Beyond Traditional SAT Reasoning: QBF, Model Counting, and Solution Sampling

Ashish Sabharwal and Bart Selman
Cornell University
July, 2007
AAAI Conference
Vancouver, BC

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining

PART I: Automated Reasoning

The Quest for Machine Reasoning

Objective:
Develop foundations and technology to enable effective, practical, large-scale automated reasoning.

Machine Reasoning (1960-90s) → Current reasoning technology

Computational complexity of reasoning appears to severely limit real-world applications
Revisiting the challenge: Significant progress with new ideas / tools for dealing with complexity (scale-up), uncertainty, and multi-agent reasoning
General Automated Reasoning

Domain-specific
- e.g., logistics, chess, planning, scheduling, ...

Generic
- applicable to all domains within range of modeling language

Research objective
- Better reasoning and modeling technology

Impact
- Faster solutions in several domains

Exponential Complexity Growth:
The Challenge of Complex Domains

Note: rough estimates, for propositional reasoning

Exponential Complexity

Variables (binary)
- X1 = email_received
- X2 = in_meeting
- X3 = urgent
- X4 = respond_to_email
- X5 = near_deadline
- X6 = position
- X7 = X8
- X8 = travel_request
- X9 = info_request

Rules:
1. X1 & (not X2) & X3 => X4
2. X2 => not X4
3. X5 => X3 or X6
4. X7 => X8
5. X8 => X9
6. X8 => X5
7. X6 => not X9

Knowledge Base

Variables (Constraints)
- N = No. of Variables/Objects
- A = Object states

- EXPONENTIAL COMPLEXITY: INHERENT
 A^A worst case

- TIME/SPACE
 Granularity ↑ Object states

Simple Example:

Question:
Given: X1 = true; X2 = false; X7 = true.
What is X4 = ?

Answer Development:

Inference Chain

Step 1: X7 => X8 (rule 4)
Step 2: X8 => X5 (rule 6)
Step 3: X5 => X3 or X6 (rule 3)
Step 4: X6 => not X9 (rule 7)
Step 5: X9 => not X8
Step 6: Contradiction

Backtrack to M

Case A: X3 = true
X1 & (not X2) & X3 => X4
Step 7: X4 = true (Rule 1)

Case B: X6 = true
X6 => not X9
Step 5: Contradiction

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining

[Credit: Kumar, DARPA; Cited in Computer World magazine]
Progress in Last 15 Years

Focus: Combinatorial Search Spaces
Specifically, the Boolean satisfiability problem, SAT

Significant progress since the 1990's.

How much?

- Problem size: We went from 100 variables, 200 constraints (early 90's) to 1,000,000 vars. and 5,000,000 constraints in 15 years.

Search space: from 10^{15} to $10^{300,000}$.

[Aside: "one can encode quite a bit in 1M variables."]

- Tools: 50+ competitive SAT solvers available

Overview of the state of the art:
Plenary talk at IJCAI-05 (Selman); Discrete App. Math. article (Kautz-Selman '06)

How Large are the Problems?

A bounded model checking problem:

From "SATLIB":
http://www.satlib.org/benchm.html
SAT-encoded bounded model checking instances
(Contributed by Olle Strichman)

In Bounded Model Checking (BMC) [FCC'04],
a rather new introduced problem in formal methods, the task is to check whether a given model M (typically a hardware design) satisfies a temporal property P in all paths with length less or equal to some bound k. The BMC problem can be efficiently reduced to a propositional satisfiability problem, and in fact if the property is in the form of an invariant, invariants are the most common type of properties, and many other temporal properties can be reduced to their form.

It has the form of "it is always true that ...", it has a structure which is similar to many AI planning problems.

SAT Encoding

(automatically generated from problem specification)

The instance lroc-1un-6.cdf, IBM ISU 1997:

```
p  cdf 51639 382352
-1 7 0
-1 6 0
-1 5 0
-1 4 0
-1 3 0
-1 2 0
-1 1 0
-1 0 0
-9 15 0
-9 14 0
-9 13 0
-9 12 0
-9 11 0
-9 10 0
-9 9 0
-17 23 0
-17 22 0
```

i.e., ((not x_1) or x_9) etc.

x_1, x_2, etc. are our Boolean variables
(to be set to True or False)

Should x_1 be set to False??

10 Pages Later:

```
185  -9  0
185  -1  0
177  169 161 153 145 137 129 121 113 105 97
 99  81  73 65 57 49 41
 33  25 17  9  1  -185  0
 66  -187  0
 66  -189  0
...
```

i.e., (x_{177} or x_{169} or x_{161} or x_{153} ... x_{23} or x_{25} or x_{17} or x_{9} or (not x_{105}))

Should clauses / constraints be getting more interesting...

Note x_1 ...
4,000 Pages Later:

- 10236 – 10390 0
- 10236 – 10391 0
- 10236 – 10395 0
- 10006 10009 10010 10011 10012 10013 10014
- 10015 10016 10017 10018 10019 10020 10021
- 10022 10023 10024 16035 16036 16037 10038
- 10039 10039 10031 16033 10034 10035
- 10036 10036 10036 10087 10088 10090
- 10091 10092 10093 16094 16095 10096 16097
- 10098 10099 10100 10101 10102 10103 10104
- 10105 10106 10107 10108 55 54 53 52 51 50
- 10047 10049 10050 10051 10050 – 10036 0
- 10237 – 10036 0
- 10237 – 10009 0
- 10237 – 10010 0

...

Finally, 15,000 Pages Later:

- 7 260 0
- 7 – 260 0
- 10072 10070 0
- 15 – 14 – 13 – 12 – 11 – 10 0
- 15 – 14 – 13 – 12 11 10 0
- 15 – 14 – 13 – 12 11 10 0
- 7 – 6 – 5 – 4 – 3 – 2 0
- 7 – 6 – 5 – 4 3 2 0
- 7 – 6 – 5 – 4 3 2 0
- 185 0

Search of truth assignments: \(2^{4000} \approx 3.6 \times 10^{1200}\)

Current SAT solvers solve this instance in under 30 seconds!

