulates selective monitor creation as
a two-armed bandit reinforcement learning (RL) problem [23]. Each
monitor creation point 𝑙 is associated with an RL agent with two
possible actions (i.e., arms) A = {create, ncreate}. At each time
step 𝑡 , the agent selects action 𝐴𝑡 and receives reward 𝑅𝑡 . If the se-
lected action is create, RV creates a monitor, and the agent receives
a positive reward if that monitor observes a unique trace; otherwise,
it receives zero. For ncreate, no monitor is created, and the reward
is estimated using the proportion of duplicates among previously
observed traces (see [18] for details). Intuitively, rewards aim to
reduce redundant monitored traces and preserve unique ones.

At runtime, the RL agent at each location 𝑙 learns an optimal
policy that determines which action to take at each time step 𝑡 . We
use an action-value method, which has two phases. First, the agent
estimates the value 𝑄𝑡 (𝐴), the expected reward for taking action
𝐴 at time step 𝑡 . We use the exponential recency-weighted average
(EWRA) [23] method for this phase, motivated by our observation
that a duplicate (unique) trace tends to follow a duplicate (unique)
trace. So, recent rewards have higher weights, determined by learn-
ing rate 𝛼 . In the second phase, the agent selects an action based on
the estimated values. The occurrence of duplicate and unique traces
is inherently unpredictable. So, we use epsilon-greedy action selec-
tion strategy [23], which chooses the action with the highest value
or explores with a random action (based on a hyperparameter 𝜖). We
also use a convergence threshold 𝛿 (the criterion to stop learning)
and initial values for each action (𝑄0 (create), 𝑄0 (ncreate)).

Our prototype is up to 20.2x and 555.6x faster than JavaMOP
and TraceMOP [14], two state-of-the-art (SoTA) RV tools, respec-
tively [18]. JavaMOP does not store monitored traces, but Trace-
MOP does. Our prototype also finds 99.6% of violations with the
default hyperparameters, and 95.1% of unique traces after tuning.

https://github.com/SoftEngResearch/tracemop
https://youtu.be/_QCyHaa_ICc
https://doi.org/10.1145/3774748.3787620
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774748.3787620

ICSE-Companion ’26, April 12–18, 2026, Rio de Janeiro, Brazil Kim et al.

1 Appendable_ThreadSafe(Appendable a) {
2 Thread owner = null;
3 event safe_append before(Appendable a, Thread t) :
4 call(* Appendable +. append (..)) && target(a) &&
5 thread(t) && !target(StringBuffer) &&
6 condition(this.owner == null || this.owner == t) {
7 this.owner = t; }
8 event unsafe_append before(Appendable a, Thread t) :
9 call(* Appendable +. append (..)) && target(a) &&
10 thread(t) && !target(StringBuffer) &&
11 condition(this.owner != null && this.owner != t) {}
12 ere: safe_append* @fail { // print violation } }

1 private double eval(String f_x , double xi) {
2 // exception and local variable declarations
3 for (int i = 0; i < f_x.length (); i++) {
4 char character = f_x.charAt(i);
5 if (character >= '0' && character <= '9') {
6 hasNumber = true;
7 number += character; // calls .append () twice
8 if (i == (f_x.length () - 1)) {
9 value = new Double(number).doubleValue ();
10 ...}}
11 ...}
12 return value; }

Figure 1: Appendable_ThreadSafe spec (left) and example code under test (right).

We present Valg, which improves our prototype with the fea-
tures summarized in Table 1. These features (i) speed up our pro-
totype or improve its unique-trace preservation (rows 2, 4, and 5);
(ii) enhance usability and maintainability (row 1); (iii) enable post-
mortem analysis of RL trajectories (row 3); and (iv) fix a long-lasting
spec bug that caused false-alarm violations [4] (row 6).

We evaluate Valg using 56 projects from [18]. First, we compare
our prototype with default hyperparameters against Valg with
fixed, non-default per-spec hyperparameters. Valg is up to 1.5x
and 6.8x faster than our prototype when applied to JavaMOP and
TraceMOP, respectively. Valg also checks up to 59pp more unique
traces than our prototype. Next, we tune per-spec hyperparameters
offline using saved RL trajectories. Valg with tuned hyperparame-
ters is up to 4.2x and 1.9x faster than our prototype when applied
to JavaMOP and TraceMOP, respectively, and finds up to 94.5pp
more unique traces. Lastly, our optimizations of JavaMOP and
TraceMOP make them up to 4.1x and 316.5x faster, respectively,
and find all deterministic traces. We have integrated Valg with
the main development branch of JavaMOP and TraceMOP at:
https://github.com/SoftEngResearch/tracemop. Our video demo is
at: https://youtu.be/_QCyHaa_ICc.

