
AURA: Precise Abstract Interpretation of
Probabilistic Programs with Interval Data

Uncertainty

Zixin Huang1 , Jacob Laurel2 , Saikat Dutta3 , and Sasa Misailovic1

1 University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
2 Georgia Institute of Technology, Atlanta, GA, 30332, USA

3 Cornell University, Ithaca, NY, 14853, USA
{zixinh2,misailo}@illinois.edu, jlaurel6@gatech.edu�, saikatd@cornell.edu

Abstract. We present AURA, a novel abstract interpretation for ob-
taining sound, precise bounds on the posterior distributions computed
by probabilistic programs. AURA allows programmers to specify interval
bounds that capture uncertainty or perturbations of the observed data.
AURA abstractly computes the infinite set of posteriors that would re-
sult from performing inference for any possible data value in the specified
perturbation range. AURA then certifies precise bounds on probabilistic
queries over that set of posteriors. AURA’s precision stems from a novel
gradient-based optimization leveraging the structure of probabilistic pro-
grams. Our evaluation across 11 benchmarks with data perturbation
shows that AURA improves precision by an order of magnitude (12.8x on
average) over the interval-based abstract interpreter, within a run time
of 3.1 seconds (geomean), using a GPU parallel implementation.

1 Introduction

Probabilistic programs (PPs) play an important role in many applications that
make critical decisions such as security/privacy [13, 38, 47, 69], computer net-
works [17, 19, 67], analyzing hardware errors [15, 44], and pandemic model-
ing [6, 39]. In these applications, one often requires formal guarantees on the
posterior probability distribution [65, 72]. Illustrating this critical need for formal
assurances, prior work has shown Bayesian inference’s fundamental susceptibility
and brittleness to small perturbations [57], including adversarial perturbations
to the observed data [24, 35, 57, 77]. Moreover, while adversarial attacks on
datasets have been studied for other ML models, verifying robustness to data
perturbations has been far less explored in probabilistic programming.

Verifying robustness of probabilistic programs to dataset perturbations en-
counters several core issues. First, these programs often involve many continuous
distributions, which require symbolically evaluating possibly intractable integrals
and highly non-linear probability densities. Second, for verification, one needs
the analysis to be scalable and precise. Third, to reason about robustness to
data perturbations, one must obtain guarantees on a set of possible posterior

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

2 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

distributions. Unlike bounds for a single posterior, the bounds must now enclose
any possible posterior that could result from inference on perturbed data. Using
these bounds, we can verify that an adversary making small perturbations to
one or more observed data points can never change the posterior probability of
an event by an unacceptable amount.

Our Work. AURA is a novel abstract interpretation of probabilistic programs
that produces sound and precise bounds on the inferred posterior distributions.
By evaluating a probabilistic program abstractly, the bounds AURA computes
can be used to verify assertions over a program’s posterior. Additionally, AURA
is the first program analysis to efficiently compute precise and sound bounds
on an infinite set of possible posterior distributions when the observed data is
specified as bounds by the user. Lastly, AURA scales to data sizes that are an
order of magnitude greater than the size handled in prior work [5, 20, 37].

AURA’s key technical contribution is to reduce abstract interpretation to
gradient-based optimization by leveraging a distribution-shape pattern com-
monly found in continuous PPs. Thus AURA constructs sound and optimally
precise abstract transformers over the interval abstract domain. AURA’s trans-
formers are applicable to complex subprograms or even the entire program when
their distributions are pseudoconcave. Pseudoconcavity [46] is a relaxation of the
familiar notion of concavity, and many popular continuous distributions (e.g.,
Gaussian, Uniform, Exponential) and expressions over them satisfy this prop-
erty. This insight helps AURA’s abstract transformers achieve much higher preci-
sion than composing standard interval arithmetic operations for subexpressions.
Moreover, we show how our abstraction can also be combined and composed
with standard interval transformers to maintain the generality needed to ana-
lyze more complicated programs that may not be end-to-end pseudoconcave.

In addition to precise and scalable abstract transformers, AURA allows pro-
grammers to specify interval bounds on the observed data which AURA then
propagates through the program. These results can be used to certify bounds
on probabilistic queries in order to bound the probability of an event. These
bounds hold for all possible posterior distribution that could result from data
perturbations. Thus AURA uses abstract interpretation to verify properties for
infinitely many probabilistic programs simultaneously. AURA also makes inte-
gration of the over- and under-approximated densities tractable and efficient
during marginalization, normalization, or expectation calculation. Figures 1-3
illustrate AURA’s abstraction for a single posterior and a set of posteriors.

Fig. 1: Bound on a Single
Posterior (no perturb.)

Fig. 2: Analysis of Data Per-
turbation (on ‘d’ axis)

Fig. 3: Bound on the
Set of Posteriors

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 3

Contributions. The paper presents the following core technical contributions:
– Problem Formulation. We introduce a novel formulation of the problem of

certifying bounds on a set of posterior distributions resulting from (bounded)
data perturbations.

– Gradient-based Optimization. We design a novel algorithm for obtaining
precise abstract transformers for probabilistic programs that uses gradient-
based optimization for tractably and optimally solving for precise bounds on
the posterior distributions.

– Soundness. We show that our abstract interpretation can guarantee sound-
ness for a broad class of probabilistic expressions and programs whose poste-
riors satisfy concavity or pseudoconcavity at each interval.

– Evaluation. We integrate AURA with PyTorch to leverage GPUs. Our evalu-
ation of AURA across 11 programs with data perturbations shows that AURA
improves precision by an order of magnitude (12.8x) over the interval-based
abstract interpreter, within 3.1 seconds (geomean) on GPU. It also efficiently
and precisely computes the probability of queries under perturbations.
AURA is available at https://github.com/uiuc-arc/AURA .

2 Example

Probabilistic programming serves as a popular paradigm for encoding Bayesian
probability models concisely as programs [26]. In addition, the probabilistic pro-
gramming system automates Bayesian inference. Thus, the programmer only
specifies the source program while the underlying inference details are abstracted
away by the language. However, one may desire formal guarantees about the in-
ference results. Hence our work aims to provide these guarantees with AURA.

Before describing AURA’s approach, we first present our example probabilis-
tic program, P in Figure 4. This program infers the ground braking force. The
latent parameter x represents the braking force exerted on the vehicle, while
data[i] stores the observed deceleration (m/s2) under experimental conditions.
In this model, an engineer uses the observed variable data[i] to infer the value of
latent x. As an assumption, they model x’s prior distribution as a uniform(0,100).
The model assumes the observed variables are normally distributed.

1 data = [....] # numerical values
2 x ∼ uniform(0, 100)
3

4 for i in 1..100:
5 observe(
6 normal(0.1*x+1, 1),
7 data[i]
8)

Fig. 4: Example Code. Fig. 5: Posterior x Result.

AURA’s formalism allows one to express the scenario where the observed data
values can suffer perturbations. We assume that multiple data observations can

https://github.com/uiuc-arc/AURA

4 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

encounter sensor defects, potentially altering an observed value data[i] by up to
0.05. Here, we analyze the scenario where five observed points are simultaneously
perturbed from sensor defects.

AURA’s bounds are shown as blue boxes in Figure 5 and soundly enclose the
set of all possible posterior distributions that could arise from inference with
perturbed data. The red dots in this figure represent a sampled histogram of
x, based on different concrete observed data values data[i] within a specified
interval d♯, showing that AURA’s bounds are precise. The orange boxes illus-
trate posterior bounds obtained by an analysis with standard interval abstract
transformers and are much less precise than AURA at enclosing the sampled his-
tograms. The reason for this trend is that composing over-approximate interval
abstract transformers compounds imprecision. In contrast, AURA’s abstraction
improves precision by abstracting the entire unnormalized posterior at once.
AURA can prove sound posterior bounds within just 0.115 seconds when using
200 partitions (i.e., subintervals) to represent the posterior.
Bounds on Probabilities of Queries. The certified bounds on the set of nor-
malized posteriors can then be used for various queries. For instance, engineers
may need to guarantee that the braking force x should not fall below a certain
safety threshold, say 50 Newtons. Hence AURA’s posterior bounds can be used
to bound the posterior’s probability of the query Q ≡ x < 50.

AURA provides a probability range of [0.11, 0.14] for the braking force falling
below a critical threshold, which is twice as precise as the [0.09, 0.17] range
obtained from interval analysis. AURA’s narrower bounds indicate a smaller
effect from data perturbations, namely a better robustness, which is the ability
to infer reliable results even in the face of data perturbations.

3 Preliminaries

Language. We present our probabilistic programming language in Fig. 6.
P ::= M | M ;D

M ::= xi ∼ Dist | M ;M | if flip(p) M1 else M2

| for j=n1 to n2 do M | let xi = E in M

D ::= observe(Dist, di) | D;D | for j=n1 to n2 do D

E ::= xj | E + E | E − E | E ∗ E | E/E | c ∈ R
Dist ::= dist(E1, . . . , EN), dist ∈ {uniform, . . .}

Fig. 6: AURA Language

Our syntax is similar to
the syntax of Stan [21],
separating the block with
priors over the latent vari-
ables M and the observa-
tions in the data block D.
The programmer can also
specify models where the
parameters of one distri-
bution are an arithmetic expression E of other latent parameters. The priors
in M must be continuous with compact (truncated) support. Our data pertur-
bation formalism requires the observed distribution be continuous. While the
implementation optionally permits discrete observed variables, this setting is
limited to only regular inference and not analysis of data perturbations.

In the flip(p) primitive, p is a fixed constant between 0 and 1. The language
is first-order (no recursion), however one can encode a broad class of popular

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 5

probabilistic models such as Linear and Logistic Regressions, Time-Series Mod-
els, Hierarchical Bayesian models, and others. This language is constrained for
the purpose of identifying and optimally analyzing pseudoconcave programs,
however our language could be used to define other subprograms in general
PPLs such as for nested inference (example in Appendix A.4 [36]).
Concavity and Convexity. A core component of AURA’s abstraction relies
upon concavity and concavity-like properties of posterior distributions. A set
X ⊆ Rd is convex if for all α ∈ [0, 1] and any x1, x2 ∈ X , then αx1+(1−α)x2 ∈ X .
A function f is concave over some convex domain X if for any α ∈ [0, 1] and
any x1, x2 ∈ X the following inequality holds: f(αx1 + (1 − α)x2) ≥ αf(x1) +
(1 − α)f(x2). The Concave functions remain closed under summation, which
will be important for AURA’s analysis. Additionally, we will see that AURA’s
analysis still supports weaker notions of concavity, which we describe next.

Definition 1. Quasiconcavity. A function f is quasiconcave over some con-
vex domain X if for any α ∈ [0, 1] and any x1, x2 ∈ X the following holds:
f(αx1 + (1− α)x2) ≥ min(f(x1), f(x2)).

Definition 2. Log-Concavity. A non-negative function f is logarithmically-
concave over some convex domain X if for any α ∈ [0, 1] and any x1, x2 ∈ X
the following holds: f(αx1 + (1− α)x2) ≥ f(x1)

α · f(x2)
1−α.

For a strictly positive function f (e.g., a probability density), the following
implication holds: Log-Concave f =⇒ Concave log(f). Many common
probability densities are Log-concave (Appendix C; Table 6) and the Log-
concave functions are closed under multiplication. Additionally, quasiconcavity
is useful for defining pseudoconcavity.

Definition 3. Pseudoconcavity. A function f(x) is pseudoconcave if and only
if f(x) is quasiconcave and for any x∗, ∇f(x∗) = 0 =⇒ x∗ = argmax f(x).

Concave
★

Pseudo Concave
★

Quasi Concave

★

Fig. 7: Illustration of Different
Notions of Concavity

Pseudoconcavity is similar to Quasicon-
cavity, however any stationary point of a pseu-
doconcave function is necessarily an optimum.
Further, any quasiconcave function whose gra-
dient is never zero is Pseudoconcave. Figure 7
shows example functions. One may notice the
flat plateau of the quasiconcave function con-
sists of stationary points which are not opti-
mal. Hence in Section 6 we leverage pseudoconcavity to ensure a gradient ascent
procedure does not become trapped in local extrema.
Abstract Interpretation. AURA’s analysis builds upon abstract interpreta-
tion [10] with the interval domain. The interval abstract domain was chosen be-
cause it has found widespread success in many program analysis tasks [42, 43, 66]
due to its scalability. In the interval domain each variable is abstracted by an
interval [a, b] ∈ IR where a is the lower bound and b is the upper bound and
a ≤ b. The set of all m-dimensional intervals will be denoted as IRm, and a given

6 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

JP K(x, d) = JM ;DK(x, d) JM ;DK(x, d) = JMK(x) · JDK(x, d)

Jif flip(p) P1 else P2K(x, d) = JM1;M2K(x) = JM1K(x) · JM2K(x)

pJP1K(x, d) + (1− p)JP2K(x, d) JD1;D2K(x, d) = JD1K(x, d) · JD2K(x, d)

Jobserve(Dist, di)K(x, d) = JDistK(x, d) ◦ d[i] Jxi ∼ DistK(x, d) = JDistK(x, d) ◦ x[i]

JE1 + E2K(x, d) = JE1K(x, d) + JE2K(x, d) JE1 − E2K(x, d) = JE1K(x, d)− JE2K(x, d)

JE1 ∗ E2K(x, d) = JE1K(x, d) ∗ JE2K(x, d) JE1/E2K(x, d)
̸=0
= JE1K(x, d)/JE2K(x, d)

JxjK(x, d) = x[j] JcEK(x, d) = c · JEK(x, d)

Jdist(E1, . . . , EN)K(x, d) = pdist (u; JE1K(x, d), . . . , JEN K(x, d)) , dist ∈ {uniform, ...}

Fig. 8: Key Rules of Unnormalized Concrete Semantics.

element will be denoted as x♯ ∈ IRm where x♯[i] = [ai, bi]. The concretization
γ : IRm → P(Rm) of a multidimensional interval is just the set of all points con-
tained in that interval hence: γ(x♯) = {(x1, ..., xm) : ∀i ∈ {1, ...,m}, ai ≤ xi ≤
bi where [ai, bi] = x♯[i]}. For the interval domain, the basic abstract transformers
are the standard interval arithmetic operations (we denote them as +♯ and ·♯),
which can easily be composed [50], however we will later see how AURA obtains
precise abstract transformers by solving optimization problems.

4 Concrete Semantics

We now formalize our concrete semantics of probabilistic programs. The semantic
interpretation of a probabilistic program is the normalized posterior distribution,
which corresponds to the unnormalized likelihood defined by the statements in
the probabilistic program divided by a normalizing constant.
Preliminary Transformation. To simplify the formalism description, we do
three source-to-source transformations. The first is moving conditionals upward
hence the production for P becomes P ::= M | M ;D | if flip(p) P1 else P2.
To move conditionals upward, it includes the code before and after the condi-
tional into the branches. The second transformation is unrolling the for loops.
Hence the productions for M becomes M ::= xi ∼ Dist | M ;M and the produc-
tion for D becomes D ::= observe(Dist, di) | D;D since loops can be unrolled to
sequencing: M ;M and D;D. The third transformation replaces all occurrences
of (fresh) variables introduced by the let bindings with their original expressions
(using capture-avoiding substitution), so that all the expressions and subexpres-
sions only contain variables corresponding to sampled distributions, xk.
Unnormalized Concrete Semantics. We first formalize the concrete seman-
tics of probabilistic programs in terms of their unnormalized likelihood. Because
likelihoods are just density functions which map observations to scores, we for-
malize this mapping using a score-based functional semantics.