How do SAT Solvers Keep Improving?

From academically interesting to practically relevant.

We now have regular SAT solver competitions.
(Gr SAT-02, SAT-03, ..., SAT-07)

E.g. at SAT-2006 (Seattle, Aug `06):
- 35+ solvers submitted, most of them open source
- 500+ industrial benchmarks
- 50,000+ benchmark instances available on the www

This constant improvement in SAT solvers is the key to making, e.g.,
SAT-based planning very successful.

Source: Marques-Silva 2002
Current Automated Reasoning Tools

Most-successful fully automated methods:
- Problems modeled as rules / constraints over Boolean variables
- "SAT solver" used as the inference engine

Applications: single-agent search
- AI planning
 - SATPLAN-06, fastest optimal planner; ICAPS-06 competition (Kautz & Selman '06)
- Verification – hardware and software
 - Major groups at Intel, IBM, Microsoft, and universities such as CMU, Cornell, and Princeton.
 - SAT has become the dominant technology.
- Many other domains: Test pattern generation, Scheduling, Optimal Control, Protocol Design, Routers, Multi-agent systems, E-Commerce (E-auctions and electronic trading agents), etc.

Boolean Logic

Defined over Boolean (binary) variables a, b, c, …
Each of these can be True (1, T) or False (0, F)

Variables connected together with logic operators: and, or, not (denoted ¬)
E.g. ((c ∧ ¬d) ∨ f) is True iff either c is True and d is False, or f is True

Fact: All other Boolean logic operators can be expressed with and, or, not
E.g. (a = b) same as (~a or b)

Boolean formula, e.g. F = (a or b) and ~(a and (b or c))

(Truth) Assignment: any setting of the variables to True or False

Satisfying assignment: assignment where the formula evaluates to True
E.g. F has 3 satisfying assignments: (0,1,0), (0,1,1), (1,0,0)

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining

Boolean Logic: Expressivity

All discrete single-agent search problems can be cast as a Boolean formula

Variables a, b, c, … often represent "states" of the system, "events", "actions", etc.
(more on this later, using Planning as an example)

Very general encoding language. E.g. can handle
- Numbers (k-bit binary representation)
- Floating-point numbers
- Arithmetic operators like *, x, exp(), log()
- ...

SAT encodings (generated automatically from high level languages) routinely used in domains like planning, scheduling, verification, e-commerce, network design, …

Recall Example:

Variables

X1 = email_received "event"
X2 = in_meeting "state"
X3 = urgent
X4 = respond_to_email
X5 = near_deadline
X6 = postpone
X7 = air_ticket_info_request
X8 = travel_request
X9 = info_request

Rules:
- X1 & (not X2) & X3 → X4
- X2 → not X4 "constraint"
- X5 → X3 or X8
- 4. X7 → X8
- 5. X8 → X9
- 6. X8 → X5
- 7. X6 → not X9
Boolean Logic: Standard Representations

Each problem constraint typically specified as (a set of) clauses:

E.g. (a or b), (c or d or ¬f), (¬a or c or d), ...

Formula in **conjunctive normal form**, or CNF: a conjunction of clauses

E.g. \(F = (a \lor b) \land \neg(a \land (b \lor c)) \) changes to

\[F_{\text{CNF}} = (a \lor b) \land (\neg a \lor \neg b) \land (b \lor \neg c) \]

Alternative [useful for QBF]: specify each constraint as a term (only "and", "not"):

E.g. (a and \(\neg d \)), (b and \(\neg a \) and f), (\(\neg b \) and d and e), ...

Formula in **disjunctive normal form**, or DNF: a disjunction of terms

E.g. \(F_{\text{DNF}} = (\neg a \land b) \lor (a \land \neg b \land \neg c) \)

Boolean Satisfiability Testing

The **Boolean Satisfiability Problem, or SAT**: Given a Boolean formula \(F \),

- find a satisfying assignment for \(F \)
- or prove that no such assignment exists.

- A wide range of applications
- Relatively easy to test for small formulas (e.g. with a Truth Table)
- However, very quickly becomes hard to solve
 - Search space grows exponentially with formula size
 - (more on this next)

SAT technology has been very successful in taming this exponential blow up!

PART II: QBF Reasoning

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining
The Next Challenge in Reasoning Technology

Multi-Agent Reasoning:
Quantified Boolean Formulae (QBF)

- Allow use of Forall and Exists quantifiers over Boolean variables
- QBF significantly more expressive than SAT:
 from single-person puzzles to competitive games

New application domains:
- Unbounded length planning and verification
- Multi-agent scenarios, strategic decision making
- Adversarial settings, contingency situations
- Incomplete / probabilistic information

But, computationally "much" harder (formally PSPACE-complete rather than NP-complete)

Key challenge: Can we do for QBF what was done for SAT solving in the last decade?
Would open up a tremendous range of advanced automated reasoning capabilities!

The Need for QBF Reasoning

SAT technology, while very successful for single-agent search, is not suitable for adversarial reasoning.

Must model the adversary and incorporate his actions into reasoning
- SAT does not provide a framework for this

Two examples next:
1. Network planning: create a data/communication network between N nodes which is robust under failures during and after network creation
2. Logistics planning: achieve a transportation goal in uncertain environments

SAT Reasoning vs. QBF Reasoning

SAT Reasoning
- Combinatorial search for optimal and near-optimal solutions
- NP-complete (hard)
- planning, scheduling, verification, model checking, ...
- From 200 vars in early '90s to 1M vars. Now a commercially viable technology.

QBF Reasoning
- Combinatorial search for optimal and near-optimal solutions in multi-agent, uncertain, or hostile environments
- PSPACE-complete (harder)
- adversarial planning, gaming, security protocols, contingency planning, ...
- From 200 vars in late 90's to 100K vars currently. Still rapidly moving.