2 Example

Figure 1 shows example spec and code. The Appendable_ThreadSafe
spec checks if an Appendable object appendable is modified in the
different threads, which can cause race conditions. When append()

is first called on appendable, RV creates a monitor and stores it owner
thread. Then, the monitor checks if subsequent append() calls on
appendable are from owner. If so, the safe_append event is triggered;
otherwise, the unsafe_append event is triggered, violating the spec.

The eval() method from expression.parser [22] evaluates the
expression f_x w.r.t. the variable xi. Line 7 is internally translated
into two append() method calls on a StringBuilder object. Each
time line 7 is executed, an Appendable_ThreadSafe monitor is cre-
ated, and two safe_append events are signaled, producing trace 𝜏 :
[safe_append,safe_append]. Since eval() is called multiple times
and contains a loop, RV creates 68,000,157 monitors on line 7. All
such monitors observe 𝜏 , but only one of them is sufficient for bug
finding; the rest are redundant and merely incur overhead.

Our prototype reduces redundant monitors and is faster than the
SoTA, but its internals are not observable. Valg’s trajectory-saving
feature sheds light on the selective monitor creation process. Using
this feature, users can observe that Valg still sub-optimally creates
10,000 Appendable_ThreadSafe monitors on Line 7 in eval.

Our prototype only supports using the same hyperparameter
values across all specs, but those values may not be optimal for

each spec. Valg addresses this limitation by supporting per-spec
hyperparameters. By examining Valg’s trajectories, users can better
select per-spec hyperparameter values. For example, Valg creates
only two monitors on line 7 using hyperparameters ⟨𝛼 = 1.0, 𝜖 =
0.0, 𝛿 =1e−4, 𝑄0= (1.0, 0.5)⟩ for the Appendable_ThreadSafe spec.

3 Valg

We implement Valg atop SoTA RV tools, JavaMOP and TraceMOP.
Our prototype [18] is in a separate repository that can go out of
sync if JavaMOP and TraceMOP are updated. So, we integrate
Valg with the main branch of JavaMOP and TraceMOP. That way,
Valg can be enabled and maintained in the same code base (see
§4). Valg supports all 160 specs that the JavaMOP and TraceMOP
support, and it is implemented in only 1.3k lines of Java code. We
next describe features that Valg adds to our prototype.
1. Per-spec Hyperparameters. Valg allows users to set hyper-
parameters per spec, an improvement over our prototype, which
used only one set of hyperparameters that may not be equally
optimal for all specs. Our evaluation (§5.1) shows that per-spec
hyperparameters can make Valg faster and preserve more unique
traces than our prototype. Valg has a command-line argument
for setting per-spec hyperparameters, e.g., -spec Iterator_HasNext

"{0.5,0.5,0.0001,5.0,5.0}"; default values are used for specs for
which users provide none. Users can also disable RL agents for a
spec in future runs if RL overheads outweighed time savings in a
previous run. This per-spec feature and the flag expand Valg’s hy-
perparameter space from four to five variables times the spec count.
2. RL trajectory Saving. Unlike our prototype, Valg allows per-
sisting RL agent trajectories for postmortem analysis. A trajectory
for a spec 𝑠 at monitor creation point 𝑙 , T𝑠,𝑙 = [𝜎0, 𝜎1, . . . , 𝜎𝑛], is
a sequence of steps. Each step 𝜎𝑡 corresponds to a monitor creation
decision made at time step 𝑡 , defined as:

𝜎𝑡 � ⟨𝑡 : 𝐴𝑡 ∈ A, 𝑅𝑡 , 𝑄𝑡 (create), 𝑄𝑡 (ncreate)⟩ (1)

where 𝑡 is a time step, 𝐴𝑡 ∈ A = {create, ncreate} is the action
taken, 𝑅𝑡 is the observed reward, and 𝑄𝑡 (create), 𝑄𝑡 (ncreate) are
the estimated action values. Figure 2 shows a partial trajectory
for the eval() method in Figure 1, using default hyperparameters
⟨𝛼 = 0.9, 𝜖 = 0.1, 𝛿 = 1e−4, 𝑄0 = (5.0, 0.0)⟩. At the monitor cre-
ation point on line 7, only the first trace is unique. So, the RL agent
chooses create at the first three steps, but receives a positive reward
(1.00) only at 𝑡 = 0. At 𝑡 = 3, the agent explores ncreate, receives
a continuous reward (0.67), and updates 𝑄4