In the score-based semantics, the interpretation J·K of a probabilistic program
P is a function that scores the likelihood of a given trace x ∈ Rm (where m is
the number of latents) and given data observations d ∈ Rn. Hence J·K is a

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 7

function of both x and d. The semantic signature for interpreting a program P
is JP K : Rm ×Rn → R, and JP K(x, d) : R. The full semantics are given in Fig. 8.
For the distribution rule Jdist(E1, . . . , EN)K(x, d), we take the probability density
function (PDF) of that distribution, denoted as pdist. Each statement multiplies
the probability score by the corresponding probability density function of either
the latent parameter or the observed data sample (see JM ;MK and JD;DK). For
branches, we take the linear combination of the density functions.
Unnormalized Log-Likelihood Semantics, JP Klog(x, d). For reasons of nu-
merical stability it is often helpful to work with the logarithm of the likelihood
instead of the original likelihood itself. Thus having defined the Unnormalized
Concrete Semantics, we can now define the log-likelihood semantics by simply
taking a logarithm. In particular: JP Klog(x, d) = log(JP K(x, d)) We can easily
convert back to the original semantics: JP K(x, d) = exp(JP Klog(x, d)).
Normalized Concrete Semantics. We formalize the notion of a normalized
probabilistic program, whose semantics is denoted J·Kn and given by:

JP Kn(x, d) = JP K(x, d) /
∫
x

JP K(x, d)dx,

where
∫
x
JP K(x, d)dx is the normalizing constant. Generally, computing the nor-

malizing constant and hence JP Kn can be intractable.

5 Abstract Semantics for Data Perturbation

We now define an abstract semantics for over-approximating entire sets of pos-
terior distributions, which intuitively encode all posteriors obtainable when the
data d could be perturbed. However if one wishes to only bound a single poste-
rior, they can still use AURA, the data interval will just be degenerate.

5.1 Unnormalized Abstract Semantics for Data Perturbation

In the data perturbation setting, the observed dataset is given by some interval,
d♯ ∈ IRn. Thus for abstractly interpreting program P we have the signature
JP K♯(x♯, d♯) : IRm × IRn → IR. In essence, we prove guaranteed bounds on all
possible posteriors obtained after a bounded (adversarial) perturbation on the
data. Hence AURA can analyze and verify properties for an infinite number of
probabilistic programs, a task which has not been studied in any prior work.
Optimization. The core idea of AURA is to compute precise lower and upper
bounds by respectively solving minimization and maximization problems. Hence
instead of computing lower and upper bounds with interval arithmetic, AURA
reduces abstract interpretation to continuous optimization. This optimization
formulation is defined as:

JP K♯(x♯, d♯) = [l, u], where

l = min
d∈γ(d♯)

min
x∈γ(x♯)

JP K(x, d), and u = max
d∈γ(d♯)

max
x∈γ(x♯)

JP K(x, d).

8 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

One can think of this formulation as defining an abstract transformer tailored
for the entire program’s (or subprogram’s) expression instead of defining abstract
transformers for individual primitive operations (as interval arithmetic does).
Having an abstract transformer defined at this higher level of granularity allows
AURA to improve precision greatly over interval arithmetic – and as we will show
in Section 6, when the unnormalized likelihood JP K(x, d) has a pseudo-concave
structure, we can solve this optimization problem tractably.

However one can always use any [l∗, u∗] where l∗ ≤ l and u ≤ u∗ as sound
bounds. Hence, for programs which lack the necessary pseudoconcavity proper-
ties, one can always fallback to interval arithmetic to abstractly interpret the
semantics of Fig. 8. This insight gives us the flexibility to analyze a (pseudo-
concave) subprogram within P using AURA’s precise optimization approach,
while using interval arithmetic to bound other sub-expressions which may not
be pseudoconcave and then compose the results. We can now state the following
soundness result (the proofs are in Section 5.3):

Theorem 1. The Unnormalized Abstract Semantics for data perturbation over-
approximate the Unnormalized Concrete Semantics for fixed data observations.
Equivalently for arbitrary program P , dataset d♯ ∈ IRn, and interval x♯ ∈ IRm,
we have {JP K(x, d) : x ∈ γ(x♯), d ∈ γ(d♯)} ⊆ γ(JP K♯(x♯, d♯)).

Abstract Log-likelihood Semantics for Data Perturbations. We can take
logarithmic transformations of the abstract unnormalized semantics, to define
JP K♯log(x

♯, d♯) = [l′, u′], where l′ = mind∈γ(d♯) minx∈γ(x♯)JP Klog(x, d), and also
u′ = maxd∈γ(d♯) maxx∈γ(x♯)JP Klog(x, d). Then, JP K♯(x♯, d♯) = exp(JP K♯log(x

♯, d♯)).

5.2 Normalized Abstract Semantics for Data Perturbation

One of the most challenging parts of computing the abstract normalized seman-
tics is performing the abstract integration

∫ ♯. The key intuition is that we par-
tition the support of JP K into disjoint intervals and compute an interval bound
of the unnormalized posterior over each partition. These bounds form lower and
upper Riemann sums, which bound the value of the integral, and thus bound
the integrating constant. Lastly, interval division of the previous bounds on the
unnormalized posterior by the bounds on the integrating constant ultimately
yields bounds on the normalized posterior, which we denote as JP K♯n.

Definition 4 (Abstract Integral with Data Perturbation). We let each
x♯
i represent a multi-dimensional interval in IRm, such that support(JP K) =

∪k
i=1γ(x

♯
i). Thus each x♯

i is a subset of the posterior distribution’s support. Each
x♯
i can be denoted as a Cartesian product (denoted as ⊗) of the intervals as

x♯
i = ⊗m

j=1[xlij , xuij
]. Here m represents the dimension of the latent variables,

and for each dimension j ∈ {1, ...,m}, the interval [xlij , xuij
] ∈ IR corresponds

to that dimension. The volume (or Lebesgue measure) of each x♯
i in the partition

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 9

is Vol(x♯
i) =

∏k
j=1(xuij

− xlij). The abstract integral with data perturbation is:∫ ♯

JP K♯(x♯, d♯) dx =

[
k∑

i=1

li · Vol(x♯
i),

k∑
i=1

ui · Vol(x♯
i)

]

The bounds Vol(x♯
i) =

∏m
j=1(xuij

−xlij) and JP K♯(x♯
i , d

♯) = [li, ui] are defined in
Section 5, however bounds obtained from any sound abstract transformer would
also be valid. For distributions with compact support, there will be finitely many
(non-zero) terms in the summation. We will see in Section 7 how this same
idea can be used to abstractly integrate JP K♯n to formally bound probabilities of
(measurable) events using the posterior bounds computed by JP K♯n.

Lemma 1. [Soundness of abstract integration for data perturbations] Given The-
orem 1 and Definition 4, it follows that:∫

JP K(x, d) dx ∈ γ

(∫ ♯

JP K♯(x♯, d♯) dx

)
.

We now formally define the normalized abstract semantics for programs
where the support has been partitioned as ∪k

j=1x
♯
j and where x♯

i ∈ IRm is the
partition of interest, Here ·

· ♯ represents interval division.

JP K♯n(x
♯
i , d

♯) =
JP K♯(x♯

i , d
♯)∫ ♯JP K♯(∪k

j=1x
♯
j , d

♯)
♯

Theorem 2. The Normalized Abstract Semantics for data perturbation over-
approximates the Normalized Concrete Semantics for sets of data observations.
Formally, for a program P , dataset d♯ ∈ IRn, and interval x♯ ∈ IRm, we have:

{JP Kn(x, d) : x ∈ γ(x♯), d ∈ γ(d♯)} ⊆ γ(JP K♯n(x
♯, d♯)).

5.3 Soundness Proofs

Proof of Theorem 1. Since JP K♯(x♯, d♯) = [l, u] is a 1D interval in IR, we have to
show that

1. l ≤ inf{JP K(x, d) : x ∈ γ(x♯), d ∈ γ(d♯)} and
2. u ≥ sup{JP K(x, d) : x ∈ γ(x♯), d ∈ γ(d♯)}.

However, by definition, l = mind∈γ(d♯) minx∈γ(x♯)JP K(x, d) and

min
d∈γ(d♯)

min
x∈γ(x♯)

JP K(x, d) = inf{JP K(x, d) : x ∈ γ(x♯), d ∈ γ(d♯)}

Similarly, u = maxd∈γ(d♯) maxx∈γ(x♯)JP K(x, d) and

max
d∈γ(d♯)

max
x∈γ(x♯)

JP K(x, d) = sup{JP K(x, d) : x ∈ γ(x♯), d ∈ γ(d♯)}

Hence soundness follows (by construction).

10 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

Proof of Lemma 1. To prove
∫

JP K(x, d) dx ∈ γ
(∫ ♯JP K♯(x♯, d♯) dx

)
, we need to

show that
∑n

i=1 li · Vol(x♯
i) ≤

∫
JP K(x, d)dx ≤

∑n
i=1 ui · Vol(x♯

i)
However the left hand side is a lower Riemann sum which is always less than

the true integral, and likewise the right hand side is an upper Riemann sum
which is always greater than the true integral.

Proof of Theorem 2. Since the unnormalized bounds are sound from Theorem 1,
the bounds on the normalizing constant are sound from Lemma 1 and interval
division is sound, the normalized bounds are sound too.

6 AURA Optimization Algorithm

Having defined the abstract semantics JP K♯(x♯, d♯) in terms of interval bounds
where the lower and upper bounds come from solutions to optimization problems,
we now describe how AURA can precisely solve these optimization problems.
Pseudoconcave Probabilistic Programs. A probabilistic program P is pseu-
doconcave if the unnormalized density function defined by JP K(x, d) is a pseudo-
concave function of both x and d (a condition satisfied by many distributions;
see Appendix C). We also have the following implications:

JP K(x, d) Log-Concave =⇒ JP Klog(x, d) Concave =⇒ JP Klog(x, d) Pseudoconcave

JP K(x, d) Pseudoconcave =⇒ JP Klog(x, d) Pseudoconcave

We choose Pseudoconcavity, because to the best of our knowledge it is the
weakest condition that ensures the lower and upper bounds from gradient-based
optimizations remain sound. Pseudoconcave functions have derivatives which
exist everywhere except a measure zero set. Hence, we can use these derivatives
for Gradient Ascent to solve the optimization problems of Section 5.1.

6.1 Computing Lower Bounds with AURA

The first step in computing the abstract semantics JP K♯(x♯, d♯) needed to soundly
bound posteriors involves computing the interval’s lower bound. In the case of
data perturbations one must compute l = mind∈γ(d♯) minx∈γ(x♯)JP K(x, d). How-
ever, because of the pseudoconcavity requirements on JP K(x, d) this minimization
problem becomes tractable. In particular we only have to check the corner points
of x♯ and d♯, denoted as Corners. For numerical stability, we use logarithms,
hence we can solve the optimization problem by computing:

l = exp

(
min

d∈Corners(d♯)
min

x∈Corners(x♯)
JP Klog(x, d)

)
(1)

Theorem 3. (Soundness) The lower bounds l computed above in Eq. 1 are
sound when the log-likelihood JP Klog(x, d) is pseudoconcave.

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 11

Proof. (Sketch) Any pseudoconcave function is also quasiconcave, and quasicon-
cave functions over compact convex sets are minimized at corner points [45].

A key benefit of using the Interval domain instead of the Polyhedral or Zono-
tope [22, 23] domains is that checking extremal points of intervals is more scal-
able compared to checking extremal points of polyhedra or zonotopes. This lower
bound is not just sound, it is optimal. We state this result below:

The lower bound computed in Eq. 1 is optimal – the most precise bound
possible. Because JP Klog(x, d) is continuous and the interval d♯×x♯ is compact, the
minimum will be attained on that interval. Since exp is monotonically increasing,
the minimizer of JP Klog(x, d) is also the minimizer of exp(JP Klog(x, d)).

6.2 Computing Upper Bounds with AURA

Similarly, to obtain sound enclosures, AURA computes the upper bound by
solving the optimization problem u = maxd∈γ(d♯) maxx∈γ(x♯)JP K(x, d). Our key
technical insight is that this maximization can be solved directly by performing
Projected Gradient Ascent on the log likelihood, JP Klog(x, d). Our implementa-
tion uses automatic differentiation to efficiently compute the gradients. Further,
since x♯ and d♯ define (multi-dimensional) intervals, they are convex sets, hence
the constraints of this optimization problem are convex.

Definition 5. Projected Gradient Ascent. Given a differentiable function
f(x) : X ⊂ Rm → R, one iteratively computes:

xn+1 = ΠX
(
xn + η∇xf(xn)

)
with learning rate η ∈ R>0 until convergence where ∥xn+1−xn∥ ≤ ϵ. Here ΠX is
the projection operator that takes a xn+1 that may lie outside X , and returns the
closest point inside X . If the constraints are intervals: X = ⊗m

i=1[li, ui] ⊆ IRm,
the projection is ΠX (x) = ⊗m

i=1ΠX (x[i]) where:

ΠX (x[i]) =


li if li > x[i]; or
x[i] if x[i] ∈ [li, ui]; or
ui if ui < x[i]

(2)

AURA Gradient Optimization. AURA will run the following Gradient As-
cent computations for the function JP Klog(x, d) : γ(x♯)× γ(d♯) → R≥0:

(xn+1, dn+1) = Πx♯;d♯

(
(xn, dn) + η∇JP Klog(xn, dn)

)
(3)

until xn+1 = xn and dn+1 = dn. The learning rate must satisfy η ≤ 1
∥∇JP Klog(xn,dn)∥

to ensure convergence. We further discuss the selection of the learning rate in
Section 8. This optimization problem is constrained because the latent param-
eters x come from distributions with compact support (e.g., uniform). A key
benefit of using the interval domain is that the projection function Πx♯;d♯ in Eq.
3 reduces to the (efficiently computable) projection in Eq. 2 since x♯×d♯ is just a
multi-dimensional interval. Upon computing the xn+1 = xn and dn+1 = dn that
the Projected Gradient Ascent converges to, we exponentiate the result to get:

u = exp(JP Klog(xn+1, dn+1)) (4)

12 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

Theorem 4. (Soundness) The upper bounds u computed in Eq. 4 are sound
when the log-likelihood JP Klog(x, d) is pseudoconcave.

Proof. (sketch) Projected gradient ascent/descent is guaranteed to converge to
the true maxima (instead of a local one) for pseudoconcave/pseudoconvex func-
tions [12, 14, 30]. Moreover, when projected gradient ascent applied to a pseu-
doconcave function finds a fixed point xn+1 = xn, dn+1 = dn, such a fixed point
is guaranteed to the be the true optima ([14] Theorem 4.2)

Corollary 1. (Optimality) The upper bound computed in Eq. 4 is the most pre-
cise bound possible.

Proof. (sketch) Since JP Klog(x, d) is continuous and d♯×x♯ is compact, the max-
imum is attained on that interval. Since exp is monotonically increasing, the
maximizer of JP Klog(x, d) is the maximizer of exp(JP Klog(x, d))

AURA runs the gradient ascent until a fixed point (xn+1 = xn) is found.
Alternatively, AURA can run the gradient ascent for fewer iterations (before
hitting a fixed point), and add an error bound to the result to account for the
distance to the true optimum value. For instance, prior works [14, 28] guaran-
teed for a pseudo-concave function f(x) : X ⊂ Rm → R, after T iterations of
projected gradient ascent, the error between the true maximum and the current
value will not exceed E =

√
κ2∥x0 − x∗∥2/T , where x0 denotes the starting

point, x∗ denotes the true maximum, and κ denotes the local Lipschitz constant
over X that can be computed by AURA. Hence, even without a sufficient num-
ber of iterations to reach the fixed point, when adding tiny bound E, AURA
still gives bounds which are sound. This strategy also applies if one wishes to
account for numerical error, though prior work [2] shows that gradient ascent is
already robust to floating point roundoff. Lastly, because of the optimality of the
lower and upper bounds, AURA achieves the most precise abstract transformer
of pseudoconcave functions for the interval domain.