Adversarial Planning: Motivating Example

Network Planning Problem:
- Input: 5 nodes, 9 available edges that can be placed between any two nodes
- Goal: all nodes finally connected to each other (directly or indirectly)
- Requirement (A): final network must be robust against 2 node failures
- Requirement (B): network creation process must be robust against 1 node failure

E.g. a sample robust final configuration:
(cuses only 8 edges)

Side note: Mathematical structure of the problem:
1. (A) implies every node must have degree ≥ 3
 (otherwise it can easily be "isolated")
2. At least one node must have degree ≥ 4
 (follows from 1. and that not all 5 nodes can have odd degree in any graph)
3. Need at least 8 edges total (follows from 1. and 2.)
4. If one node fails during creation, the remaining 4 must be connected with 6 edges to satisfy (A)
5. Actually need 9 edges to guarantee construction (follows from 4. because a node may fail as soon as its degree becomes 3)
Example: A SAT-Based Sequential Plan

- Ideal situation: No failure during network creation

- Create edge
- Next move if no failures
- Final network robust against 2 failures

The plan goes smoothly and we end up with the target network, which is robust against any 2 node failures.

Example: A SAT-Based Sequential Plan

- Node failures may render the original plan ineffective, but re-planning could help make the remaining network robust.

- Create edge
- Node failure during network creation
- Next move if a particular node fails
- Next move if no failures
- Final network robust against 2 more failures

What if the left node fails?

- Can still make the remaining 4 nodes robust using 2 more edges (total 8 used)
- Feasible, but must re-plan to find a different final configuration

Example: A SAT-Based Sequential Plan

- Trouble! Can get stuck if
 - Resources are limited (only 9 edges)
 - Adversary is smart (takes out node with degree 4)
 - Poor decisions were made early on in the network plan

What if the top node fails?

- Need to create 4 more edges to make the remaining 4 nodes robust
 - Stuck! Have already used up 6 of the 9 available edges!

Example: A QBF-Based Contingency Plan

- A QBF solver will return a robust contingency plan (a tree)
 - Will consider all relevant failure modes and responses
 - Only some “interesting” parts of the plan tree are shown here

- Create edge
- Node failure during network creation
- Next move if a particular node fails
- Next move if no failures
- Final network robust against 2 more failures

- Only 8 edges used

- Only 3 edges needed
Another Example: Logistics Planning

- Blue nodes are cities, green nodes are military bases.
- Blue edges are commercial transports, green edges are military.
- Green edges (transports) have a capacity of 60 people, blue edges have a capacity of 100 people.
- Operator: "transport\(t(\text{who}, \text{amount}, \text{from}, \text{to}, \text{step}) \)"
- Parallel actions can be taken at each step.
- Goal: Send 60 personal from Base-1 to Base-2 in at most 3 steps.

60p

One player: military player, deterministic classic planning, SatPlan
(1) Sat-Plan: \(t(\text{m}, 60, \text{base-1}, \text{city-3}, 1) \), \(t(\text{m}, 60, \text{city-3}, \text{city-4}, 2) \), \(t(\text{m}, 60, \text{city-4}, \text{base-2}, 3) \).

Two players: deterministic adversarial planning QB Plan
(2) QB-Plan: \(t(\text{m}, 20, \text{base-1}, \text{city-1}, 1) \), \(t(\text{m}, 20, \text{base-1}, \text{city-2}, 1) \), \(t(\text{m}, 20, \text{base-1}, \text{city-3}, 1) \), \(t(\text{m}, 20, \text{city-1}, \text{city-4}, 2) \), \(t(\text{m}, 20, \text{city-2}, \text{city-4}, 2) \), \(t(\text{m}, 20, \text{city-3}, \text{city-4}, 2) \), \(t(\text{m}, 60, \text{city-4}, \text{base-2}, 3) \).

Re-planning needed !!!

Quantified Boolean Logic

Boolean logic extended with "quantifiers" on the variables
- "there exists a value of \(x \) in \{True, False\}", represented by \(\exists x \)
- "for every value of \(y \) in \{True, False\}", represented by \(\forall y \)
- The rest of the Boolean formula structure similar to SAT, usually specified in CNF form.

E.g. QBF formula \(F(v, w, x, y) = \exists v \exists w \exists x \forall y : (\neg v \lor w \lor x) \land (v \lor \neg w) \land (v \lor y) \).

Quantified Boolean variables constraints (as before)

Quantified Boolean Logic: Semantics

\[F(v, w, x, y, z) = \exists v \exists w \exists x \forall y : (\neg v \lor w \lor x) \land (v \lor \neg w) \land (v \lor y) \]

What does this QBF formula mean?

Semantic interpretation:
- \(F \) is True iff "There exists a value of \(v \) s.t., for both values of \(w \), there exists a value of \(x \) s.t., for both values of \(y \), \((\neg v \lor w \lor x) \land (v \lor \neg w) \land (v \lor y)\) is True".
Quantified Boolean Logic: Example

\[F(v, w, x, y, z) = \exists v \forall w \exists x \forall y : (\neg v \lor w \lor x) \land (v \lor \neg w) \land (v \lor y) \]

Truth Table for \(F \) as a SAT formula

<table>
<thead>
<tr>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Is \(F \) True as a QBF formula?

Without quantifiers (as SAT):
- have many satisfying assignments
 - e.g. \((v=0, w=0, x=0, y=1) \)

With quantifiers (as QBF):
- many of these don’t work
 - e.g. no solution with \(v=0 \)

F does have a QBF solution
- with \(v=1 \) and \(x \) set depending on \(w \)

Adversarial Uncertainty Modeled as QBF

- Two agents: \textit{self} and \textit{adversary}
- Both have their own set of actions, rules, etc.
- \textit{Self} performs actions at time steps 1, 3, 5, …, \(T \)
- \textit{Adversary} performs actions at time steps 2, 4, 6, …, \(T-1 \)

The following QBF formulation is True if and only if \textit{self} can achieve the goal no matter what actions \textit{adversary} takes

\[
\exists \textit{self} \forall \textit{adversary} : \text{goal(T)}
\]