(
n∗
)
accordingly. The

agent then exploits the action values and selects ncreate again at
𝑡 = 4, suppressing the creation of a redundant monitor. Trajecto-
ries make agents’ decision making observable and they can help

https://github.com/SoftEngResearch/tracemop
https://youtu.be/_QCyHaa_ICc

Valg: A Fast Reinforcement Learning Based Runtime Verification Tool for Java ICSE-Companion ’26, April 12–18, 2026, Rio de Janeiro, Brazil

T𝑠,𝑙 =



⟨0 : create, 𝑅0 = 1.00, 𝑄0
(
c∗

)
= 5.00, 𝑄0

(
n∗

)
= 0.00⟩,

⟨1 : create, 𝑅1 = 0.00, 𝑄1
(
c∗

)
= 1.40, 𝑄1

(
n∗

)
= 0.00⟩,

⟨2 : create, 𝑅2 = 0.00, 𝑄2
(
c∗

)
= 0.14, 𝑄2

(
n∗

)
= 0.00⟩,

⟨3 : ncreate, 𝑅3 = 0.67, 𝑄3
(
c∗

)
= 0.01, 𝑄3

(
n∗

)
= 0.00⟩,

⟨4 : ncreate, 𝑅4 = 0.67, 𝑄4
(
c∗

)
= 0.01, 𝑄4

(
n∗

)
= 0.60⟩,

...


where 𝑠 = Appendable_ThreadSafe, 𝑙 = eval@7, and c∗ and n∗

are shorthand for the create and ncreate actions.

Figure 2: Partial trajectory for the code and spec in Fig 1.

users reason about and select hyperparameter values (§2). Trajec-
tories can have other uses, such as offline hyperparameter tuning
(described next) or evaluating custom metrics (future work).
3. Offline Hyperparameter Tuning. A key question in RL is
how to automate the search for better hyperparameter values. Our
prior work [18] tuned hyperparameters online, which was costly
(because it involved running RV multiple times) and took days
for some projects. Valg provides an automated script that uses
trajectories to perform faster offline tuning. Since Valg selectively
creates monitors, it can only obtain a partial sequence of monitored
traces due to steps with the ncreate action. So, Valg first infers a
more complete sequence using the cumulative decayed weight:
Definition 1 (Cumulative decayed weight). Let {(𝑡𝑖 , 𝑥𝑖)} be an
observed partial sequence of traces, where 𝑥𝑖 = 1 if the trace is
unique and 𝑥𝑖 = 0 if it is a duplicate. Let 𝜆 > 0 be the decay rate.
The cumulative decayed weight for 𝑥 at time step 𝑡 is defined as:

𝑤𝑥 (𝑡) =
∑︁

(𝑡𝑖 ,𝑥𝑖=𝑥), 𝑡𝑖<𝑡
𝑒−𝜆 (𝑡−𝑡𝑖) .

The weight can be efficiently computed by incremental updates:
𝑤𝑥 (𝑡 + 1) = 𝛾 ·𝑤𝑥 (𝑡) + 𝛿𝑥 (𝑡 + 1), where 𝛾 = 𝑒−𝜆 and

𝛿𝑥 (𝑡 + 1) =
{
1 if the observed trace at 𝑡 + 1 has value 𝑥,
0 otherwise.

Valg first builds the complete sequence by filling missing steps
at time 𝑡 with the value 𝑥𝑡 that has the higher cumulative weight,
i.e., 𝑥𝑡 = argmax𝑥 𝑤𝑥 (𝑡). Then, Valg uses Optuna [5] to tune
hyperparameters by simulation on the inferred sequence, without
needing to re-run RV multiple times as our prototype did. The
objective here is to maximize the number of unique traces. Offline
tuning outputs a set of hyperparameter values per spec that helps
preserve more unique traces. The inferred trace sequence can be
imprecise, but our simulation-based optimization reduces the time
for hyperparameter tuning from days to minutes.
4. New Optimizations. We implement three optimizations in Java-
MOP and TraceMOP [4]. First, we remove unnecessary location
parameters of event-handler methods and disable unnecessary col-
lection of debug information. Second, we look up event locations
more efficiently. Lastly, we reduce synchronization overheads in
internal data structures by using per-spec locks instead of the pre-
vious global locks. Per-spec locks are faster as they enable parallel
processing of events for different specs. These three optimizations
speed up JavaMOP, TraceMOP, and Valg.
5. Fixed a Spec Bug. Lastly, we identify and fix a bug in the
ListIterator_Set spec that has been present since at least 2022 [3].
The spec checks if set comes only after next or previous, but in-
correctly constrained remove calls. We fix to allow remove calls and
validate our repair by checking that it preserves true bugs and
avoids false positives produced by the buggy version.