6.3 Beyond Pseudoconcavity: Compositionality and Scaling

Supporting Branch Statements and Mixture Models. AURA supports
mixture distributions that contain branches which can cause the likelihoods to
no longer be pseudoconcave. The idea is that even if the entire posterior is multi-
modal and not pseudoconcave, each component when viewed in isolation could
be pseudoconcave. For instance, we can define the abstraction of a branch as:

Jif flip(p) P1 else P2K♯(x♯, d♯) = p·♯ JP1K♯(x♯, d♯)+♯ (1−p)·♯ JP2K♯(x♯, d♯) (5)

Thus by applying AURA’s abstract interpreter, J·K♯, to each component (which
are pseudoconcave) and combining the results with standard interval arithmetic,
we can still obtain sound posterior bounds. We present the proof in Appendix A.1.
Pseudoconcave Subexpressions when Programs are not Pseudocon-
cave. We can generalize the previous case and fallback to interval arithmetic for

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 13

any of the subexpressions in Fig. 8. Thus, even if the program P lacks a pseu-
doconcave posterior, we can compute optimized bounds on the largest subex-
pressions which are pseudoconcave, and then use standard interval arithmetic
for the rest. Hence, Sections 6.1 and 6.2 provide sound interval domain abstract
transformers for any pseudoconcave function, including subexpressions within
P . We state this property formally and prove it in Appendix A.2.

Optimizing Programs with High-Dimensional Latents. A common method
for writing robust models is to add many local latent parameters [71, 76], i.e.,
each observation depends on a fresh latent variable. Figure 9 gives an example
model capturing this common pattern.

1 d = [1.3, 2.1, ...] #n data points
2 u ∼ normal(...)

#global latent variable
3 for i in range(n):
4 vi ∼ normal(u,1)

#local latent variables
5 observe(d[i], normal(vi,1))

Fig. 9: Robust Model with n+1 Latent
Parameters

Line 5 encodes that each datapoint
has its own i.i.d latent vi, hence why
there are n + 1 latent variables. Given
this pattern, we let u represent the
global latent and vi represent the local
latents. Thus the latent vector is x =
(u, v1, ..., vn) which means that naively,
we would solve an O(n)-dimensional
optimization problem. However, AURA
automatically reduces this problem to n
easy O(1)-dimensional subproblems since each local latent’s respective optimiza-
tion subproblem is O(1) dimension and they can be solved in parallel (full proof
in Appendix A.3).

7 AURA Verification Algorithm

Having described AURA’s optimization routine, we next describe how to use this
routine for end-to-end robustness verification of probabilistic programs. In par-
ticular, Equations 1 and 4 provide a strategy to solve the optimization problems
of Section 5.1, thus giving a way to compute JP K♯(x♯, d♯). Hence we combine
these insights together to give the full algorithm for AURA’s abstract interpre-
tation of normalized posterior distributions of probabilistic programs. The entire
procedure is shown in Algorithm 1.

Partitioning (Splits). As input, AURA requires a partition of the support of
the latent variables. The core intuition is that we partition the support of P ’s
distribution into disjoint interval “splits”. If x♯ is the interval containing the entire
(compact) support of P ’s (unnormalized) likelihood, then we take partitions x♯

i

such that x♯ =
⋃

i x
♯
i . We use an equal-area splitting strategy but support other

strategies (see Section 8). For each split x♯
i , AURA computes JP K♯(x♯

i , d
♯) in lines

1-2. A key efficiency insight (inspired by DNN verification [80]) is that each split
x♯
i can be processed in parallel on a GPU to compute JP K♯(x♯

i , d
♯).

Abstract Dataset. Another input to AURA is the abstract dataset d♯ repre-
senting the observed data points’s bounded range. A novelty of AURA is that
we can verify bounds for both a single posterior, and an infinite set of posteri-

14 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

Algorithm 1 AURA Core Verification Algorithm
Input: Probabilistic Program P ; Abstract dataset d♯; The partition of P ’s support⋃m

i=1 x
♯
i (from implementation heuristic); The query Q (optional)

Output: (1) Posterior Bounds JP K♯n(x, d♯);
(2) Query Bounds [Ql, Qu] where Pr(Q) ∈ [Ql, Qu] (only if Q provided)

1: for x♯
i in splits do

2: li, ui = JP K♯(x♯
i , d

♯) ▷ Unnormalized posterior bounds computed
▷ in Sections 6.1-6.3 (data parallel)

3: end for
4: [cl, cu] =

∫ ♯JP K♯(x♯, d♯)dx ▷ Normalizing Constant bound computed
▷ in Def. 4 (reduction)

5: for x♯
i in splits do

6: JP K♯n(x
♯
i , d

♯) = [li, ui]÷♯ [cl, cu] ▷ Normalization (data parallel)
7: end for
8: if Query then
9: [Ql, Qu] =

∫ ♯
1Q · JP K♯n(x♯, d♯)dx ▷ Abstract integration of posterior

▷ from Def. 7 (reduction)
10: end if

ors. This set of posteriors is controlled by the width of d♯, which represents the
allowed dataset perturbation range.
Normalization. AURA finally outputs bounds on normalized posterior. To
obtain bounds on the normalized posterior JP K♯n using unnormalized posterior
bounds JP K♯, AURA performs abstract integration to bound the normalizing
constant using the strategy in Def. 4. The partitions used in the previous step
can be reused for lower and upper Riemann sums (line 4) as mentioned in Section
5.2. Upon computing the normalizing constant bound [cl, cu], AURA performs
interval division to normalize the posterior bound of each split (lines 5-6).

7.1 Certified Bounds on Probabilistic Queries

An optional input to AURA’s algorithm is a query Q. AURA can use the nor-
malized posterior bounds JP K♯n to certify bounds on the posterior probability of
queries. In the data perturbation setting, the bounds computed by JP K♯n enclose
not just a single posterior distribution (like in [5, 73]) but an infinite number of
posteriors. Hence, AURA’s bounds on a query’s probability hold for an infinite
set of posteriors.

Definition 6. Queries. A query Q is a logical formula over the variables of P
given by the following grammar: Q ::= xj ≥ c | xj ≤ c | Q ∧Q | Q ∨Q

The queries formally define measurable events, hence we can define the pos-
terior distribution’s probability of a query Q. This probability is defined as:

Prx∼JP Kn(·,d)(Q) =

∫
x

1Q · JP Kn(x, d) dx, (6)

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 15

where 1Q is the binary indicator function for the event Q. However, as in Sec-
tion 4, in general this integral is not tractable, hence AURA over-approximates
this probability. The over-approximation is computed using an abstract integra-
tion similar to Def. 4. The key difference is that we use the normalized posterior
interval bounds, JP K♯n, instead of the unnormalized bounds JP K♯ that Def. 4 uses.
The new abstract integration is:∫ ♯

1Q · JP K♯n(x, d
♯)dx =

∑
i

JP K♯n(x
♯
i , d

♯) · V ol(x♯
i ∩ {x : Q}) = [lQ, uQ] (7)

The summation (
∑

) is interval addition and the V ol(·) function computes the
Lebesgue measure of the input set. Since each x♯

i is an interval, and the set {x :

Q} is a union or intersection of finitely many intervals, the result of x♯
i ∩{x : Q}

is itself a union or intersection of finitely many intervals and thus its Lebesgue
measure can be computed easily. Hence Eq. 7 ultimately computes an interval
that encloses the true integral. We can now state the soundness result:

Theorem 5. (Soundness) For probabilistic program P , dataset d ∈ γ(d♯) and
Query Q we have: Prx∼JP Kn(·,d)(Q) ∈

∫ ♯
1Q · JP K♯n(x, d♯)dx

Proof.∫ ♯

1Q · JP K♯n(x, d
♯)dx =

∑
i

JP K♯n(x
♯
i , d

♯) · V ol(x♯
i ∩ {x : Q})

=
∑
i

[li, ui] · V ol(x♯
i ∩ {x : Q})

=
∑
i

[
li · V ol(x♯

i ∩ {x : Q}), ui · V ol(x♯
i ∩ {x : Q})

]
=

[∑
i

li · V ol(x♯
i ∩ {x : Q}),

∑
i

ui · V ol(x♯
i ∩ {x : Q})

]
Here the lower and upper bounds are just lower and upper Riemann sums, hence
they enclose

∫
1Q · JP Kn(x, d)dx, which is exactly just Prx∼JP Kn(·,d)(Q).

While the computational difficulty in evaluating this integral scales with the
latent variable’s dimension and the size of the query’s predicate, the integration
remains tractable for all our benchmarks.

7.2 Robustness

This soundness result directly implies the following proposition which relates
soundness to a formal notion of robustness of probabilistic programs. Certifi-
cation of this robustness property for a given program, is the most important
output of AURA’s verification approach.
Proposition 1 (Robustness). For probabilistic program P , Query Q, data di
and perturbation parameter ϵi then for any d′i ∈ [di − ϵi, di + ϵi]

Ql ≤ Prx∼JP Kn(·,d′
i)
(Q) ≤ Qu

where Ql and Qu are the bounds computed by AURA in Algorithm 1

16 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

This proposition establishes that for a probabilistic program P , conditioning
on observed data di ∈ R, if an adversary can perturb each di within a range
[ldi , udi], then the posterior probability of an event Q under any such adver-
sarially perturbed posterior distribution of P is still guaranteed to lie between
[Ql, Qu] where Ql, Qu are the bounds computed by AURA. Thus AURA certifies
the robustness of a posterior probability of a query subject to data perturbations.

7.3 Scope and Limitations

AURA only supports for loops with fixed number of iterations instead of while
loops, since potentially unbounded loops can violate the pseudoconcavity proper-
ties. For data perturbations, AURA’s support for discrete distributions remains
limited to the flip(p) primitive which simulates a Bernoulli variable but is only
used for encoding mixtures of continuous distributions. Similarly, AURA does
not support conditioning on Boolean predicates (e.g., observe(x > 1)).

While pseudo-concavity checks exists (e.g., using Hladik et al. [31]), AURA’s
implementation already assumes the probabilistic program is pseudoconcave and
thus lacks such automated checks.

In addition, while it is theoretically possible to run projected gradient descent
on zonotopes or polyhedra, our implementation requires the interval domain.

Lastly, our data perturbation specifications support local robustness guaran-
tees and not global robustness guarantees since our intervals only cover a local
range (e.g., ±ϵ) around a given data point, di. In contrast to reasoning about
values in a local range (e.g., [di − ϵ, di + ϵ]), global robustness requires logical
reasoning over all values in R, a task which is not yet tractable.

8 Implementation

We implemented AURA to strike a balance between precision, efficiency and scal-
ability. AURA supports a wide range of known distributions, including normal,
uniform, gamma, exponential, bernoulli, logistic, laplace, beta, bernoulli_logit,
and bernoulli_probit. For infinite support distributions (e.g., normal) AURA
uses truncated versions in the priors to ensure compact support (as also done
by GuBPI [5]), which we denote with a subscript t. The observed distributions
need not be truncated. While AURA’s implementation assumes ideal real arith-
metic (as is common in ML verification [5, 40, 74]), our evaluation shows that
numerical imprecision resulting from floating-point is negligible (Appendix E.3).
Furthermore, our implementation can be directly extended to soundly account
for floating-point roundoff error by using existing techniques [49] or by using
arbitrary precision numerical libraries, e.g., NVIDIA XMP [79] for GPUs.
Parallelization. The steps of Algorithm 1 are parallelizable on CPU or GPU:
the two for-loops are data-parallel, while abstract integration and computing
bounds on queries are reductions. We implemented AURA using PyTorch, sup-
porting both GPU and CPU backends. To scale to large datasets common in
modern applications, which may exceed the memory of a single GPU, we used

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 17

software tiling and sharding to distribute computations across multiple GPUs.
We implemented a method for integration of local posterior tiles, eliminating the
need to store and communicate all posterior tiles between devices.

Efficient Lipschitz Analysis for Learning Rate Selection. To determine
the learning rate η, PyTorch’s Automatic Differentiation allows us to com-
pute the Lipschitz constant (LC) of the unnormalized posterior JP K. The LC
is bounded by the largest gradient norm (for the local region of the split), and
for known distributions, this maximum gradient will occur at the boundaries.
Furthermore, using the rules from [4], we aggregate the LCs of individual distri-
butions and estimate the one for the unnormalized posteriors.

Precision-Enhancing Splitting. AURA performs partitions the parameter
space into splits x♯

i , which can be analyzed in parallel. However one question
we ask is what is the best strategy for this splitting. While different splitting
heuristics do not affect the soundness, they do affect the precision.

(a) Equal-length (b) Equal-height (c) Equal-area

Fig. 10: Example of the Analysis Results by Different Splitting Strategies

As an illustration, Figure 10 shows the resulting bounds obtained from three
different heuristics each using 20 splits on a simple regression model (lightspeed).
The blue line represents the ground truth and the bounds AURA found are the
gray boxes. Figure 10a shows the result from the equal-length strategy, which
divides the variable interval in equal-length sub-intervals. Due to its simplicity,
this strategy is widely used, e.g. by the baseline GuBPI. However, as the plot
shows, while the bounds at the tails are reasonably precise, the bounds around
the mode (middle part) of the curve are imprecise.

Another strategy is the equal-height splits (Figure 10b), which divides the
intervals such that the resulting bounds have the same height. Without knowing
the true bounds beforehand, AURA could run a separate analysis (like AQUA
[34]) once with a small number of splits (e.g. 60 splits with equal-length) to
estimate the shape of the curve, and then use those results to decide the splits
with approximately equal height. Nevertheless, this strategy is imprecise for
bounding the tails of the distribution.

Therefore, we designed the third strategy to strike a balance between pre-
cisely bounding the tails and precisely bounding the mode. In Figure 10c, we
generate splits that results in similar the area for each bounding box. We estimate
the shape of the curve, and use the results to generate splits with approximately
equal area. We use this equal-area strategy as the default in AURA analysis,
however AURA supports all three strategies and allows other customized splits.

18 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

Table 1: Benchmark program details. Symbols used: B: Bernoulli, U : Real Uniform,
N : Normal, Nt: Truncated Normal, S: Logistic. Operators: +: mix of distributions, ×:
product of densities, α: number of priors/data. .

Program Prior Lik Description PC

human_height B × (Nt + Nt) N 3 Learning height with mixture prior [56] ✓mix
reg_logistic Nt S919 Linear regression with logistic likelihood [64] ✓LC

lightspeed U2 N 40 Linear regression [68] ✓PC
anova_radon_n U2 N 40 Hierarchical linear regression, non-predictive [68] ✓PC

reg_laplace U2 × Lt
2 N 919 Linear regression with Laplace priors [78] ✓LC

prior_mix B × (Nt + Nt) N 10 Model with mixture prior [34] ✓mix
IQStan U3 N 3 × N 3 Regression on 2 datasets w. shared variance [41] ✓PC

timeseries U3 N 99 Timeseries model [68] ✓LC
unemployment U3 N 40 Linear Regression [68] ✓PC

altermu2 U2 N 40 Model with param symmetry [34] ✓LC

robust_model† N 101 N 100 Robust model w. many local latent params. [71] ✓mix

† This benchmark is evaluated separately as it requires more splits.

9 Methodology

Benchmarks. We evaluated AURA on 11 benchmarks from existing literature
including both PL works and real world end-user scientific applications with
diverse program structure and distributions. We present the details of our se-
lected benchmarks in Table 1. The studies of these models presented actionable
insights to domain-experts across multiple communities (for discussion, see Ap-
pendix B). For each program, we manually verified its pseudoconcavity (the
details of checking in Appendix C).