QBF Modeling Examples

Example 1: a 4-move chess game

- There exists a move of the white s.t. for every move of the black
- there exists a move of the white s.t. for every move of the black
- the white player wins

Example 2: contingency planning for disaster relief

- There exist preparatory steps s.t. for every disaster scenario within limits
- there exists a sequence of actions s.t.
- necessary food and shelter can be guaranteed within two days

QBF Search Space

Recall traditional SAT-type search space

- \(3 : \text{self} \)
- \(\forall : \text{adversary} \)

Initial state

- \textit{Self action}
- \textit{Adversary action}

No goal

Goal

No goal

Goal

Recall traditional SAT-type search space
QBF Solution: A Policy or Strategy

Contingency plan
- A policy / strategy of actions for self
- A subtree of the QBF search tree (contrast with a linear sequence of actions in SAT-based planning)

Adversary action
Self action
Initial state
No goal
Goal

Planning (single-agent): find the right sequence of actions
HARD: 10 actions, 10! = 3 x 10^6 possible plans

Contingency planning (multi-agent): actions may or may not produce the desired effect!
REALLY HARD: 10 x 9^2 x 8^4 x 7^8 x ... x 2^256 = 10^{224} possible contingency plans!

Computational Complexity Hierarchy

EXP-complete: games like Go, ...

PSPACE-complete: QBF, adversarial planning, ...

NP-complete: SAT, scheduling, graph coloring, ...

P-complete: circuit-value, ...

In P: sorting, shortest path...

Note: widely believed hierarchy; know P ≠ EXP for sure

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining
QBF Solution Techniques

- DPLL-based: the dominant solution method
 - E.g. Quaffle, QuBE, Semprop, Evaluate, Decide, QRSat

- Local search methods:
 - E.g. WalkQSAT

- Skolemization based solvers:
 - E.g. sKizzo

- q-resolution based:
 - E.g. Quantor

- BDD based:
 - E.g. QMRES, QBDD

Focus: DPLL-Based Methods for QBF

- Similar to DPLL-based SAT solvers, except for branching variables being labeled as existential or universal

- In usual “top-down” DPLL-based QBF solvers,
 - Branching variables must respect the quantification ordering
 - i.e., variables in outer quantification levels are branched on first
 - Selection of branching variables from within a quantifier level done heuristically

DPLL-Based Methods for QBF

- For existential (or universal, resp.) branching variables
 - Success: sub-formula evaluates to True (False, resp.)
 - Failure: sub-formula evaluates to False (True, resp.)

- For an existential variable:
 - If left branch is True, then success (subtree evaluates to True)
 - Else if right branch is True, then success
 - Else failure
 - On success, try the last universal not fully explored yet
 - On failure, try the last existential not fully explored yet

- For a universal variable:
 - If left branch is False, then success (subtree evaluates to False)
 - Else if right branch is False, then success
 - Else failure
 - On success, try the last existential not fully explored yet
 - On failure, try the last universal not fully explored yet

Learning Techniques in QBF

- Can adapt clause learning techniques from SAT

- Existential “player” tries to satisfy the formula
 - Prune based on partial assignments that are known to falsify the formula and thus can’t help the existential player
 - E.g. add a CNF clause when a sub-formula is found to be unsatisfiable
 - Conflict clause learning
 - Uses implication graph analysis similar to SAT

- Universal “player” tries to falsify the formula
 - Prune based on partial assignments that are known to satisfy the formula and thus can’t help the universal player
 - E.g. add a DNF term (cube) when a sub-formula is found to be satisfiable
 - Solution learning
 - When satisfiable due to previously added DNF terms, uses implication graph analysis; when satisfiable due to all CNF clauses being satisfied, uses a covering analysis to find a small set of True literals covering clauses
Preprocessing for QBF

- Preprocessing the input often results in a significant reduction in the QBF solution cost --- much more so than for SAT
- Has played a key role in the success of the winning QBF solvers in the 2006 competition [Samulowitz et al. ’06]
- E.g. binary clause reasoning / hyper-binary resolution
- Simplification steps performed at the beginning and sometimes also dynamically during the search
 - Typically too costly to be done dynamically in SAT solvers
 - But pay off well in QBF solvers

Eliminating Variables with the Deepest Quantification

- Consider $\exists w \forall x \exists y \forall z . (w \lor x \lor y \lor z)$
- Fix any truth values of w, x, y, and z
- Since $(w \lor x \lor y \lor z)$ has to be True for both $z=$True and $z=$False, it must be that $(w \lor x \lor y)$ itself is True
 \Rightarrow Can simplify to $\exists w \forall x \exists y . (w \lor x \lor y)$ without changing semantics
- Note: cannot proceed to similarly remove x from this clause because the value of y may depend on x (e.g. suppose $w=$F. When $x=T$ then y may need to be F to help satisfy other constraints.)

In general,
If a variable of a CNF clause with the deepest quantification is universal, can “delete” this variable from the clause
If a variable in a DNF term with the deepest quantification is existential, can “delete” this variable from the term

Unit Propagation

- Unit propagation on CNF clauses sets existential variables, on DNF terms sets universal variables
- Elimination of variables with the deepest quantification results in stronger unit propagation
- E.g. again consider $\exists w \forall x \exists y \forall z . (w \lor x \lor y \lor z)$
 When $w=$F and $x=$F,
 - No SAT-style unit propagation from $(w \lor x \lor y \lor z)$
 - However, as a QBF clause, can first remove z to obtain $(w \lor x \lor y)$. Unit propagation now sets $y=$T

Challenge #1

- Most QBF benchmarks have only 2-3 quantifier levels
 - Might as well translate into SAT (it often works well!)
 - Early QBF solvers focused on such instances
 - Benchmarks with many quantifier levels are often the hardest
- Practical issues in both modeling and solving become much more apparent with many quantifier levels
 Can QBF solvers be made to scale well with 10+ quantifier alternations?
Challenge #2

QBF solvers are extremely sensitive to encoding!