Table 2: Comparison between baselines and Valg configura-

tions. (#projects with improvements) avg. / max. Bl.: Baseline,

-P: Prototype, -a: Valg𝛼, -e: Valg𝜖, -o: Valgoff.

Time (JavaMOP) Time (TraceMOP) Unique Traces

Bl. 1,024k / 17,929k 3,525k / 86,675k 36,212 / 840,543
-P ▼(49) 2.1x / 14.8x ▼(53) 12.1x / 504.7x ▼(49) 74.5% / 98.9%

-a ▼(35) 1.1x / 1.3x ▼(31) 1.3x / 6.8x ▲(3) 1.5pp / 2.2pp
-e ▼(24) 1x / 1.2x ▼(17) 1.2x / 2.9x ▲(26) 10.8pp / 59pp
-o ▼(17) 1.1x / 1.5x ▼(10) 1.1x / 1.4x ▲(39) 20.5pp / 84.3pp

4 Installation and Usage

Two implementation-level goals in Valg are: (i) minimizing effort
for users to enable/disable features; and (ii) easily switching to
SoTA JavaMOP and TraceMOP. To enable Valg features, users
simply specify -valg when building the Java agents that are used
to integrate RV with testing frameworks [2]. Valg also supports
the -spec flag for per-spec hyperparameters and/or disabling:

$ bash install.sh [false:JavaMOP | true:TraceMOP] false

-valg (-spec ⟨spec-name⟩ ["{⟨𝛼 ⟩,⟨𝜖 ⟩,⟨𝛿 ⟩,⟨𝑄0 ⟩}" | off])∗

Afterwards, users can use the Valg-enabled Java agents in the
same way as those for JavaMOP and TraceMOP [1]. For Maven
projects, users simply add the agent to the pom.xml file and run
mvn test. Non-Maven projects can run Valg with the -javaagent

flag, e.g., java -javaagent:⟨path-to-agent⟩/valg-agent.jar Main.
Building agents without -valg yields JavaMOP or TraceMOP.

Users can optionally set -traj when building the agent. Using
this flag without also setting -valg raises an error. After monitoring
with Valg, trajectories are stored in a trajectories directory in the
same location as the pom.xml file. Lastly, Valg provides a script to
automate offline hyperparameter tuning:

$ python param_tune.py ⟨trajectories⟩ ⟨trials⟩ ⟨out-file⟩

5 Evaluation

We compare Valg with our prototype, JavaMOP, and TraceMOP.
We henceforth refer to extensions of JavaMOP and TraceMOP
with Valg as Valg-J and Valg-T, respectively. We use 56 of 58
projects used to compare our prototype with TraceMOP in [18];
TraceMOP takes days on the other two. We run experiments on
machines with Intel® Xeon® 36-core 2.2 GHz processors and 125GB
RAM (for JavaMOP, Valg-J), or 56-core 2.6 GHz processors and
503GB RAM (for TraceMOP, Valg-T).

5.1 Benefits of Per-spec Hyperparameters

To evaluate the degree to which per-spec hyperparameters provide
speedups and improve unique trace preservation, we compare our
prototype with default hyperparameters against Valg with per-
spec hyperparameters. We first identify effective specs with at least
one trace. Then, we sample from the effective specs and assign
fixed, non-default hyperparameter values for the sampled specs: (1)
Valg𝛼 with 𝛼 = 0.5 and (2) Valg𝜖 with 𝜖 = 0.5. We also compare
with Valgoff, which disables RL agents for the sampled specs.

Table 2 shows the results. Notably, in the worst case, our proto-
type and all Valg configurations find 99.8% of all violations (648/649)
found by JavaMOP and TraceMOP. So, we exclude violation counts
from Table 2. Our prototype is faster than JavaMOP and Trace-
MOP, respectively, in 49 and 53 projects by an average (max) of 2.1x

ICSE-Companion ’26, April 12–18, 2026, Rio de Janeiro, Brazil Kim et al.