Baselines. We initially selected GuBPI [5], the start-of-the art tool for obtaining
sound bounds on single posteriors and PSI [20], which leverages symbolic analysis
to determine the exact posterior. However, our initial experiments for certifying
bounds on single posteriors (without data perturbation) showed that: (1)
GuBPI results in unacceptable imprecision even for simpler programs we studied
here, is > 70x slower than AURA on CPU, exhibits numerical instability, and the
implementation does not support interval-valued data; (2) PSI can symbolically
analyze programs with symbolic data noise, but its integration scales only to
programs with a few observations. Hence, these tools cannot support computing
bounds for a set of posteriors, which is needed for verifying robustness of
complex probabilistic programs benchmarks we consider. This reason also rules
out works derived from those tools such as PSense [37] and [73]. Nevertheless,
to provide evidence for this choice we present a detailed comparison of AURA
with GuBPI and PSI for single posteriors in Appendix E.

As the baseline, we instead implemented interval-based abstract transformers
within AURA, akin to GuBPI’s interval abstraction, but we carefully enhanced
its numerical stability. Evaluating this interval analysis version on the bench-
marks achieves much higher precision than GuBPI.

Precision Metric. We define the lower pl and upper pu bound functions for
marginal posterior of the parameter x: pl(x) = l and pu(x) = u where [l, u] =

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 19

JP K♯n(x
♯
i , d

♯) for x ∈ γ(x♯
i). Total Variation Distance (TVD) measures the dis-

crepancy between the two bounds of a distribution: TVDx = 1
2

∫
|pl(x)−pu(x)| dx.

For multiple parameters, TVD is averaged across each: TVD = 1
M

∑M
j=1 TVDxj

.
Appendix D gives more detailed definitions of the metrics.
Setup for Adversarial Data Perturbation Analysis. We use AURA to
find bounds on posteriors obtainable after data perturbations. We use 200 splits
for the input domain. Perturbations involve 1-5 key data points per bench-
mark, identified by gradient magnitude ∂

∂dJP K(x, d). For datasets with <100
points, perturbations are capped at five points or 5% of the dataset. Pertur-
bation intervals are computed by modifying the original data by [0, 0.01σ] if
sign(∂

∂dJP K(x, d)) is positive or [−0.01σ, 0] if negative, where σ is the dataset’s
standard deviation. We adapt the adversarial data perturbation method from
the Fast Gradient Signed Method (FGSM) [25], a prevalent method in machine
learning, which is to add a small perturbation towards the direction increasing
the loss (cf. decreasing likelihood). AURA and the baseline are enhanced with
GPU acceleration and equal-area splits for efficiency.
Experimental Setup. We run AURA and all the other tools on a AMD 4.2
GHz machine with 32 cores and with 2 NVIDIA RTX A5000 GPUs.

10 Evaluation
We next describe the results that demonstrate AURA effectiveness and efficiency
to compute posteriors under data perturbation and verify probabilistic queries.

10.1 Posteriors under Data Perturbation

Precision of Bounds. We use AURA to find bounds for a set of posteriors
when subjected to data perturbation. Table 2 presents the precision (in TVD)
alongside the run time for both AURA and a baseline interval analysis. We run
both using a GPU (CPU shows the same time trend).

On average (geo-mean), AURA achieves a precision 12.8× better than that
of the interval analysis. We observed across all benchmarks that the data per-
turbation causing the maximum posterior error (TVD) almost never occurs at
the extremes of the data perturbation interval, indicating that the sound bounds
cannot be simulated just from data values at perturbation extremes.
Execution Time. AURA’s run time averages at 3.14s (geometric mean). The
increase in run time when compared to AURA analysing a single posterior with-
out perturbation is due to the additional complexity of high-dimensional op-
timization across both the parameters and the data dimensions subjected to
perturbation. Compared to the interval analysis, AURA has an additional cost
of iteratively evaluating the unnormalized posterior during gradient ascent.

10.2 Analysis Examples

Figures 11 and 12 illustrate the bounds computed by AURA for two example
models under data perturbation, compared with the results from the interval

20 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

Table 2: AURA and Interval Analysis Results for Data Perturbation
Program TVD Time (s)

AURA Interval AURA Interval
(GPU) (GPU)

human_height 0.04 0.09 (2.3×) 0.25 0.02
reg_logistic 0.05 8.13 (175.8×) 3.49 1.39
lightspeed 0.07 0.56 (8.2×) 0.19 0.04
anova_radon_n 0.07 0.57 (8.2×) 1.52 0.05
reg_laplace 0.07 6.28 (87.6×) 10.44 1.18
prior_mix 0.07 0.23 (3.2×) 0.27 0.03
IQStan 0.07 0.20 (2.7×) 15.67 0.14
timeseries 0.18 1.04 (5.7×) 335.16 5.37
unemployment 0.23 4.10 (18.1×) 131.76 0.82
altermu2 0.28 16.43 (58.2×) 0.19 0.06

GeoMean 0.09 1.17 (12.8×) 3.14 0.19

Fig. 11: lightspeed (param: σ) Fig. 12: unemployment (param:β1)

analysis and reference distributions generated via Stan sampling. To generate
the reference distributions, we simulated at least three concrete perturbations
for each perturbed data point and used Stan’s NUTS to collect 400,000 samples
for each concrete perturbation.

The plots show the parameter value on the x-axis against the posterior prob-
ability density on the y-axis, with red dots representing the sampled reference
distributions and blue and orange rectangles representing the bounds computed
by AURA and interval analysis, respectively. Consistent with the findings re-
ported in Table 2, AURA shows significantly tighter bounds than those from
interval analysis. Further, the AURA bounds are close to the envelope created
by observed samples (red dots), which give an under-approximation. This pre-
cision of AURA’s analysis stems from its optimization-based abstraction, which
is designed to find the narrowest bounds before normalization.

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 21

Table 3: Results for Queries under Data Perturbation (“ |” refers to the same
benchmark as in the previous row)

Program Query
Probability Bound

AURA Interval Improv.

human_height µ > 165 [0.93, 1.00] [0.85, 1.00] 2.1×
| 170 < µ < 172 [0.11, 0.13] [0.10, 0.14] 1.7×

reg_logistic β0 ≥ 1.35 ∨ β0 < 1.15 [0.05, 0.07] [0.00, 0.98] 63.6×
| β0 ≥ 1.25 [0.33, 0.40] [0.02, 1.00] 14.0×

lightspeed 20 ≤ β0 < 40 [0.88, 1.00] [0.47, 1.00] 4.4×
| β0 < 30 ∧ σ < 10 [0.42, 0.55] [0.21, 1.00] 6.1×

anova_radon_n 0.9 ≤ a0 ≤ 1 [0.28, 0.34] [0.14, 0.66] 7.6×
| σy ≤ 1 ∨ a0 > 1 [0.86, 1.00] [0.46, 1.00] 3.9×

reg_laplace 1.3 ≤ β1 ≤ 1.35 [0.27, 0.36] [0.02, 1.00] 11.5×
| β0 ≥ −0.5 [0.08, 0.11] [0.01, 1.00] 34.1×

prior_mix µ0 ≤ 0 [0.74, 0.97] [0.58, 1.00] 1.8×
| µ0 > −2 ∧ µ0 < 2 [0.08, 0.11] [0.06, 0.12] 1.4×

IQStan µ1 ≥ 85 ∨ µ2 ≥ 85 [0.87, 1.00] [0.71, 1.00] 2.2×
| 5 < σ < 10 ∧ µ1 > 95 ∧ µ2 > 95 [0.25, 0.32] [0.21, 0.38] 2.3×

timeseries α < −1 ∨ β < 1 ∧ lag < 0.8 [0.69, 1.00] [0.31, 1.00] 2.3×
| α > −0.5 ∧ lag > 0.5 [0.02, 0.04] [0.01, 0.09] 4.3×

unemployment σ < 1.2 ∧ β0 < 3 ∧ β1 < 0.7 [0.19, 0.41] [0.03, 1.00] 4.5×
| 0.95 < β1 < 1 [0.00, 0.01] [0.00, 0.04] 10.4×

altermu2 1 ≤ µ0 ≤ 1.1 [0.02, 0.04] [0.00, 0.84] 34.0×
| µ0 < 1.5 ∧ µ1 < 1.5 [0.47, 1.00] [0.02, 1.00] 1.9×

10.3 Queries under Data Perturbation

We demonstrate the use of AURA in evaluating the posterior probability of
specific events when the input dataset is subject to perturbations. Intuitively,
one provides a query, as described in Def. 6, and AURA then computes sound
bounds on the posterior probability of the event defined by the query, where
the probability bounds hold for any posterior that could result from the data
perturbation.

Table 3 illustrates the results and the computation time AURA used to bound
the posterior probability of each query. For each program amenable to data
perturbation (i.e. those with continuous data), we formulated two distinct queries
(shown in the Query column). The Probability columns show the bounds
computed by AURA and the interval analysis we implemented as the baseline.
The Improv. column shows the improvement by AURA, reflected in how many
times smaller AURA’s interval is compared to the results from interval analysis.

Across all programs with data perturbation, AURA’s bounds on the queries
are much more precise, being on geomean 5.35x narrower than the bounds from
interval arithmetic. The time for each query is almost identical to the time for
computing the posterior bounds under perturbation (geomean ∼ 3.1s).

22 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

Table 4: AURA Scalability to Large Numbers of Local Latents

#Local #Splits W.o. Perturbation W. Perturbation
Latents Time (s) TVD Time (s) TVD

20 1600 3.1 0.07 5.6 0.11
50 1600 7.7 0.19 14.4 0.33
50 5000 41.0 0.05 150.0 0.12

100 5000 82.1 0.11 303.9 0.26
100 10000 239.5 0.05 1017.4 0.16

10.4 Scaling to a Large Number of Local Latent Parameters

We evaluated the robust linear regression model in Figure 9 by varying the num-
ber of latent parameters and splits. AURA’s inference successfully scales to the
large number of local latents in such a model. Table 4 presents the results for the
model with up to 100 local latents/datapoints, with and without one datapoint
subject to perturbation. This model requires more fine-grained splitting than
our other benchmarks due to fine-grained integration of latents.

10.5 Ablation Studies

We performed several ablation studies of AURA’s algorithm, detailed in Ap-
pendix E.3 and [33] and summarized next. (1) Increasing the number of observed
data points to 5000 shows AURA’s time increases linearly with data size. (2)
AURA can extend computation across GPUs and obtian parallelization speeudp
on CPU depends primarily on the size of the GPU memory. (3) Floating point
imprecision vs double is small, with geomean errror ∼ 10−7 and double taking
only 10% more time on a GPU. (4) Increasing the number of splits increases the
precision of the result, but also increases run time; for our benchmarks 200 splits
(used in the evaluation) gives near-optimal point in this tradeoff space.

11 Related Work

Exact Probabilistic Programming Systems. Despite recent progress, exact
inference systems are limited for continuous distributions: e.g., many support
only discrete models (DICE [32]), only handle Sum-Product networks [62] or
cannot solve many complicated integrals (PSI [20], Hakaru [55]). Exact inference
also faces obstacles with scaling to large numbers of data observations.

Interval-Based Abstractions for Probabilistic Inference. Closest in spirit
to our work is GuBPI [5] which computes interval bounds on a single posterior.
While GuBPI supports recursion it is much less precise than AURA and cannot
scale to the datasizes AURA supports. Subsequent work [73] offered improve-
ments to GuBPI, however like GuBPI, [73] also restricts to analyzing bounds
for only a single posterior distribution. They do not study nor evaluate the
problem of certifying bounds for all possible posteriors obtainable from a data

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 23

perturbation; neither [5, 73] can be parallelized and thus suffer from scalabil-
ity concerns. Furthermore, while [7] studies Bayesian inference, in contrast to
AURA, their bounds are confidence-interval based and tailored to cumulative
distribution functions instead of probability density functions.

Several existing works study probabilistic abstract interpretations [11, 47]
but they do not consider Bayesian inference and lack observe statements and
distribution normalization, a limitation also present in other works [9, 44, 65].
Neither probability boxes [8, 16] nor Dempster-Shafer structures [16] can be
used in our setting since they do not have a mechanism to reason about Bayesian
inference. Additionally, [41, 51] compute heuristic bounds on likelihoods for fixed-
point size selection, but they lack the formal verification guarantees that AURA
provides and they do not study the data perturbation setting that AURA targets.
Sensitivity and Robustness Analysis of Probabilistic Programs. In ad-
dition, there are a few relevant works related to the sensitivity and robustness of
probabilistic programs. PSense [37] performs sensitivity analysis on probabilistic
programs but it builds directly on PSI [20] and thus inherits the same limita-
tions regarding scalability. PSense also needs to analytically compute another
integral characterizing the difference between the two normalized distributions
with noise variables.

Additionally, AquaSense [81] is a tool that directly builds on Aqua [34], which
provides only a weak asymptotic theorem that the computed distribution esti-
mate converges to the true distribution when the number of splits is infinite
(i.e., interval width tends to 0). Moreover, Aqua’s distribution estimate provides
a soundness guarantee only asymptotically – it has only a sound lower bound,
which is equivalent to AURA’s lower bound. In contrast, AURA provides both
the sound lower and upper bounds for a finite number of splits.
Optimization-Based Abstract Interpretation. Using continuous optimiza-
tion to perform abstract interpretation and sound bound computation has been
extensively studied [1, 18, 40, 52, 53, 54, 61, 63, 66, 72, 75]. However these works
target computations like DNNs [54, 66], security properties [63], automatic dif-
ferentiation [40], and non-probabilistic programs [1, 18, 53, 75]. Unlike AURA,
these applications do not typically obey the pseudoconcavity properties.

12 Conclusion
We presented AURA, a novel abstract interpretation of probabilistic programs
that can certify bounds on posterior distributions under data perturbations, By
designing custom, precise and scalable abstract transformers for probabilistic
programming using optimization, AURA represents a first step towards making
provably robust probabilistic programming a reality. We anticipate that AURA
also opens the door to obtaining certified robustness for general probabilistic
models (like Normalizing Flows and Probabilistic Circuits), and even abstracting
other (non-probabilistic) pseudoconcave functions.

Acknowledgments This research was supported in part by NSF Grants No.
CCF-1846354, CCF-2008883, and CCF-2313028.