- Especially with many quantifier levels,
 e.g., evader-pursuer chess instances
 [Madhusudan et al. 2003]

<table>
<thead>
<tr>
<th>Instance (N, steps)</th>
<th>Cond-Quaffle</th>
<th>Semprop</th>
<th>Quaffle</th>
<th>Best other solver</th>
<th>Cond-Quaffle</th>
<th>Best other solver</th>
<th>Cond-Quaffle</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>7497</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>800</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Can we design generic QBF modeling techniques that are simple and efficient for solvers?

Challenge #3

For QBF, traditional encodings hinder unit propagation

- E.g. unsatisfiable "reachability" queries
- A SAT solver would have simply unit propagated
- Most QBF solvers need 1000’s of backtracks and relatively complex mechanisms like learning to achieve simple propagation

- Can we achieve effective propagation across quantifiers?

Example: Lack of Effective Propagation (in Traditional QBF Solvers)

Question: Can White reach the pink square without being captured?

Impossible! White has one too few available moves

This instance should ideally be easy even with many additional (irrelevant) pieces! Unfortunately, all CNF-based QBF solvers scale exponentially 😞

Good news: Duaffle based on dual CNF-DNF encoding resolves this issue

- Auxiliary variables needed for conversion into CNF form
- Can push solver into large irrelevant parts of search space
- Bottleneck: detecting clause violation is easy (local check) but detecting that all residual clauses can be easily satisfied [no matter what the universal vars are] is much harder esp. with learning (global check)

- Note: negligible impact on SAT solvers due to effective propagation

Solution A: CondQuaffle [Ansotegui et al. ’05]
- Pass "flags" to the solver, which detect this event and trigger backtracking

Solution B: Duaffle [Sabharwal et al. ’06]
- Solver based on dual CNF-DNF encoding simply avoids this issue

Solution C: Restricted quantification [Benedetti et al. ’07]
- Adds constraints under which quantification applies

Can we design generic QBF modeling techniques that are simple and efficient for solvers?
Intuition for Illegal Search Space:
Search Space for SAT Approaches

In practice, for many real-world applications, polytime scaling.

Search Space of QBF
QBF Encoding
2^{N+M}

Search Space
Standard QBF Encoding
2^{N+M'}

Search Space
Search Space
2^{N'}; N' = \frac{N}{2}, Poly(N)

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview

 Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining

Modeling Problems as QBF

- In principle, traditional QBF encodings similar to SAT encodings
 - Create propositional variables capturing problem variables
 - Create a set of constraints
 - Conjoin (AND) these constraints together: obtain a CNF
 - Add "appropriate" quantification for variables

- In practice, can often be much harder / more tedious than for SAT
 - E.g. in many "game-like" scenarios, must ensure that
 1. If existential agent violates constraints, formula falsified
 : easy, some clause violation
 2. If universal agent violates constraints, formula satisfied
 : harder, all clauses must be satisfied,
 could use auxiliary variables for cascading effect
Encoding: The Traditional Approach

Problem of interest
e.g. circuit minimization
Any discrete adversarial task

| CNF-based QBF encoding | QBF Solver | Solution! |

Encoding: A Game-Based Approach

Adversarial Task

e.g. circuit minimization

| Game G:
players E & U,
states, actions,
rules, goal

QBF Solver
Flag-based CNF encoding

Create CNF encoding separately for E and U.
Initial state axioms, action implies precondition, fact implies achieving action, frame axioms, goal condition

Negate CNF part for U (creates DNF)

Solution!

Flag-based CNF encoding
QBF Solver: CondQuaffle [2005]

Solution!

Dual (split) CNF-DNF encoding
QBF Solver: Quaffle [2006]

Solution!

From Adversarial Tasks To Games

Example #1:
Circuit Minimization: Given a circuit C, is there a smaller circuit computing the same function as C?
- Related QBF benchmarks: adder circuits, sorting networks

A game with 2 turns
- Moves: First, E commits to a circuit C_E; second, U produces an input p and computations of C_E on p.
- Rules: C_E must be a legal circuit smaller than C; U must correctly compute C_E(p) and C(p).
- Goal: E wins if C_E(p) = C(p) no matter how U chooses p

"E wins" iff there is a smaller circuit

Example #2:
The Chromatic Number Problem: Given a graph G and a positive number k, does G have chromatic number k?
- Chromatic number: minimum number of colors needed to color G so that every two adjacent vertices get different colors

A game with 2 turns
- Moves: First, E produces a coloring S of G; second, U produces a coloring T of G
- Rules: S must be a legal k-coloring of G; T must be a legal (k-1)-coloring of G
- Goal: E wins if S is valid and T is not

"E wins" iff graph G has chromatic number k
From Games to Formulas

Use the "planning as satisfiability" framework [Kautz-Selman '96]

- \(I \): Initial conditions
- \(\text{Tr}_E \): Rules for legal transitions/moves of \(E \)
- \(\text{Tr}_U \): Rules for legal transitions/moves of \(U \)
- \(G_E \): Goal of \(E \) (negation of goal of \(U \))

Two alternative formulations of the QBF Matrix

\[M_1 = I \land \text{Tr}_E \land (\text{Tr}_U \rightarrow G_E) \]

Fits circuit minimization, chromatic number problem, etc.

\[M_2 = \text{Tr}_U \rightarrow (I \land \text{Tr}_E \land G_E) \]

Fits games like chess, etc.

On Normal Forms for Formulas

- Expressions like \(\text{Tr}_U \rightarrow (I \land \text{Tr}_E \land G_E) \) need to be converted to standard forms for formulas, like CNF.

- Should we stick to the CNF format for QBF?

At least many good reasons to use the CNF format for SAT:

- Fairly "natural" representation: Many problems are a conjunction of several "simple" constraints.
- Efficient pruning of unsat. parts of the search space using violated clauses.
- Simplicity: A clear uniform standard that facilitates clever techniques (e.g. watched literals, implication graph, …)

However, CNF form for QBF does appear to lead to illegal search space issues and to hinder unit propagation across quantifiers.

For QBF, no a priori reason to prefer CNF over DNF: equally simple, etc.