(14.8x) and 12.1x (504.7x). Compared with our prototype, Valg𝛼
and Valg𝜖 are respectively faster on average (max) by 1.3x (6.8x)
and 1.2x (2.9x) in 31 and 17 projects vs. JavaMOP and TraceMOP,
respectively. Our prototype misses an average of 25.5% of Trace-
MOP’s unique traces in 49 projects. But, Valg improves the trace
preservation rate in 27 projects with per-spec hyperparameters. For
example, Valg𝜖 checks 74.2% of TraceMOP’s unique traces in a
project where our prototype checks only 34.1%.

5.2 Benefits of Hyperparameter Tuning

To evaluate offline hyperparameter tuning, we tune hyperparame-
ters (per spec, using the approach described in §3) with 100 trials for
all 56 projects. We refer to the tuned Valg as Valgtune. Compared
with our prototype, Valgtune is respectively faster than JavaMOP
and TraceMOP in 24 projects by an average (max) of 1.2x (4.2x) and
1.1x (1.9x). Valgtune is faster than all Valg configurations from §5.1
in 9 projects. Also, Valgtune preserves more unique traces than our
prototype in 34 projects with an average of 17.1pp. For example,
Valgtune finds 99.9% traces in a project where our prototype finds
5.49%. In 27 projects, Valgtune finds more unique traces than all
Valg configurations from §5.1.

5.3 Evaluating Our Tool Optimizations

For all 56 projects, we compare JavaMOP and TraceMOP with and
without our new optimizations. Our optimizations yield speedups
in 28 and 49 projects, by an average (max) speedup of 1.1x (4.1x)
and 6.8x (316.5x) compared to JavaMOP and TraceMOP, respec-
tively. These speedups save up to 24 hours for a project. TraceMOP
benefits more from our optimizations because: (i) some optimiza-
tions apply only to TraceMOP, e.g., reduced debug-information
collection; (ii) to store traces, TraceMOP performs much more
location lookups than JavaMOP; and (3) event processing is slower
in TraceMOP, so parallel processing is more beneficial. Also, we
check that original monitoring behavior is preserved. Tests can be
non-deterministic (but they always pass in our evaluation), so RV
can produce slightly different sets of traces in different runs [14].
We run each project three times, and for the deterministic projects—
i.e., those with the same traces across all three runs—we confirm
that TraceMOP produces the same traces post optimization. Valg’s
effectiveness is preserved even when compared with the optimized
baselines; Valg is still faster by an average (max) of 1.3x (15.3x) for
JavaMOP and 1.6x (6.3x) for TraceMOP.

6 Limitations

Since Valg predicts whether unseen traces will be unique or re-
dundant, Valg can miss violations due to mispredictions. We found
that such misses are rare and happen when a unique trace follows
a long sequence of redundant ones, misguiding an RL agent [18].
But, Valg still preserves over 99% of violations found by JavaMOP
and TraceMOP. Some program patterns can make Valg fail to con-
verge, and program non-determinism can affect the performance of
Valg. We leave a qualitative analysis of convergence and program
non-determinism as future work. Lastly, trajectory saving incurs
time and memory overheads. We profiled 20 projects among our
evaluation subjects, and the average time overhead was 14.8% (or,
10.9 seconds). Interestingly, the average memory overhead was

−0.6% (4.2MB less memory). Valg creates much fewer monitors,
which and compensates for the overhead of saving trajectories.

7 Conclusion

Valg is a reinforcement learning (RL) based selective monitoring
RV tool for Java. Valg is based on our recent work, which formu-
lated selective monitor creation as a two-armed bandit RL problem.
Valg adds several features and optimizations to our original proto-
type, e.g., per-spec hyperparameters and trajectory saving. We also
integrate Valg with the main development branch of JavaMOP
and TraceMOP and fix a long-lasting spec bug. Valg can be faster
and monitor more unique traces than our prototype.
Acknowledgments. We thank Kevin Guan for helping us integrate
Valg with JavaMOP and TraceMOP, and Pengyue Jiang, Stephen
Shen, and the reviewers for valuable comments. We thank Google
for Cloud Platform credits. This work is supported byUSNSFGrants
CCF-2045596, CCF-2319473, CCF-2403035, and CCF-2525243.