Bibliography

[1] Adjé, A., Garoche, P.L., Werey, A.: Quadratic zonotopes: an extension of
zonotopes to quadratic arithmetics. In: Programming Languages and Sys-
tems: 13th Asian Symposium, APLAS 2015. pp. 127–145 (2015)

[2] Ahn, K., Jain, P., Ji, Z., Kale, S., Netrapalli, P., Shamir, G.I.: Reproducibil-
ity in optimization: Theoretical framework and limits. Advances in Neural
Information Processing Systems 35, 18022–18033 (2022)

[3] Bagnoli, M., Bergstrom, T.: Log-concave probability and its applications. In:
Rationality and Equilibrium: A Symposium in Honor of Marcel K. Richter.
pp. 217–241 (2006)

[4] Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.Y.: Proving expected
sensitivity of probabilistic programs. vol. 2 (2017)

[5] Beutner, R., Ong, C.H.L., Zaiser, F.: Guaranteed bounds for posterior in-
ference in universal probabilistic programming. In: Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language De-
sign and Implementation. pp. 536–551 (2022)

[6] Bherwani, H., Anjum, S., Kumar, S., Gautam, S., Gupta, A., Kumbhare,
H., Anshul, A., Kumar, R.: Understanding covid-19 transmission through
bayesian probabilistic modeling and gis-based voronoi approach: a policy
perspective. Environment, Development and Sustainability 23(4), 5846–
5864 (2021)

[7] Boreale, M., Collodi, L.: Bayesian parameter estimation with guarantees
via interval analysis and simulation. In: International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation (2023)

[8] Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generaliza-
tion of p-boxes to affine arithmetic. Computing 94, 189–201 (2012)

[9] Constantinides, G., Dahlqvist, F., Rakamarić, Z., Salvia, R.: Automated
roundoff error analysis of probabilistic floating-point computations. ACM
Trans. Probab. Mach. Learn. (2024)

[10] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
pp. 238–252. POPL ’77, ACM (1977)

[11] Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Program-
ming Languages and Systems, pp. 169–193 (2012)

[12] Cruz, J.B., Pérez, L.L.: Convergence of a projected gradient method variant
for quasiconvex objectives. Nonlinear Analysis: Theory, Methods & Appli-
cations 73(9), 2917–2922 (2010)

[13] Darir, H., Dullerud, G.E., Borisov, N.: Probflow: Using probabilistic pro-
gramming in anonymous communication networks. In: NDSS (2023)

[14] Dunn, J.C.: Global and asymptotic convergence rate estimates for a class of
projected gradient processes. SIAM Journal on Control and Optimization
19(3), 368–400 (1981)

AURA 25

[15] Fernando, V., Joshi, K., Laurel, J., Misailovic, S.: Diamont: Dynamic mon-
itoring of uncertainty for distributed asynchronous programs. In: 21st In-
ternational Conference on Runtime Verification, RV 2021. Springer (2021)

[16] Ferson, S., Kreinovich, V., Ginzburg, L., Sentz, F.: Constructing proba-
bility boxes and dempster-shafer structures. Tech. rep., Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States); Sandia (2003)

[17] Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic
netkat. In: Programming Languages and Systems: 25th European Sympo-
sium on Programming, ESOP 2016. pp. 282–309 (2016)

[18] Gawlitza, T.M., Seidl, H., Adjé, A., Gaubert, S., Goubault, É.: Abstract in-
terpretation meets convex optimization. Journal of Symbolic Computation
47(12), 1416–1446 (2012)

[19] Gehr, T., Misailovic, S., Tsankov, P., Vanbever, L., Wiesmann, P., Vechev,
M.: Bayonet: probabilistic inference for networks. In: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 586–602. ACM (2018)

[20] Gehr, T., Misailovic, S., Vechev, M.: PSI: Exact symbolic inference for prob-
abilistic programs. In: International Conference on Computer Aided Verifi-
cation (2016)

[21] Gelman, A., Lee, D., Guo, J.: Stan a probabilistic programming language for
bayesian inference and optimization. Journal of Educational and Behavioral
Statistics (2015)

[22] Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain tay-
lor1+. In: Computer Aided Verification: 21st International Conference, CAV
2009. pp. 627–633 (2009)

[23] Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zono-
tope intersection. In: Computer Aided Verification: 22nd International Con-
ference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings 22. pp.
212–226 (2010)

[24] Gloeckler, M., Deistler, M., Macke, J.H.: Adversarial robustness of amor-
tized bayesian inference. In: Proceedings of the 40th International Confer-
ence on Machine Learning. pp. 11493–11524 (2023)

[25] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572 (2014)

[26] Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic
programming. In: FoSE (2014)

[27] GuBPI – An Analyzer for Probabilistic Programs to Compute Guaranteed
Bounds on the Posterior (2022), https://github.com/gubpi-tool/gubpi

[28] Hazan, E., Levy, K., Shalev-Shwartz, S.: Beyond convexity: Stochastic
quasi-convex optimization. Advances in neural information processing sys-
tems 28 (2015)

[29] Heck, D.W., Thielmann, I., Moshagen, M., Hilbig, B.E.: Who lies? a large-
scale reanalysis linking basic personality traits to unethical decision making.
Judgment and Decision making 13(4), 356–371 (2018)

[30] Higgins, J.E., Polak, E.: Minimizing pseudoconvex functions on convex com-
pact sets. Journal of Optimization Theory and Applications 65(1), 1–27
(1990)

https://github.com/gubpi-tool/gubpi

26 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

[31] Hladík, M., Kolev, L.V., Skalna, I.: Linear interval parametric approach to
testing pseudoconvexity. Journal of Global Optimization 79, 351–368 (2021)

[32] Holtzen, S., Van den Broeck, G., Millstein, T.: Scaling exact inference for
discrete probabilistic programs. Proceedings of the ACM on Programming
Languages 4(OOPSLA), 1–31 (2020)

[33] Huang, Z.: Enhancing trustworthiness in probabilistic programming: sys-
tematic approaches for robust and accurate inference. Ph.D. thesis, Univer-
sity of Illinois at Urbana-Champaign (2024)

[34] Huang, Z., Dutta, S., Misailovic, S.: Aqua: Automated quantized infer-
ence for probabilistic programs. In: International Symposium on Automated
Technology for Verification and Analysis (2021)

[35] Huang, Z., Dutta, S., Misailovic, S.: Astra: understanding the practical im-
pact of robustness for probabilistic programs. In: Uncertainty in Artificial
Intelligence. pp. 900–910. PMLR (2023)

[36] Huang, z., Laurel, J., Dutta, S., Misailovic, S.: Appendix for aura: Precise
abstract interpretation of probabilistic programs with interval uncertainty
(2025), https://github.com/uiuc-arc/AURA/AURAappendix.pdf

[37] Huang, Z., Wang, Z., Misailovic, S.: Psense: Automatic sensitivity analysis
for probabilistic programs. In: 16th International Symposium on Automated
Technology for Verification and Analysis. ATVA (2018)

[38] Kučera, M., Tsankov, P., Gehr, T., Guarnieri, M., Vechev, M.: Synthe-
sis of probabilistic privacy enforcement. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 391–
408 (2017)

[39] Laurel, J., Misailovic, S.: Continualization of probabilistic programs with
correction. In: European Symposium on Programming. pp. 366–393 (2020)

[40] Laurel, J., Qian, S.B., Singh, G., Misailovic, S.: Synthesizing precise static
analyzers for automatic differentiation. Proceedings of the ACM on Pro-
gramming Languages 7(OOPSLA2) (2023)

[41] Laurel, J., Yang, R., Sehgal, A., Ugare, S., Misailovic, S.: Statheros:
Compiler for efficient low-precision probabilistic programming. In: 58th
ACM/IEEE Design Automation Conference (DAC). IEEE (2021)

[42] Laurel, J., Yang, R., Singh, G., Misailovic, S.: A dual number abstraction for
static analysis of clarke jacobians. Proceedings of the ACM on Programming
Languages 6(POPL), 1–30 (2022)

[43] Laurel, J., Yang, R., Ugare, S., Nagel, R., Singh, G., Misailovic, S.: A general
construction for abstract interpretation of higher-order automatic differenti-
ation. Proceedings of the ACM on Programming Languages 6(OOPSLA2),
1007–1035 (2022)

[44] Lohar, D., Prokop, M., Darulova, E.: Sound probabilistic numerical error
analysis. In: International Conference on Integrated Formal Methods. pp.
322–340. Springer (2019)

[45] Majthay, A., Whinston, A.: Quasi-concave minimization subject to linear
constraints. Discrete Mathematics 9(1), 35–59 (1974)

[46] Mangasarian, O.L.: Pseudo-convex functions. In: Stochastic optimization
models in finance, pp. 23–32. Elsevier (1975)

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845
https://github.com/uiuc-arc/AURA/AURAappendix.pdf

AURA 27

[47] Mardziel, P., Magill, S., Hicks, M., Srivatsa, M.: Dynamic enforcement of
knowledge-based security policies using probabilistic abstract interpreta-
tion. Journal of Computer Security 21(4), 463–532 (2013)

[48] Wikipedia: Mean absolute error (2023), https://en.wikipedia.org/
wiki/Mean_absolute_error

[49] Miné, A.: Relational abstract domains for the detection of floating-point
run-time errors. In: European Symposium on Programming. pp. 3–17 (2004)

[50] Miné, A., et al.: Tutorial on static inference of numeric invariants by abstract
interpretation. Foundations and Trends in Prog. Lang. 4(3-4) (2017)

[51] Misra, A., Laurel, J., Misailovic, S.: Vix: analysis-driven compiler for ef-
ficient low-precision variational inference. In: 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE). pp. 1–6. IEEE (2023)

[52] Monniaux, D.: On using floating-point computations to help an exact linear
arithmetic decision procedure. In: International Conference on Computer
Aided Verification. pp. 570–583 (2009)

[53] Monniaux, D.P.: Automatic modular abstractions for linear constraints.
SIGPLAN Not. p. 140–151 (Jan 2009)

[54] Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: Prima:
General and precise neural network certification via scalable convex hull
approximations. Proc. ACM Program. Lang. 6(POPL) (2022)

[55] Narayanan, P., Carette, J., Romano, W., Shan, C.c., Zinkov, R.: Probabilis-
tic inference by program transformation in hakaru (system description). In:
FLOPS 2016 (2016)

[56] Oberski, D.: Mixture models: Latent profile and latent class analysis. Mod-
ern statistical methods for HCI pp. 275–287 (2016)

[57] Owhadi, H., Scovel, C., Sullivan, T.: On the brittleness of bayesian inference.
SIAM REVIEW 57(4), 566–582 (2015)

[58] Pardo, R., Rafnsson, W., Probst, C.W., Wąsowski, A.: Privug: using prob-
abilistic programming for quantifying leakage in privacy risk analysis. In:
European Symposium on Research in Computer Security (2021)

[59] PSI Solver (2019), https://github.com/eth-sri/psi/tree/
e729dd7d68e23a4a75731b4bb800c95111a7a30b

[60] Roberts, G.O., Rosenthal, J.S.: General state space markov chains and
mcmc algorithms. Probability surveys 1, 20–71 (2004)

[61] Rustenholz, L., López-García, P., Morales, J.F., Hermenegildo, M.V.: An
order theory framework of recurrence equations for static cost analysis–
dynamic inference of non-linear inequality invariants. In: International
Static Analysis Symposium. pp. 352–385 (2024)

[62] Saad, F.A., Rinard, M.C., Mansinghka, V.K.: Sppl: probabilistic program-
ming with fast exact symbolic inference. In: PLDI (2021)

[63] Saha, S., Ghentiyala, S., Lu, S., Bang, L., Bultan, T.: Obtaining information
leakage bounds via approximate model counting. Proceedings of the ACM
on Programming Languages 7(PLDI), 1488–1509 (2023)

[64] Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: Pixelcnn++: Improv-
ing the pixelcnn with discretized logistic mixture likelihood and other mod-
ifications. arXiv preprint arXiv:1701.05517 (2017)

https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Mean_absolute_error
https://github.com/eth-sri/psi/tree/e729dd7d68e23a4a75731b4bb800c95111a7a30b
https://github.com/eth-sri/psi/tree/e729dd7d68e23a4a75731b4bb800c95111a7a30b

28 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

[65] Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for prob-
abilistic programs: Inferring whole program properties from finitely many
paths pp. 447–458 (2013)

[66] Singh, G., Laurel, J., Misailovic, S., Banerjee, D., Singh, A., Xu, C., Ugare,
S., Zhang, H.: Safety and trust in artificial intelligence with abstract inter-
pretation. Foundations and Trends in Prog. Lang. 8(3-4) (2025)

[67] Smolka, S., Kumar, P., Kahn, D.M., Foster, N., Hsu, J., Kozen, D., Silva,
A.: Scalable verification of probabilistic networks. In: PLDI (2019)

[68] Stan Examples (2018), https://github.com/stan-dev/example-models
[69] Sweet, I., Trilla, J.M.C., Scherrer, C., Hicks, M., Magill, S.: What’s the

over/under? probabilistic bounds on information leakage. In: International
Conference on Principles of Security and Trust (2018)

[70] Thall, P.F., Ursino, M., Baudouin, V., Alberti, C., Zohar, S.: Bayesian treat-
ment comparison using parametric mixture priors computed from elicited
histograms. Statistical methods in medical research 28(2), 404–418 (2019)

[71] Wang, C., Blei, D.M.: A general method for robust bayesian modeling.
Bayesian Analysis 13(4), 1159–1187 (2018)

[72] Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative
analysis of assertion violations in probabilistic programs. In: Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (2021)

[73] Wang, P., Yang, T., Fu, H., Li, G., Ong, C.H.L.: Static posterior inference
of bayesian probabilistic programming via polynomial solving. Proceedings
of the ACM on Programming Languages (PLDI) (2024)

[74] Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.:
Beta-crown: Efficient bound propagation with per-neuron split constraints
for neural network robustness verification. Advances in Neural Information
Processing Systems 34, 29909–29921 (2021)

[75] Wang, T., Chen, L., Chen, T., Fan, G., Wang, J.: Making rigorous linear
programming practical for program analysis. In: 27th International Confer-
ence on Principles and Practice of Constraint Programming (2021)

[76] Wang, Y., Kucukelbir, A., Blei, D.M.: Robust probabilistic modeling with
bayesian data reweighting. In: Proceedings of the 34th International Con-
ference on Machine Learning. pp. 3646–3655. ICML’17 (2017)

[77] Wicker, M., Laurenti, L., Patane, A., Chen, Z., Zhang, Z., Kwiatkowska, M.:
Bayesian inference with certifiable adversarial robustness. In: International
Conference on Artificial Intelligence and Statistics. PMLR (2021)

[78] Williams, P.M.: Bayesian regularization and pruning using a laplace prior.
Neural computation 7(1), 117–143 (1995)

[79] XMP Library (2016), https://github.com/NVlabs/xmp/tree/master
[80] Yang, R., Laurel, J., Misailovic, S., Singh, G.: Provable defense against

geometric transformations. In: 11th International Conference on Learning
Representations (2023)

[81] Zhou, Z., Huang, Z., Misailovic, S.: Aquasense: Automated sensitivity analy-
sis of probabilistic programs via quantized inference. In: International Sym-
posium on Automated Technology for Verification and Analysis. pp. 288–
301 (2023)

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845
https://github.com/stan-dev/example-models
https://github.com/NVlabs/xmp/tree/master

AURA 29

Appendix
A AURA Extensions Beyond Pseudoconcavity:

Compositionality and Interval Abstract Domain

A.1 Supporting Branch Statements and Mixture Models.

While pseudoconcave likelihoods lead to precise and tractable gradient-based
abstract interpretation, the question arises of how to support posteriors that are
not pseudoconcave. This scenario is encountered in popular mixture distribu-
tions that result from the branching primitive, if flip(p) P1 else P2, in our
language.

We will show that AURA still supports mixture distributions that contain
such branches which can cause the likelihoods to no longer be pseudoconcave.
The key technical insight is that even if the entire posterior is multi-modal
and thus not pseudoconcave, each component when viewed in isolation could
be pseudoconcave. Thus by applying AURA’s abstract interpreter, J·K♯, to each
component (which will be pseudoconcave) and then combining the results with
standard interval arithmetic, we can still obtain sound posterior bounds. Indeed,
we recall from Fig. 8 that:

Jif flip(p) P1 else P2K(x, d) = p · JP1K(x, d) + (1− p) · JP2K(x, d) (8)

Thus for this primitive, we will define the unnormalized abstract semantics as:

Jif flip(p) P1 else P2K♯(x♯, d♯) = p·♯ JP1K♯(x♯, d♯)+♯ (1−p)·♯ JP2K♯(x♯, d♯) (9)

Hence by applying the abstract interpreter to P1 and P2, each of which will
be pseudoconcave, the computation of JP1K♯(x♯, d♯) and JP2K♯(x♯, d♯) can use
AURA’s gradient based optimization to obtain tight bounds. Given the sound-
ness of interval addition +♯ and multiplication ·♯, we obtain:

Lemma 2. When P1 and P2 are pseudoconcave, based on Theorem 1, the preser-
vation of soundness by interval addition and interval multiplication, AURA’s
abstraction for a branching program is sound:

{Jif flip(p) P1 else P2K(x, d) : x ∈ γ(x♯), d ∈ γ(d♯)} ⊆ γ(Jif flip(p) P1 else P2K♯(x♯, d♯))

Once we have these sound bounds on the unnormalized posterior, we can
pass them as input to the abstract integration, and thus bound the normalized
posterior for programs with branches.

Lemma 3. Under data perturbation, the soundness Theorem 2, still holds for a
program P that consists of a mixture of pseudoconcave branches .