Dual CNF-DNF forms quite advantageous [Sabharwal et al. '06, Zhang '06]

The Dual Encoding

Two alternative formulations of the dual QBF matrix

\[M'_1 = (I \land \text{Tr}_E) \land (\neg \text{Tr}_U \lor \neg G_U) \]

\[M'_2 = (I \land \text{Tr}_E \land G_E) \lor \neg \text{Tr}_U \]

Variables: state vars \(S^1, S^2, ..., S^{k+1} \)

action vars \(A^1, A^2, ..., A^k \)

In contrast with [Zhang, AAAI '06]: split, non-redundant

The Dual Encoding: Example

- Chess: White as \(E \), Black as \(U \)

- \(\text{Tr}_E \): Transition axioms for \(E \): CNF clauses

 e.g. \(\neg \text{Move}(\text{Wking}, \text{sqA}, \text{sqB}, \text{step} 5) \lor \text{Loc}(\text{Wking}, \text{sqA}, 5) \)

- \(\text{Tr}_U \): Transition axioms for \(U \): DNF terms (negated "traditional" axiom clauses)

 e.g. \(\text{Move}(\text{Bking}, \text{sqA}, \text{sqB}, \text{step} 5) \land \neg \text{Loc}(\text{Bking}, \text{sqA}, 5) \)
Dual Input Format: Example

- **Dual QBF format**
- 100 variables
- 25 CNF clauses, 32 DNF terms
- cnf/dnf and 100 25 32
- Quantifiers
 - 1 2 5 9 23 56... 0
 - 6 7 21 22... 0
- CNF clauses
 - -4 -7 8 12 0
 - 9 5 -55 0
- DNF terms
 - 43 -61 -2 0
 - 4 1 -100 0

- Straightforward extension of QDIMACS format
- Specifies quantification, CNF clauses, DNF terms
- Flag for choosing between formulations
 - M_1 (connective \land) and
 - M_2 (connective \lor)
- Existential player: CNF
- Universal player: DNF

QBF Solver Duaffle

- Extends QBF solver Quaffle [Zhang-Malik '02] ("dual-Quaffle")
 - Already has support for DNF terms (cubes)
 - However, its DNF terms logically imply the CNF part
- Exploits the CNF-DNF format
 - \Rightarrow simpler and more succinct encoding mechanism
- DNF and CNF parts are "independent"
 - \Rightarrow requires variation in propagation method, backtrack policy
 (e.g. what to do if CNF part is falsified but DNF part is undecided?)
- Incorporates features of successful SAT/QBF solvers
 (e.g. clever data structures, dynamic decision heuristic, clause and cube learning, fast backjumping, ...)

Where Does QBF Reasoning Stand?

We have come a long way since the first QBF solvers several years ago

- From 200 variable problems to 100,000 variable problems
- From 2-3 quantifier alternations to 10+ quantifiers
- New techniques for modeling and solving
- A better understanding of issues like propagation across quantifiers and illegal search space
- Many more benchmarks and test suites
- Regular QBF competitions and evaluations

QBF Summary

QBF Reasoning: a promising new automated reasoning technology!

On the road to a whole new range of applications:

- Strategic decision making
- Performance guarantees in complex multi-agent scenarios
- Secure communication and data networks in hostile environments
- Robust logistics planning in adversarial settings
- Large scale contingency planning
- Provably robust and secure software and hardware
PART III: Model Counting

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining

Model Counting vs. Solution Sampling

[model \equiv solution \equiv satisfying assignment]

Model Counting (#SAT): Given a CNF formula F,
 how many satisfying assignments does F have?
 - Must continue searching after one solution is found
 - With N variables, can have anywhere from 0 to 2^N solutions
 - Will denote the model count by $\#F$ or $M(F)$ or simply M

Solution Sampling: Given a CNF formula F,
 produce a uniform sample from the solution set of F
 - SAT solver heuristics designed to quickly narrow down to certain parts
 of the search space where it’s “easy” to find solutions
 - Resulting solution typically far from a uniform sample
 - Other techniques (e.g. MCMC) have their own drawbacks

Counting and Sampling: Inter-related

From sampling to counting
- [Jerrum et al. ’86] Fix a variable x. Compute fractions $M(x^+)$ and $M(x^-)$
 of solutions, count one side (either x^+ or x^-), scale up appropriately
- [Wei-Selman ’05] ApproxCount: the above strategy made practical
 using local search sampling
- [Gomes et al. ’07] SampleCount: the above with (probabilistic)
 correctness guarantees

From counting to sampling
- Brute-force: compute M, the number of solutions; choose k in \{1, 2, ..., M\}
 uniformly at random; output the k^{th} solution (requires solution
 enumeration in addition to counting)
- Another approach: fix a variable x. Compute $M(x^+)$. Let
 $p = \frac{M(x^+)}{M}$. Set x to True with prob. p, and to False with prob. $1-p$,
 obtain F'. Recurse on F' until all variables have been set.
Why Model Counting?

Efficient model counting techniques will extend the reach of SAT to a whole new range of applications

- Probabilistic reasoning / uncertainty
 e.g. Markov logic networks [Richardson-Domingos ’06]
- Multi-agent / adversarial reasoning (bounded length)

[Ro’96, Litman et al.’01, Park ’02, Sang et al.’04, Darwiche’05, Domingos’06]

The Challenge of Model Counting

- In theory
 - Model counting is #P-complete
 (believed to be much harder than NP-complete problems)
 - E.g. #P-complete even for 2CNF-SAT and Horn-SAT
 (recall: satisfiability testing for these is in P)

- Practical issues
 - Often finding even a single solution is quite difficult!
 - Typically have huge search spaces
 - E.g. $2^{1000} \approx 10^{300}$ truth assignments for a 1000 variable formula
 - Solutions often sprinkled unevenly throughout this space
 - E.g. with 10^6 solutions, the chance of hitting a solution at random is 10^{-240}

Computational Complexity of Counting

- #P doesn’t quite fit directly in the hierarchy — not a decision problem
- But P^#P contains all of PH, the polynomial time hierarchy
- Hence, in theory, again much harder than SAT

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining
How Might One Count?