References

[1] 2025. Adding TraceMOP’s Java Agent to a Maven project. https://github.com/
SoftEngResearch/tracemop/blob/master/docs/AddAgent.md

[2] 2025. Building a TraceMOP Java Agent. https://github.com/SoftEngResearch/
tracemop/blob/master/docs/BuildAgent.md

[3] 2025. Fixed ListIterator_Set spec. https://github.com/SoftEngResearch/tracemop/
commit/c608797a90030d52e49c97e3aefe18813fc7910c

[4] 2025. Integration of Valg into JavaMOP and TraceMOP. https://github.com/
SoftEngResearch/tracemop/pull/38

[5] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. In KDD.

[6] Pavel Avgustinov, Julian Tibble, and Oege de Moor. 2007. Making trace monitors
feasible. In OOPSLA.

[7] Eric Bodden, Patrick Lam, and Laurie Hendren. 2008. Finding Programming
Errors Earlier by Evaluating Runtime Monitors Ahead-of-time. In FSE.

[8] Feng Chen, Patrick O’Neil Meredith, Dongyun Jin, and Grigore Roşu. 2009. Effi-
cient formalism-independent monitoring of parametric properties. In ASE.

[9] Feng Chen and Grigore Roşu. 2009. Parametric trace slicing and monitoring. In
TACAS.

[10] Matthew B. Dwyer, Rahul Purandare, and Suzette Person. 2010. Runtime Verifi-
cation in Context: Can Optimizing Error Detection Improve Fault Diagnosis?. In
RV.

[11] Ulfar Erlingsson and Fred B. Schneider. 2000. IRM enforcement of Java stack
inspection. In IEEE S&P.

[12] Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen. 2025. Faster Explicit-
Trace Monitoring-Oriented Programming for Runtime Verification of Software
Tests. In OOPSLA.

[13] Kevin Guan and Owolabi Legunsen. 2024. An In-depth Study of Runtime Verifi-
cation Overheads during Software Testing. In ISSTA.

[14] Kevin Guan and Owolabi Legunsen. 2025. TraceMOP: An Explicit-Trace Runtime
Verification Tool for Java. In FSE Demo.

[15] Klaus Havelund and Grigore Roşu. 2001. Monitoring programs using rewriting.
In ASE.

[16] Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and Grigore Roşu. 2011.
Garbage Collection for Monitoring Parametric Properties. In PLDI.

[17] Min Kim, Mukund Viswanathan, Houssem Ben-Abdallah, Sampath Kannan, In-
sup Lee, and Oleg Sokolsky. 1999. Formally specified monitoring of temporal
properties. In ECRTS.

[18] Shinhae Kim, Saikat Dutta, and Owolabi Legunsen. 2025. Faster Runtime Verifi-
cation during Testing via Feedback-Guided Selective Monitoring. In ASE.

[19] Owolabi Legunsen, Nader Al Awar, Xinyue Xu, Wajih Ul Hassan, Grigore Roşu,
and Darko Marinov. 2019. How Effective are Existing Java API Specifications for
Finding Bugs During Runtime Verification? ASE Journal 26, 4 (2019).

[20] Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Roşu, and Darko
Marinov. 2016. How good are the specs? A study of the bug-finding effectiveness
of existing Java API specifications. In ASE.

[21] Breno Miranda, Igor Lima, Owolabi Legunsen, and Marcelo d’Amorim. 2020.
Prioritizing Runtime Verification Violations. In ICST.

[22] sbesada. 2023. java.math.expression.parser. https://github.com/sbesada/java.
math.expression.parser

[23] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An
Introduction. (2018).

https://github.com/SoftEngResearch/tracemop/blob/master/docs/AddAgent.md
https://github.com/SoftEngResearch/tracemop/blob/master/docs/AddAgent.md
https://github.com/SoftEngResearch/tracemop/blob/master/docs/BuildAgent.md
https://github.com/SoftEngResearch/tracemop/blob/master/docs/BuildAgent.md
https://github.com/SoftEngResearch/tracemop/commit/c608797a90030d52e49c97e3aefe18813fc7910c
https://github.com/SoftEngResearch/tracemop/commit/c608797a90030d52e49c97e3aefe18813fc7910c
https://github.com/SoftEngResearch/tracemop/pull/38
https://github.com/SoftEngResearch/tracemop/pull/38
https://github.com/sbesada/java.math.expression.parser
https://github.com/sbesada/java.math.expression.parser

	Abstract
	1 Introduction
	2 Example
	3 Valg
	4 Installation and Usage
	5 Evaluation
	5.1 Benefits of Per-spec Hyperparameters
	5.2 Benefits of Hyperparameter Tuning
	5.3 Evaluating Our Tool Optimizations

	6 Limitations
	7 Conclusion
	References