{Jif flip(p) P1 else P2Kn(x, d) : x ∈ γ(x♯), d ∈ γ(d♯)} ⊆ γ(Jif flip(p) P1 else P2K♯n(x
♯, d♯))

30 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

A.2 Pseudoconcave Subexpressions when Programs are not
Pseudoconcave.

Beyond using interval arithmetic for the addition and multiplication operations
in Eq. 9, since AURA uses the interval domain, we can fallback to interval
arithmetic for any of the subexpressions in Fig. 8. Indeed, the baseline uses a
standard interval abstract interpretation for all expressions. Thus, even if the
program P lacks a pseudoconcave posterior, we can compute optimized bounds
on the largest subexpressions which are pseudoconcave, and then use standard
interval arithmetic for the rest. Hence Sections 6.1 and 6.2 provide sound in-
terval domain abstract transformers for any pseudoconcave function, including
subexpressions within P . We state this property in Theorem 6:

Theorem 6. Let M be a prior subexpression in program P . If JMK(x, d) is a
pseudoconcave function and if the lower bounds are computed as in Section 6.1
and upper bounds computed as in Section 6.2, then the following bounds are
sound

JMK♯(x♯, d♯) = [l, u] where l = min
x∈γ(x♯)

min
d∈γ(d♯)

JMK(x, d) u = max
x∈γ(x♯)

max
d∈γ(d♯)

JMK(x, d)

Similarly let D be an observation subexpression in program P . If JDK(x, d) is
pseudoconcave, then the bounds computed as in Sections 6.1 and 6.2 are sound:

JDK♯(x♯, d♯) = [l, u] where l = min
x∈γ(x♯)

min
d∈γ(d♯)

JDK(x, d) u = max
x∈γ(x♯)

max
d∈γ(d♯)

JDK(x, d)

The soundness of the lower bounds for these subexpressions follows iden-
tically to Theorem 3 and for upper bounds identically to Theorem 4. We can
now define JMK♯best and JDK♯best as abstract transformers that use the optimized
bounds of Theorem 6 for the entire subexpression M or D if it is pseudoconcave,
otherwise they will default to recursively evaluating the subexpression in interval
arithmetic IR for subexpressions which are not pseudoconcave.

JMK♯best(x
♯, d♯) =

JMK♯IR JMK(x, d) is not pseudoconcave

JMK♯ JMK(x, d) is pseudoconcave

where JMK♯IR evaluates JMK using standard interval arithmetic.

JDK♯best(x
♯, d♯) =

JDK♯IR JDK(x, d) is not pseudoconcave

JDK♯ JDK(x, d) is pseudoconcave

where similarly, JDK♯IR evaluates JDK using standard interval arithmetic.
In light of this definition, we can now reformalize AURA’s abstract inter-

preter (for unnormalized semantics) to use the optimized bounds for pseudocon-
cave sub-expressions, even when the full program’s expression JP K(x, d) is not
pseudoconcave. The interval results of the sub-expressions can then be combined

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 31

JP K♯(x, d) = JM ;DK♯(x♯, d♯) JM ;DK♯(x♯, d♯) = JMK♯best(x
♯) ·♯ JDK♯best(x

♯, d♯)

JD;DK♯(x♯, d♯) = JDK♯best(x
♯, d♯) ·♯ (JDK♯best(x

♯, d♯)) JM ;MK♯(x♯) = JMK♯best(x
♯) ·♯ JMK♯best(x

♯)

Fig. 13: Reformalization of AURA’s unnormalized abstract semantics for pro-
grams which are not completely pseudoconcave

using interval arithmetic, particularly interval multiplication ·♯. This reformal-
ization is shown in Fig. 13.
Thus AURA supports a compositional analysis even when the full program P
is not pseudoconcave. Indeed, a key benefit of our abstract interpretation-based
approach is that it allows us to compose our precise, optimized bounds (for
subexpressions that are pseudoconcave), with standard interval arithmetic (for
subexpressions that are not pseudoconcave).

Theorem 7. (Soundness) The unnormalized posterior bounds computed in Fig.
13 are sound.

This soundness follows because compositions of sound abstract transformers are
still sound [50].

Example 1. Let P ≡ M ;D, as in Fig. 6 where M and D are arbitrary subex-
pressions. To bound JP K(x, d) we bound JM ;DK(x, d). However when JMK(x, d)
is pseudoconcave but JDK(x, d) is not, we compute JMK♯(x♯, d♯) ·♯ JDKIR(x♯, d♯)
where JMK♯(x♯, d♯) uses the bounds of Theorem 6 and JDKIR(x♯, d♯) is the stan-
dard interval arithmetic abstraction and ·♯ is interval multiplication.

A.3 Scaling to High-Dimensional Latents

1 d = [1.3, 2.1, ...] #n data points
2 u ~ normal(...)

#global latent variable
3 for i in range(n):
4 vi ~ normal(u,1)

#local latent variables
5 observe(d[i], normal(vi,1))

Fig. 14: Robust Model with n + 1 La-
tent Parameters

Prior work has shown that models with
more local latent parameters, (meaning
a large latent variable dimension) can
be more robust. For example, as sum-
marized in [71, 76] a common technique
for writing robust models is to add a
large number of local latent parame-
ters i.e., each observation depends on
a fresh latent variable. Thus, the ques-
tion of scalability to large numbers of
latent variables arises. Despite the chal-
lenges introduced by a large latent pa-
rameter dimension, AURA uses a tech-
nique shown below to scale linearly with increasing number of latent parameters.

Figure 14 gives an example model capturing this common pattern. Line 5
encodes that each datapoint has its own i.i.d latent vi, hence why there are n+1
latent variables. In light of this pattern, we let u represent the global latent and vi
represent the local latents. Thus the latent parameter vector is x = (u, v1, ..., vn)
which means that naively, we would solve O(n)-dimensional optimization and

32 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

integration problems. However, AURA reduces these problems to n easy O(1)-
dimensional subproblems (full proof in Appendix A.3 below). Models with this
pattern have the concrete semantics:

JP K(x, d) = JMK(x, d) ·
n∏

i=1

Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K(x, d)dvi,

Noting that because each d[i] only depends on the corresponding vi and JMK
is only a function of u, we can simplify as

JP K(x, d) = JMK(u, d) ·
n∏

i=1

Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K((u, vi), d[i])dvi,

Efficient Optimization. AURA splits the expression as above and takes
the logarithm to obtain:

JP K♯log(x
♯, d♯) = JMK♯log(u

♯, d♯)+♯
n∑

i=1

♯

Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K
♯
log((u

♯, v♯i), d[i]
♯)

Bounding JMK♯log(u
♯, d♯) does not depend on d♯, thus the issue of d♯ having

large dimension n due to the n latents is circumvented. Each Jvi ∼ dist1(u); d[i] ∼
dist2(vi)K

♯
log((u

♯, v♯i), d[i]
♯) summand can also be abstractly interpreted using d[i]♯

instead of d♯, since each only depends on the ith entry of d♯. Thus the dimension
of each optimization problem needed to bound Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K

♯
log

is 3 instead of the original 2n + 1. Hence we can reduce the dimension of the
optimization problems from O(n) to O(1).

Efficient Integration We further leverage this insight to perform the in-
tegration for the normalizing constant C (full proof in Appendix A.3 below).
We use the fact that for functions defined over disjoint variables s and t, then∫
s

∫
t
f(s) · g(t) dsdt =

∫
s
f(s)ds ·

∫
t
g(t)dt. The normalizing constant C is:

C =

∫
u

du

∫
v1

dv1...

∫
vn

dvnJP K(x, d)

=

n∏
i=1

∫
u

∫
vi

JMK(u, d) · Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K((u, vi), d[i])dudvi,

Which we can then over approximate using the abstract integration (Def. 4).

C ∈
n∏

i=1

♯∫
u

♯∫
vi

♯

JMK♯(u♯, d♯) · Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K♯((u♯, v♯i), d[i]
♯)dudvi,

Hence we (abstractly) compute n easy O(1)-dimensional integrals instead
of a challenging n + 1 dimensional integral. Thus AURA bypasses the curse of
dimensionality for this pattern.

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 33

Derivations for Scalability to Large Numbers of Latent Variables Ef-
ficient Optimization. In abstract domain instead of abstractly evaluating the
entire expression as AURA normally would (for lower dimensional problems),
we could split this expression up as:

JP K♯(x♯, d♯) = JMK♯(u♯, d♯) ·♯
n∏

i=0

♯

Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K♯((u♯, v♯i), d[i]
♯)

and then take the logarithm:

JP K♯log(x
♯, d♯) = JMK♯log(u

♯, d♯)+♯
n∑

i=0

♯

Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K
♯
log((u

♯, v♯i), d[i]
♯)

Bounding JMK♯log(u
♯, d♯) does not actually depend on d♯, thus the issue of

d♯ having high dimension due to the large number of latents is circumvented.
Similarly each Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K

♯
log((u

♯, v♯i), d[i]
♯) summand can be

abstractly interpreted using d[i]♯ instead of d♯, since each one only depends on
the ith entry of d♯. Thus the dimension of each optimization problem needed
to bound Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K

♯
log is 3 instead of the original 2n + 1.

The resulting bounds of these intermediate subexpressions are recombined using
interval arithmetic like in Fig. 13. Hence by splitting the expression this way and
calling AURA on the sub-expressions, we can effectively reduce the dimension of
the optimization problems to enable scalability to probabilistic programs with
large numbers of latent variables and observations.
Efficient Integration We use this insight further when we have to perform
the integration for the normalizing constant C. We leverage the fact that for
functions defined over disjoint variables s and t, then

∫
s

∫
t
f(s) · g(t) =

∫
s
f(s) ·∫

t
g(t). The normalizing constant C is:

C =

∫
u

du

∫
v1

dv1...

∫
vn

dvnJP K(x, d)

=

∫
u

du

∫
v1

...

∫
vn

JMK(u, d) ·
n∏

i=0

Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K((u, vi), d[i])dvi,

=

∫
u

JMK(u, d)du ·
∫
v1

...

∫
vn

n∏
i=0

Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K((u, vi), d[i])dvi,

=

∫
u

JMK(u, d)du ·
n∏

i=1

∫
vi

Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K((u, vi), d[i])dvi,

34 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

=

n∏
i=1

∫
u

JMK(u, d)du ·
∫
vi

Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K((u, vi), d[i])dvi,

=

n∏
i=1

∫
u

∫
vi

JMK(u, d) · Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K((u, vi), d[i])dudvi,

Which we can then over approximate using the abstract integration (Def. 4).

C ∈
n∏

i=1

♯∫
u

♯∫
vi

♯

JMK♯(u♯, d♯) · Jvi ∼ dist1(u); d[i] ∼ dist2(vi)K♯((u♯, v♯i), d[i]
♯)dudvi,

Hence we only have to (abstractly) compute n two-dimensional integrals
instead of a complicated n+ 1 dimensional integral.

A.4 Nested Inference with AURA

AURA’s normalized posterior bounds could be consumed by another tool (or
interval analysis) to give certified bounds on nested inference posteriors. For
simplicity, we assume no data perturbation, however everything follows identi-
cally in the case of data perturbations.

1

2 d = 1.8 # data point (outer inference)
3 m ~ { #posterior of inner is prior of outer inference
4 d = 1.3 # data point (inner inference)
5 m ~ uniform(0,1) #prior
6 observe(d, normal(m,1))
7 return m
8 }
9

10 observe(d, normal(m,1))

Fig. 15: Nested Inference Model

Here we will denote Pin as the inner inference program:

d = 1.3; m ∼ uniform(0,1); observe(d, normal(m,1)); return m;

The unnormalized semantics of the inner posterior are:

JPinK(m, d = 1.3) = funiform(m; 0, 1)·fnormal(1.3;m, 1) = funiform(m; 0, 1)· 1√
2π

e−
(1.3−m)2

2

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 35

AURA can easily handle this inner posterior to compute sound (unnormal-
ized) bounds JPinK♯(m, 1.3) which can then be (abstractly) integrated (as in Def.
4) to obtain the normalized posterior bounds JPinK♯n(m, 1.3).

Here we will denote Pout as the outer inference program:

d = 1.8; m ∼ JPinKn(m, 1.3) ; observe(d, normal(m,1)); return m;

The unnormalized semantics of the outer posterior distribution are:

JPoutK(m, d = 1.8) = JPinKn(m, 1.3)·fnormal(1.8;m, 1) = JPinKn(m, 1.3)· 1√
2π

e−
(1.8−m)2

2

Which follows from the fact that for the outer inference problem, the prior
distribution over m is the posterior distribution from the inner inference problem
which is JPinKn(m, 1.3).

While in general we do know the exact form of JPinKn(m, 1.3), we have
AURA’s bounds JPinK♯n, which can then be used to compute bounds JPoutK♯
and ultimately bounds on JPoutK♯n. For instance one can compute the normal
distribution’s expressions in interval arithmetic to obtain the following sound
abstraction:

JPoutK♯([ml,mu], d = 1.8) = JPinK♯n([ml,mu], 1.3) ·♯
[1, 1]

[
√
2π,

√
2π]

[e−u, e−l]

where [l, u] = − ([1.8,1.8]−[ml,mu])
2

[2,2] . These bounds, JPoutK♯, can then be integrated
over the support of m (which is 0 to 1) using the abstract integration of Def. 4
to give:

JPoutK♯n([ml,mu], 1.8) =
JPoutK♯([ml,mu], 1.8)∫ ♯JPoutK♯(m♯, 1.8)

Thus for m ∈ [ml,mu], by our soundness result (Theorem 2) we know that:

JPoutKn(m, 1.8) ∈ JPoutK♯n([ml,mu], 1.8).

Hence, AURA’s bounds can be consumed by a separate analysis (such as an inter-
val arithmetic analysis) for the purpose of computing nested inference bounds.

36 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

B Full Probabilistic Benchmark Set

Table 5: Benchmark program details. Symbols used: B: Bernoulli, Blog: Bernoulli-Logit,
Bpro: Bernoulli-Probit, U : Real Uniform, N : Normal, β: Beta, L: Laplace, S: Logistic.
Operators: +: mix of distributions, ×: product of densities. E.g., human_height’s Prior
is B × (Nt +Nt): a mixture of truncated normal distributions chosen from a Bernoulli
distribution; likelihoods (Lik) are N 3: three observations from normal distribution.
In PC column, ✓PC shows Pseudoconcavity, ✓LC shows Log-Concavity, ✓mix for a
mixture of Pseudoconcave functions.

Program Prior Lik Description PC

exponential Exponentialt N/A An Exponential distribution ✓LC
gamma Gammat N/A A Gamma distribution ✓LC

gaussian Nt N/A A Normal distribution ✓LC
coinBias β B5 Bias of coin using Beta-Bernoulli model [5] ✓LC

human_height B × (Nt + Nt) N 3 Learning height with mixture prior [56] ✓mix
clinicalTrial B × (β + β) B10

log Logistic regression with mixed prior [70] ✓mix

altermu2 U2 N 40 Model with param symmetry [34] ✓LC
personality St Blog

1000 Logistic regression for cheating study [29] ✓LC
reg_logistic Nt S919 Linear regression with logistic likelihood [64] ✓LC

privacy N 2
t N Regression estimates age from group mean [58] ✓LC

logistic U2 B100
log Logistic regression [68] ✓LC

lightspeed U2 N 40 Linear regression [68] ✓PC
anova_radon_n U2 N 40 Hierarchical linear regression, non-predictive [68] ✓PC

IQStan U3 N 3 × N 3 Regression on two datasets with shared variance [41] ✓PC
reg_laplace U2 × Lt

2 N 919 Linear regression with Laplace priors [78] ✓LC
prior_mix B × (Nt + Nt) N 10 Model with mixture prior [34] ✓mix

wells_probit U2 Bpro
500 Logistic model w. probit activation [68] ✓LC

timeseries U3 N 99 Timeseries model [68] ✓LC
unemployment U3 N 40 Linear Regression [68] ✓PC
robust_model† N 101 N 100 Robust model with many local latent parameters [71] ✓mix

Table 5 presents the extended set of benchmarks. In addition to the bench-
marks we studied in the main paper, it contains several other benchmarks that
help us test alternative tools that compute posterior distributions. The stud-
ies of these models presented actionable insights to domain-experts in multiple
communities:

– personality model and data come from a large-scale analysis performed by
social scientists involving over 1000 data observations on students cheating
on tests. That study has been cited over 130 times (GoogleScholar).