How many people are present in the hall?

Problem characteristics:

- Space naturally divided into rows, columns, sections, …
- Many seats empty
- Uneven distribution of people (e.g., more near door, aisles, front, etc.)

How many people are present in the hall?

How many people are present in the hall?

Counting People and Counting Solutions

Consider a formula F over N variables.

- Auditorium: Boolean search space for F
- Seats: 2^N truth assignments
- M occupied seats: M satisfying assignments of F

Selecting part of room:
- setting a variable to T/F
- or adding a constraint

A person walking out:
- adding additional constraint eliminating that satisfying assignment

A.1 (exact): Brute-Force

Idea:
- Go through every seat
- If occupied, increment counter

Advantage:
- Simplicity, accuracy

Drawback:
- Scalability

For SAT: go through each truth assignment and check whether it satisfies F
A.1: Brute-Force Counting Example

Consider \(F = (a \lor b) \land (c \lor d) \land (\neg d \lor e) \)

\(2^5 = 32 \) truth assignments to \((a,b,c,d,e)\)

Enumerate all 32 assignments.
For each, test whether or not it satisfies \(F \).

\(F \) has 12 satisfying assignments:

\((0,1,0,1,1), (0,1,1,0,0), (0,1,1,0,1), (0,1,1,1,1), \\
(1,0,0,1,1), (1,0,1,0,0), (1,0,1,1,1), (1,1,0,1,1), \\
(1,1,1,0,0), (1,1,1,0,1), (1,1,1,1,1), \\
(1,1,0,1,1), (1,1,1,0,0), (1,1,1,1,1), \\
(1,1,1,1,1), (1,1,1,1,1), \)

A.2 (exact): Branch-and-Bound, DPLL-style

Idea:
– Split space into sections
 e.g. front/back, left/right/ctr, …
– Use smart detection of full/empty sections
– Add up all partial counts

Advantage:
– Relatively faster, exact
– Works quite well on moderate-size problems in practice

Drawback:
– Still "accounts for" every single person present: need extremely fine granularity
– Scalability

Framework used in DPLL-based systematic exact counters
 e.g. Relsat [Bayardo-Pehoushek ’00],
 Cachet [Sang et al. ’04]

A.2: DPLL-Style Exact Counting

• For an \(N \) variable formula, if the residual formula is satisfiable after fixing \(d \) variables, count \(2^{N-d} \) as the model count for this branch and backtrack.

Again consider \(F = (a \lor b) \land (c \lor d) \land (\neg d \lor e) \)

\(F \) has 12 satisfying assignments:

\((0,1,0,1,1), (0,1,1,0,0), (0,1,1,0,1), (0,1,1,1,1), \\
(1,0,0,1,1), (1,0,1,0,0), (1,0,1,1,1), (1,1,0,1,1), \\
(1,1,1,0,0), (1,1,1,0,1), (1,1,1,1,1), \\
(1,1,0,1,1), (1,1,1,0,0), (1,1,1,1,1), \\
(1,1,1,1,1), (1,1,1,1,1), \)

A.2: DPLL-Style Exact Counting

• For efficiency, divide the problem into independent components:
 G is a component of F if variables of G do not appear in \(F \) – G.

\(F = (a \lor b) \land (c \lor d) \land (\neg d \lor e) \)

Component #1
 \(\text{model count} = 3 \)
Component #2
 \(\text{model count} = 4 \)
Total model count = \(4 \times 3 = 12 \)

– Use "DFS" on \(F \) for component analysis (unique decomposition)
– Compute model count of each component
– Total count = product of component counts
– Components created dynamically/recursively as variables are set
– Component analysis pays off here much more than in SAT
 • Must traverse the whole search tree, not only till the first solution
A.2: Components, Caching, and Learning

- Save or cache the results obtained for sub-formulas of the original formula — again, much more helpful than for SAT
- Component caching: record counts of component sub-formulas [Bacchus-Dalmao-Pitassi '03], [Formula caching: Majercik-Littman '98, Beame-Impagliazzo-Pitassi-Segerlind '03]
- Cachet [Sang et al. '04] efficiently combines two somewhat complementary techniques: component caching and clause learning
 - Save counts in a hash table
 - Periodically discard old entries (otherwise very space intensive)
- Also, new variable/value selection heuristics found to be more effective for model counting
 - E.g. VSADS [Sang-Beame-Kautz '05]

A.3 (exact): Conversion to Normal Forms

Idea:
- Convert the CNF formula into another normal form
- Deduce count "easily" from this normal form

Advantage:
- Exact, normal form often yields other statistics as well in linear time

Drawback:
- Still "accounts for" every single person present: need extremely fine granularity
- Scalability issues
- May lead to exponential size normal form formula

Framework used in DNNF-based systematic exact counter c2d [Darwiche '02]

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity
2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach
3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees
4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining

B.1 (estimation): Using Sampling -- Naïve

Idea:
- Randomly select a region
- Count within this region
- Scale up appropriately

Advantage:
- Quite fast

Drawback:
- Robustness: can easily under- or over-estimate
- Relies on near-uniform sampling, which itself is hard
- Scalability in sparse spaces: e.g. 10^{900} solutions out of 10^{300} means need region much larger than 10^{400} to "hit" any solutions
B.2 (estimation): Using Sampling -- Smarter

Idea:
- Randomly sample \(k \) occupied seats
- Compute fraction in front & back
- Recursively count only front
- Scale with appropriate multiplier

Advantage:
- Quite fast

Drawback:
- Relies on uniform sampling of occupied seats -- not any easier than counting itself
- Robustness: often under- or over-estimates; no guarantees

Framework used in approximate counters like ApproxCount [Wei-Selman '05]

B.2: ApproxCount

Idea goes back to Jerrum-Valiant-Vazirani [86], made practical for SAT by Wei-Selman '05 using solution sampler SampleSat [Wei et al. '04]

- Let formula \(F \) have \(M \) solutions
- Select a variable \(x \). Let \(F|_{x=T} \) have \(M+ \) solutions and \(F|_{x=F} \) have \(M- \) solutions
 \((M+ + M- = M) \)
- Let \(p = M+ / M \) : fraction of solutions of \(F \) with \(x=T \)
- Solution count given by \(M = M+ \cdot (1/p) \)

- Estimate \(M+ \) recursively by considering the simpler formula \(F|_{x=T} \)
- Estimate \(p \) using solution sampling:
 - obtain \(S \) samples, compute \(S+ \) and \(S- \), compute \(\text{est}(p) = S+ / S \)
 - \(\text{est}(p) \) converges to \(p \) as \(S \) increases

- Estimated number of solutions:
 \(\text{est}(F) = \text{est}(F|_{x=T}) / \text{est}(p) \)

The quality of the estimate of \(M \) depends on various factors.