– anova_radon_n models the distribution of the level of radon gas found in
homes across different counties based on real data collected by environ-
mental scientists (details: https://mc-stan.org/users/documentation/
case-studies/radon_cmdstanpy_plotnine.html).

– wells_probit model comes from a study that makes decisions about whether
to change their source of drinking water for households in Bangladesh. The
original study http://www.stat.columbia.edu/~gelman/research/published/
risk.pdf was cited over 30 times.

– unemployment comes from a statistical study that aimed to precisely esti-
mate the employment trends in US from the census data (the original study
https://www.jstor.org/stable/2669921 cited over 100 times).

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845
https://mc-stan.org/users/documentation/case-studies/radon_cmdstanpy_plotnine.html
https://mc-stan.org/users/documentation/case-studies/radon_cmdstanpy_plotnine.html
http://www.stat.columbia.edu/~gelman/research/published/risk.pdf
http://www.stat.columbia.edu/~gelman/research/published/risk.pdf
https://www.jstor.org/stable/2669921

AURA 37

In addition to those above, our additional benchmarks come from the Stan de-
velopers repository [62], which in turn took those benchmarks from various real-
world statistics applications described in “Data Analysis Using Regression and
Multilevel/Hierarchical Models” book by Gelman and Hill. Finally, several of
our benchmarks present models known to challenge probabilistic inference (e.g.,
altermu2) and/or are difficult for tools that do inference with guarantees.

C Pseudo-Concavity of Unnormalized Posteriors for
Benchmarks

In this section, we prove the pseudo-concavity of all our benchmarks from Ap-
pendix B. Namely, for each benchmark P , the function JP K(x, d) is pseudo-
concave with respect to their parameters and data. Users of AURA can apply
the same conclusions or adopt the general proof strategy if their programs are
similar to ours.

Our benchmarks are categorized into four distinct classes:

1. Benchmarks named “exponential”, “gamma”, and “gaussian” correspond to
individual distributions. Their pseudo-concavity is given in Lemma 4, with
details in Table 6.

2. Benchmarks such as “lightspeed”, “anova_radon_n”, “IQStan”, and “unem-
ployment” have a linear regression model structure. The pseudo-concavity of
these benchmarks is established by Theorem 8.

3. Benchmarks “personality”, “reg_logistic”, “privacy”, “logistic”, “reg_laplace”,
“altermu2”, “wells_probit”, and “timeseries” are log-concave. Their log-concavity
is established in Theorem 9, result from their composition of individual log-
concave functions, which is rigorously proven using structural induction.

4. Benchmarks such as “human_height”, “clinicalTrial”, and “prior_mix” are
composed of mixture models. The unnormalized posterior of these models
is a summation of pseudo-concave functions. The pseudo-concavity of each
component is given by one of the first three points.

Table 6 shows the details of log-concavity (LC) and pseudo-concavity (PC)
of each distribution with respect to their parameters or data.

We first outline several essential lemmas that underpin the subsequent proof
and formulation of the theorems:

Lemma 4. (Log-Concavity and Pseudoconcavity of the Individual Distributions
in Table 6) The Log-Concavity and Pseudoconcavity properties of the individual
distributions (normal, uniform, beta, bernoulli, bernoulli-logit, bernoulli-probit,
laplace, logistic, gamma, exponential) shown in Table 6 are well-known facts, as
summarised in [3].

Lemma 5. (Product of Log-Concave Functions) Let fi(xi) be a set of func-
tions where each fi is log-concave, then g(x1, ..., xn) =

∏
i fi(xi) is LC w.r.t

x1, . . . , xN .

38 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

Table 6: Log-Concavity and Pseudo-Concavity of Individual Distributions and
Likelihoods. P denotes the power set. For example, pnormal(x, µ, σ) is LC w.r.t
µ and x when both of them are variables, or w.r.t µ when x being constant, or
w.r.t x with µ being constant.
Distribution Log-Concavity (LC) w.r.t Pseudo-Concavity (PC) w.r.t∏

i pnormal(xi|µ, σ) P({x1, ..., xN , µ}) P({x1, ..., xN , µ, σ})
pnormal(x|µ, σ) P({x, µ}) P({x, µ, σ})
puniform(x|a, b) x x
pbeta(x|α, β) x if α ≥ 1 ∧ β ≥ 1 x if α ≥ 1 ∨ β ≥ 1
pbernoulli(x|p) p p
pbernoulli-logit(x|θ) θ θ
pbernoulli-probit(x|θ) θ θ
plaplace(x|µ, b) P({x, µ}) P({x, µ, b})
plogistic(x|µ, s) P({x, µ}) P({x, µ, s})
pgamma(x|k, θ) x if k ≥ 1 x for any k
pexponential(x|λ) x x

Lemma 6. (Product of Pseudoconcave Functions) Let fi(xi) be a set of func-
tions where each fi is log-concave, then g(x1, ..., xn) =

∏
i fi(xi) is also pseudo-

concave w.r.t x1, . . . , xN .

Lemma 7. (Composition of a Log-Concave function with a linear function) If
f(x) : Rm → R is Log-Concave and A ∈ Rm×n, then g(y) : Rn → R defined by
f(A(y)) is Log-Concave.

Lemma 8. (Composition of a Quasiconcave function with a linear function) If
f(x) : Rm → R is Quasiconcave and A ∈ Rm×n, then g(y) : Rn → R defined by
f(A(y)) is Quasiconcave.

Lemma 9. (Composition of a Pseudoconvex function with a monotonic func-
tion) Let f(x) : Rm → R be Pseudoconvex, then for any non-decreasing function
g : R → R, then g(f(x)) is Pseudoconvex. Similarly is f is pseudoconcave, then
g(f(x)) is pseudoconcave

Lemma 10. Let f(x) : Rm → R be Quasiconvex, then if ∇f ̸= 0, then f is
Pseudoconvex. Likewise if f is quasiconcave and ∇f ̸= 0, then f is Pseudocon-
cave.

Lemma 11. Let α : R2 → R be defined as α(σ, c) = sqrt(−2σ2(ln(σn(
√
2π)n))).

α is concave with respect to σ for σ > 0, n ∈ N+, and 0 < c < 1
(
√
2πσ)n

.

Proof. The second derivative of α(σ, c) is

α′′(σ, c) =
−nσ2(n− 2ln(c · (

√
2πσ)n))

2
√
2(−σ2 · ln(c · (

√
2πσ)n))

3
2

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 39

But the numerator is strictly negative while the denominator is strictly pos-
itive, hence

α′′(σ, c) < 0

Lemma 12. If f(x) : Rm → R has convex upper contour sets for all levels, then
f is quasiconcave.

Lemma 13. (Quasiconcavity of Composed Multi-variant Normal Likelihood)
For simplicity, denote

fnormal(µ, σ, y1, ..., yn) =
∏
i

pnormal(yi|µ, σ) =
n∏

i=1

1

σ
√
2π

e−
1
2

(yi−µ)2

σ2

Then fnormal(µ, σ, y1, ..., yn) is Quasiconcave on [lσ, uσ]×[ly1 , uy1]×...[lyn , uyn]
where lσ > 0.

Proof. We first define

h(σ, y1, ..., yn) =

n∏
i=1

1

σ
√
2π

e−
1
2

(yi)
2

σ2

and we prove it is quasiconcave. We algebraically convert the product of the
gaussian pdfs (one for each observed data point) into a single exponential func-
tion:

n∏
i=1

1

σ
√
2π

e−
1
2

(yi)
2

σ2 =
1

σn(
√
2π)n

e−
1
2

∑
i(y

2
i)

σ2

Define the upper contour set at level c as

Sc = {(σ, y1, ..., yn)|
1

σn(
√
2π)n

e−
1
2

∑
i(y

2
i)

σ2
≥ c}

We do the following algebraic rearrangements:

1

σn(
√
2π)n

e−
1
2

∑
i(y

2
i)

σ2
≥ c

⇒ e−
1
2

∑
i(y

2
i)

σ2
≥ c · σn(

√
2π)n

⇒ −1

2

∑
i(y

2
i)

σ2
≥ ln(cσn(

√
2π)n)

⇒
∑
i

(y2i) ≤ −2σ2(ln(cσn(
√
2π)n))

⇒ sqrt(
∑
i

(y2i)) ≤ sqrt(−2σ2(ln(cσn(
√
2π)n)))

40 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

⇒ ∥y∥2 ≤ sqrt(−2σ2(ln(cσn(
√
2π)n)))

Hence Sc = {(σ, y1, ..., yn) : ∥y∥2 ≤ sqrt(−2σ2(ln(cσn(
√
2π)n)))}.

We will actually use the following shorthand notation

α(σ, c) = sqrt(−2σ2(ln(cσn(
√
2π)n)))}

Hence Sc = {(σ, y1, ..., yn) : ∥y∥2 ≤ α(σ, c)}.

We now prove the convexity of Sc for 0 < c < 1
(
√
2πσ)n

. If c ≤ 0, then any

(σ, y1, ..., yn) satisfies the constraint since 1
σn(

√
2π)n

e−
1
2

∑
i(y

2
i)

σ2 > 0, and the set

of all (σ, y1, ..., yn) is a convex set. Likewise if c ≥ 1
(
√
2πσ)n

, then Sc is either a
singleton or empty, both of which are convex sets.

Let v, w ∈ Sc, where by notational convenience v = (v1, ..., vn, σ1) and w =
(w1, ..., wn, σ2). We will prove that their convex combination λv+(1−λ)w ∈ Sc

for any λ ∈ [0, 1].

Since v ∈ Sc we know that ∥(v1, ..., vn)∥2 ≤ α(σ1, c), and furthermore λ∥(v1, ..., vn)∥2 ≤
λ · α(σ1, c). Similarly since w ∈ Sc, we know that ∥(w1, ..., wn)∥2 ≤ α(σ2, c) and
likewise (1− λ)∥(w1, ..., wn)∥2 < (1− λ)α(σ2, c). Hence

λ∥(v1, ..., vn)∥2 + (1− λ)∥(w1, ..., wn)∥2 ≤ λα(σ1, c) + (1− λ)α(σ2, c)

Since λ, (1− λ) ≥ 0

∥λ(v1, ..., vn)∥2 + ∥(1− λ)(w1, ..., wn)∥2 ≤ λα(σ1, c) + (1− λ)α(σ2, c)

By triangle inequality (since ∥ · ∥2 is a norm)

∥λ(v1, ..., vn) + (1− λ)(w1, ..., wn)∥2 ≤ ∥λ(v1, ..., vn)∥2 + ∥(1− λ)(w1, ..., wn)∥2

Hence

∥λ(v1, ..., vn) + (1− λ)(w1, ..., wn)∥2 ≤ λα(σ1, c) + (1− λ)α(σ2, c)

By the concavity of α(σ, c) (Lemma 11) we know by Jensen’s inequality that

λα(σ1, c) + (1− λ)α(σ2, c) ≤ α(λσ1 + (1− λ)σ2, c)

Hence

∥λ(v1, ..., vn)+(1−λ)(w1, ..., wn)∥2 ≤ λα(σ1, c)+(1−λ)α(σ2, c) ≤ α(λσ1+(1−λ)σ2, c)

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 41

Or just

∥λ(v1, ..., vn) + (1− λ)(w1, ..., wn)∥2 ≤ α(λσ1 + (1− λ)σ2, c)

This implies the point (λv1 +(1−λ)w1, ..., λvn +(1−λ)wn, λσ1 +(1−λ)σ2)
is in Sc, hence the upper contour sets Sc are convex, thus by Lemma 12 we have
quasiconcavity of h.

Furthermore, since fnormal is h(A(x1,, xn, µ, σ) where A(x1,, xn, µ, σ)
is the linear function defined as

A(x1,, xn, µ, σ) = (x1 − µ,, xn − µ, σ)

And since h is already proved to be quasiconcave and quasiconcave functions
are closed under composition with linear functions (Lemma 8), then fnormal is
quasiconcave.

Lemma 14. fnormal(µ, σ, y1, ..., yn) is Pseudoconcave.

Proof. By Lemma 13, we know that fnormal is at least quasiconcave, but since
we have that ∂

∂σfnormal(µ, σ, y1, ..., yn) ̸= 0, then ∇fnormal(µ, σ, y1, ..., yn) is
never zero, thus by Lemma 10 it is actually pseudoconcave (though not fully
concave)

Lemma 15. log(fnormal(µ, σ, y1, ..., yn)) is Pseudoconcave.

Proof. Since log is a monotonic, non-decreasing function, the composition of log
with a pseudoconcave function (such as fnormal) is still pseudoconcave by lemma
9

Theorem 8 (Pseudoconcavity of Linear Regression Programs). The
posterior distribution of Bayesian Linear Regression with the general pattern
shows in Figure 16 is Pseudoconcave.

1 m ~ uniform(lm, um)
2 b ~ uniform(lb, ub)
3 s ~ uniform(ls, us)
4 y1 ~ normal(m∗v1+b, s)
5 ...
6 yn ~ normal(m∗vn+b, s)
7 observe(y1, d1)
8 ...
9 observe(yn, dn)

Fig. 16: Linear Regression Code

Proof. All of our linear regression benchmarks have the code form of Fig. 16
and thus have uniform priors over all parameters (slope, intercept, σ), hence the
expression for JP K(x, d) will be

JP K(x, d) =
1

um − lm

1

ub − lb

1

us − ls
fnormal(b, s, d1 −mv1, ..., dn −mvn)

42 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

where x = (b, s) and d = (d1, ..., dn). Since all vi are constants, this is just the
composition of a linear transformation with fnormal (which is already pseudo-
concave) hence JP K(x, d) is pseudoconcave and thus so is JP Klog(x, d).

Theorem 9 (Log-Concavity in Branch-free Programs with Log-Concave
Distributions). For a program P written in our language (as shown in Fig-
ure 6), if P does not contain branching, and assuming that each individual dis-
tribution in the program is Log-Concave as classified in Table 6, then P is also
Log-Concave.

Proof. We prove Theorem 9 using structural induction on the concrete semantics
rules (Figure 8). The rules can be classified into three categories: statements,
arithmetic expressions, and distribution expressions. The proof has three parts:

1. For arithmetic expressions JE +EK, JE −EK, JcEK, JxjK: if all operands are
linear, and since these expressions are linear with respect to their operands,
the resulting expression will also be linear. In structural induction, the base
cases are a singleton parameter or a data point, both of which are directly
linear functions w.r.t parameters or data themselves. Then, for each of these
rules, by assuming their operand sub-expressions evaluate to linear functions,
the +, −, and constant factor result in linear functions.

2. For the distribution expression
Jdist(E1, . . . , EN)K(x, d) = pdist (u; JE1K(x, d), . . . , JEN K(x, d)): by the assump-
tion of this lemma, pdist is Log-Concave w.r.t its parameters/data. Then by
Lemma 7, and the conclusion on arithmetic expressions that Ei must be
linear functions, we have Jdist(E1, . . . , EN)K(x, d) being Log-Concave.

3. For statements JM ;MK, JD;DK, JM ;DK, Jobserve(Dist, di)K(x, d) or Jxi ∼
DistK(x), we prove they result in Log-Concave functions given that the sub-
statements give Log-Concave functions. Again by structural induction:
– The base cases are the single statements for likelihood or prior:

Jobserve(Dist, di)K(x, d) = JDistK(x, d)◦d[i] or Jxi ∼ DistK(x) = JDistK(x, d)◦
x[i]. Both statements evaluate to the distribution expression
Jdist(E1, . . . , EN)K(x, d), which is Log-Concave as shown above.

– Then, the inductive step utilizes the two compositional properties of
Log-Concave functions outlined in Lemma 5. For sequencing statements
JM ;MK, JD;DK, and JM ;DK, if a preceding density is Log-Concave, and
it is multiplied with a subsequent prior/likelihood function that is also
Log-Concave (by inductive hypothesis), the resulting function remains
Log-Concave (by Lemma 5). Furthermore, for expressions (Lemma 7).

This confirms that the Log-Concavity is preserved under all the statement rules
in Figure 8, except for the branching rule. Therefore, JP K(x, d) is Log-Concave.

Lemma 16 (Pseudo-Concavity of Log Unnormalized Posteriors). Given
a set of distributions where their corresponding prior or likelihood PDFs are ei-
ther LC or PC, the log unnormalized posterior JP Klog(x, d), which is the sum of
log PDFs of these distributions, is pseudo-concave.

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 43

Proof. Let JP Klog(x, d) =
∑

i log fi(x, d) where each fi(x, d) is the PDF of a
distribution that is either LC or PC. By Lemma 6, the sum

∑
i log fi(x, d) retains

the property of being LC or PC. Then JP Klog(x, d) is pseudo-concave.

D Experimental Setup Details

D.1 Precision Metrics

We define two precision metrics for the analysis of program P . From the analysis,
we first establish a lower bound function pl and an upper bound function pu for
any value of the latent parameter x: For a fixed dataset:pl(x) = l and pu(x) = u

are obtained from the analysis as [l, u] = JP K♯n(x
♯
i , d) for x within any γ(x♯

i). For
perturbed datasets:pl(x) = l and pu(x) = u are defined as [l, u] = JP K♯n(x

♯
i , d

♯)

for x within any γ(x♯
i).

Total Variation Distance (TVD). TVD [60] is a widely-used metric that
intuitively measures the area between two distribution density functions. For
two univariate probability density functions, p and q for a continuous random
variable x ∈ R, TVDpq = 1

2

∫
|p(x) − q(x)| dx. To measure the precision of the

bounds on posterior distributions, we define the TVD for the bounds as:

TVDx =
1

2

∫
|pl(x)− pu(x)| dx.

The TVD between the lower and upper bounds also represents the maximum
TVD for any two probability density functions confined within these bounds.
If the program contains multiple parameters, the overall TVD is reported as:
TVD = 1

M

∑M
j=1 TVDxj

, averaged across the parameters x1, x2, . . . , xM , where
each TVDxj

is computed based on the marginal density function of each xj after
computing the bounds on their joint density function.
Absolute Difference on Parameter Means (ADM). ADM [48, 71] mea-
sures the absolute difference between the expected values of parameters within
two distributions. For two probabilistic density functions p and q on a random
variable x ∈ R, ADM is ADMpq = |Ep(x) − Eq(x)|, where Ep(x) =

∫
x · p(x)dx

and similarly for q. We use ADM to quantify the precision of the bounds. For-
mally, given the bounds pl(x) and pu(x) on the posterior density function, we
consider all the posterior density functions between these bounds, denoted as
P = {p′ : ∀x.pl(x) ≤ p′(x) ≤ pu(x)}. The ADM then becomes the maximal
absolute difference in the expectations between any function in P and the true
expectation:

ADMx = max
P∈P

|Ep(x)− Eptruth(x)| .

To get Eptruth(x), we use Stan’s NUTS sampling to obtain 400,000 samples and
take the sample mean as the true mean. We report the program’s ADM =
1
M

∑M
i ADMxj

, averaged across all parameters.
The TVD and ADM for bounds obtained from GuBPI and the interval anal-

ysis are analogous.

44 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

E Comparing AURA with GubPI and PSI on Bounding
Single Posteriors

Table 5 in Appendix B presents the extended set of benchmarks. In addition to
the benchmarks we studied in the main paper, it contains several other bench-
marks that help us test alternative tools that compute posterior distributions.

Baselines. For certifying bounds on posterior distributions (without data per-
turbation), we compare AURA with two baselines: GuBPI [5], the start-of-the
art tool for obtaining sound bounds on single posteriors and PSI [20], which
leverages symbolic analysis to determine the exact posterior. For both baselines
we use their most recent versions. For GuBPI we report the most precise re-
sult and their computation times, based on a grid search across all configurable
GuBPI parameters1. We run GuBPI and AURA with the same number of splits.

.

Metrics. See Section D.1.

Baseline Setup Details. We use the most recent version of GuBPI [27] and
report the most precise solutions and their computation times, based on a grid
search across all configurable GuBPI parameters and we run GuBPI with the
same number of splits as AURA. The parameters include method (“boxes”,“linear”),
scoring precision (0.001-0.1), variable precision (0.01-1), the depth of the sym-
bolic exploration (10-1000) and splits in the “boxes” method (200-800000). We
omit configurations under which GuBPI implementation is not sound due to
disconnected bounding boxes on continuous curves (Appendix F presents an ex-
ample). Since GuBPI does not work with infinite support, we use the precision
enhancing splitting strategy to compute the same bounded interval for GuBPI
and AURA. The time for this step is negligible (<0.01s) and is included in
AURA’s run time but not GuBPI’s. We exclude the one-time cost to initialize
the GPU from AURA’s run time. For PSI, we use the most recent version [59]
with default configurations. We run AURA’s abstract interpretation until the
gradient ascent converges, which we define as the point at which the density
value is repeated within the machine epsilon.

Precision Metrics Experimental Setup. We run AURA and all the other
tools on a AMD 4.2 GHz machine with 32 cores with 2 NVIDIA RTX A5000
GPUs. For the experiments where we compare to GubPI and PSI, a fair com-
parison since GuBPI and PSI which only utilize a single core, we present the
AURA timing on a single core as well.

1 The parameters include method (“boxes”,“linear”), scoring precision (0.001-0.1), vari-
able precision (0.01-1), the depth of the symbolic exploration (10-1K) and splits in
the “boxes” method (200-800K). We omit the configurations under which GuBPI im-
plementation is unsound due to disconnected bounding boxes on continuous curves
(Appendix F presents an example).

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 45

Table 7: AURA Execution Time and Precision of AURA compared to baselines
(using 200 quantization splits). We run AURA and other tools on a single core
CPU. For PSI, we denote timeout (>90 min) as “t.o.”, unevaluated integrals as
“inte”. We compute the geometric mean of AURA’s speedup over the baselines
(as ×∗) only on the benchmarks that work for the baseline (on the single-core
CPU).

Program TVD ADM Time (s)

AURA GuBPI AURA GuBPI AURA AURA GuBPI PSI(GPU) (CPU)
exponential 0.02 - 0.05 - 0.04 0.01 - 0.02

gamma 0.02 - 0.03 - 0.10 0.03 - 0.03
gaussian 0.02 0.02 0.03 0.04 0.03 0.01 0.10 (9.8×) 0.02
coinBias 0.01 0.06 0.01 0.06 0.04 0.01 170.93 (1.3×104×) 0.15

human_height 0.02 0.04 5.14 13.97 0.06 0.04 1.33 (29.7×) 0.13
clinicalTrial 0.02 ∞ 0.02 ∞ 0.10 0.03 - 1.53

altermu2 0.11 16.33 0.20 88.01 0.04 0.20 132.84 (668.0×) 12.17
personality 0.02 - 0.00 - 0.04 0.05 - -

reg_logistic 0.02 - 0.04 - 2.47 0.94 - -
privacy 0.03 0.38 2.57 31.40 0.26 0.23 18.69 (81.0×) inte
logistic 0.03 - 0.09 - 0.13 2.77 - t.o.

lightspeed 0.03 5.0×105 1.28 2.7×107 0.07 0.76 93.40 (122.6×) inte
anova_radon_n 0.03 1.1×108 0.06 1.2×108 1.66 1.55 93.98 (60.5×) inte

IQStan 0.04 3.3×105 5.43 7.0×107 3.85 183.48 71.17 (0.4×) inte
reg_laplace 0.04 - 0.08 - 4.05 5.02 - t.o.
prior_mix 0.04 1.0×106 1.10 2.5×106 0.16 0.07 12.40 (178.6×) inte

wells_probit 0.06 - 0.05 - 0.36 29.67 - -
timeseries 0.13 ∞ 0.21 ∞ 33.83 873.96 - inte

unemployment 0.16 ∞ 0.33 ∞ 28.90 833.43 - inte

Geometric Mean 0.03 267.15 0.14 3334.35 0.32 0.66 19.56 (77.9×∗) 0.17 (6.6×∗)

E.1 AURA Precision and Execution Time Comparison

Table 7 presents the results of AURA and two other baseline tools, GuBPI and
PSI. We run AURA on both a single core CPU and a GPU, and all the other tools
on a single core CPU. Columns 2-5 present the precision of the bounds of AURA
and GuBPI with Total Variation Distance (TVD) and Absolute Difference on
Parameter Means (ADM). Columns 6-9 (Time (s)) show the run times.
Precision of Bounds. AURA obtains highly precise bounds for all benchmarks
on average (geomean) 0.03 in TVD and 0.14 in ADM (lower is better). AURA
outperforms GuBPI in precision across all benchmarks: only 3 GuBPI instances
have lower error than AURA’s worst error in either metric. These results high-
light the difference between AURA’s gradient-based method and GuBPI’s inter-
val abstraction for programs with non-trivial number of data points (10-1000).
PSI is guaranteed to produce exact results, but is only able to compute results
for seven simple benchmarks, all of which have under 40 data points and contain
only simple posterior distribution expressions.
Execution Time. Using a GPU, AURA solved 13 out of 20 benchmarks within
1 second, and all the benchmarks within one minute. On a single core CPU,
AURA solves 13 out of 20 benchmarks within 1s, and is faster on 10 benchmarks
than AURA on GPU. This speed difference is because these programs are too

46 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

(a) human_height (b) coinBias (c) privacy

Fig. 17: Visualization of AURA and GuBPI Bounds

small to take advantage of the GPU: the GPU version of AURA is 25-50x faster
than the CPU version for the four largest programs.

On the programs GuBPI can solve, AURA is much faster than GuBPI, with
geometric mean 125.7× on GPU, and 77.9× on the single core CPU.
Analysis Examples. Figure 17 presents the posterior density bounds derived
by AURA and GuBPI for three benchmarks. The x-axis shows the parameter
values; the y-axis shows the posterior probabilistic density. We show the ground
truth with a red line and bounded area derived from AURA and GuBPI with
blue and orange rectangles, respectively. The ground truth is derived manually
and symbolically with the aid of Mathematica’s numerical integration. From the
plots, AURA is significantly more precise than GuBPI. AURA’s bounds closely
follow the ground truth line (see the enlarged area). This precision is mainly
because AURA uses optimization to find the tightest abstractions. AURA also
improves numerical stability by using the log density, avoiding the over/under-
flow issues that cause GuBPI to report extremely large numbers (TVD > 105)
in five benchmarks. Unlike GuBPI, which uniformly splits intervals, AURA cre-
ates nearly equal-area bounding boxes, adjusting splits based on density function
shape (details in Appendix 8).
Illustration of Unsound Results from GuBPI. GuBPI, under certain con-
figurations, is not sound. In our experience, our hyper-parameter sweeping will
ignore those unsound results. Figure 18 shows an example when GuBPI become
unsound. For illustration purpose, we run GuBPI with 20 splits, while the same
unsoundness would occur with any number of splits. On the plot, each orange
box shows GuBPI’s bounds on that interval, and the red line shows the ground
truth. At several places the orange bounding boxes failed to cover the ground
truth. For example, the point highlighted with a blue dot is (mu = −1.02) which
is in the interval of (-1.5,-1) (i.e. the box to the left), but its ground truth is
above the upper bound GuBPI derived for this interval.

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

AURA 47

Fig. 18: Unsound Result from GuBPI

1 # splits 1000
2 # depth 1000
3 # discretization -5 5 0.500000
4 # epsilonScore 0.05
5 # epsilonVar 0.05
6
7 let data = [-5.4, 2.1, 6.7, 0.6, -1.1,

-1.3, 0.02, 1, -3.7, 4.4] in
8 let mu = sample uniform(-5, 5) in
9 letrec iterate xs = match xs

10 | [] -> mu
11 | [x | xs] ->
12 score(pdfnormal(mu, 5, x)); iterate

xs
13 in iterate data

Fig. 19: GuBPI Program which results
in Figure 18

E.2 Scaling to Larger Datasets

Figure 20 presents the impact of data size on AURA results. We increase the
data size for all 15 applicable programs from 200 to 5000 (simulated from the
same distribution as the original data), without applying data perturbation. We
run AURA on a GPU with 200 splits. The left y-axis shows AURA’s execution
time in blue; the right y-axis shows precision in orange, both representing the
geometric mean across benchmarks. AURA maintains nearly constant precision
across varying data sizes, while GuBPI fails to scale and already gives imprecise
bounds (TVD > 105) at around 10 data points. Also, AURA’s time increases
linearly with data size, and the number of data points AURA can compute with
depends primarily on the size of the GPU memory. Beyond 2000 data points,
the memory of a single A5000 GPU is insufficient for a few benchmarks, and
thus we distributed the computation across two GPUs for data sizes ranging
from 2000-5000 for all benchmarks. Spliting to two GPUs introduced a small
shift in the execution time around 2000 data points, but execution time increase
remained consistently linear before and after this split, which also demonstrates
AURA’s scalability in leveraging multiple GPUs. In all cases, the impact on the
precision is minimal.

E.3 Other Ablation Studies

Varying Quantization Splits. Figure 21 presents the geometric mean pre-
cision and performance trade-off, as a function of the number of quantization
splits (#splits). AURA’s error decreases exponentially, while the computation
time initially decreases before starting to increase. More splits help the opti-
mization converge in fewer steps since the interval regions that gradient ascent
explores are smaller, albeit at the cost of increased computation per step from
having more intervals. For our benchmarks, 200 splits gives a reasonable balance
between run time and precision.

48 Zixin Huang , Jacob Laurel , Saikat Dutta , and Sasa Misailovic

1000 2000 3000 4000 5000
Data Size

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ti
m

e
(s

)

0.0

0.2

0.4

0.6

0.8

1.0

Im
pr

ec
isi

on
 (T

VD
)

Time (s)
Imprecision (TVD)

Fig. 20: Varying #Data
(no Pert.)

100 200 300 400
#splits

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(s

)

0.0

0.2

0.4

0.6

0.8

1.0

Im
pr

ec
isi

on
 (T

VD
)

Time (s)
Imprecision (TVD)

Fig. 21: Varying #Splits

12 4 8 16 32
#cores

0

2

4

6

Sp
ee

du
p

Speedup

Fig. 22: Varying #CPUs

Scaling to Multiple CPUs. Fig. 22 shows the average speedup when run-
ning AURA on different number of cores using original data. The speedup of
our PyTorch-based implementation (with no additional performance-enhancing
optimizations) is approximately a linear function of the number of cores. AURA
is the first tool for PP inference with guaranteed bounds to run in parallel.
Numerical data formats. For each benchmark, we calculated the posterior
bounds using both FP32 and FP64 precision. The overall numerical discrepancy
between FP32 and FP64 was less than 10−6. Specifically, the geometric mean
of differences in the posterior bounds across all intervals and benchmarks was
4.7 · 10−7. The geomean execution time overhead when using FP64 compared
to FP32 on a GPU is only 1.1x. Thus, our analysis confirms that using FP32
precision gives accurate outcomes across all benchmarks.

https://orcid.org/0000-0002-1612-7503
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0000-0001-8346-4019
https://orcid.org/0000-0001-7319-8845

	AURA: Precise Abstract Interpretation of Probabilistic Programs with Interval Data Uncertainty