- Variable selection heuristic
 - If unit clause, apply unit propagation. Otherwise use solution samples:
 - E.g. pick the most "balanced" variable: \(S+ \) as close to \(S/2 \) as possible
 - Or pick the most "unbalanced" variable: \(S+ \) as close to \(0 \) or \(S \) as possible

- Value selection heuristic
 - If \(S+ > S- \), set \(x=F \): leads to small multipliers \(\Rightarrow \) more stability, fewer errors

- Sampling quality
 - If samples are biased and/or too few, can easily under-count or over-count
 - Note: effect of biased sampling does partially cancel out in the multipliers
 - SampleSat samples solutions quite well in practice

- Hybridization
 - Once enough variables are set, use Relsat/Cachet for exact residual count

B.2: ApproxCount

The quality of the estimate of \(M \) depends on various factors.

- Variable selection heuristic
 - If unit clause, apply unit propagation. Otherwise use solution samples:
 - E.g. pick the most "balanced" variable: \(S+ \) as close to \(S/2 \) as possible
 - Or pick the most "unbalanced" variable: \(S+ \) as close to \(0 \) or \(S \) as possible

- Value selection heuristic
 - If \(S+ > S- \), set \(x=F \): leads to small multipliers \(\Rightarrow \) more stability, fewer errors

- Sampling quality
 - If samples are biased and/or too few, can easily under-count or over-count
 - Note: effect of biased sampling does partially cancel out in the multipliers
 - SampleSat samples solutions quite well in practice

- Hybridization
 - Once enough variables are set, use Relsat/Cachet for exact residual count

Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining
Idea:
- Identify a “balanced” row split or column split (roughly equal number of people on each side)
 - Use sampling for estimate
- Pick one side at random
- Count on that side recursively
- Multiply result by 2

This probably yields the true count on average!
- Even when an unbalanced row/column is picked accidentally for the split, e.g., even when samples are biased or insufficiently many
- Surprisingly good in practice, using SampleSat as the sampler

C.1: SampleCount
- Extends the strategy of ApproxCount
- But, provides concrete correctness guarantees without assuming anything about the quality of the solution samples
- Key ideas:
 - Use randomization (rather than heuristics) to fix variable values
 - Basic version: unbiased coin
 - Extended version: biased coin based on sample estimates
 - Use balanced vars as well as balanced var-pairs to boost quality
 - Use simple repetition to boost confidence and stability
 - Analyze correctness using Markov’s inequality

Balanced var x: $S/2$ samples have $x=T$, $S/2$ have $x=F$
Balanced var-pair (x,y): $S/2$ samples have $x=y$, $S/2$ have $x\neq y$

Algorithms SampleCount

Input: Boolean formula F

1. Set $numFixed = 0$, $slack = $ some constant (e.g., 2, 4, 7, …)
2. Repeat until F becomes feasible for exact counting
 a. Obtain s solution samples for F
 b. Identify the most balanced variable and variable-pair
 c. If x is more balanced than (x,y)
 then randomly set x to T or F (with prob. 1/2)
 else randomly replace x with y or $\neg y$ (with prob. 1/2)
 d. Simplify F
 e. Increment $numFixed$

Output: model count $\geq 2^{numFixed-slack} \times \text{exactCount(simplified } F)$
with confidence $(1 - 2^{-slack})$

Note: showing one iteration
Correctness Guarantee

Theorem: SampleCount with \(t \) iterations gives a correct lower bound with probability \(\geq (1 - 2^{-\text{slack} + t}) \)

Key properties:

- Theorem holds irrespective of the quality of the sampler used
- Correctness confidence grows exponentially with \(\text{slack} \)

Proof sketch:

- Conditioned on \(\text{numFixed} \), expected model count \(= \) true count
- Account for conditioning by averaging twice: \(\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X] \)
- Markov’s inequality gives \(\Pr[\text{error in a single run}] \leq 2^{-\text{slack}} \)
- Using independence of runs, \(\Pr[\text{error over } t \text{ runs}] \leq 2^{-\text{slack} + t} \)

Sample Results: Latin Square, Langford Problems

- SampleCount \([\ldots]\) scales well, produces guaranteed lower bounds close to the true count \([\ldots]\) within 1 hour
- Exact counters \([\ldots, \ldots]\) do not scale well at all (12 hours)
- ApproxCount \([\ldots]\) overestimates, does not provide guarantees

Fast Convergence with Balanced Selection

- Each point is a single run of SampleCount without any slack or correctness guarantee
- Both processes provably converge to the true count eventually

C.2 (estimation with guarantees):

Using BP Techniques

- A variant of SampleCount where \(M^* / M \) is estimated using Belief Propagation (BP) techniques rather than sampling
 - [Kroc-Sabharwal-Selman (in progress)]
- BP is a general iterative message-passing algorithm to compute marginal probabilities over “graphical models”
 - Convert \(F \) into a two-layer Bayesian network \(B \)
 - Variables of \(F \) become variable nodes of \(B \)
 - Clauses of \(F \) become function nodes of \(B \)

Iterative message passing

variable nodes

\((a \lor b) \quad (c \lor d) \quad (d \lor e) \)

function nodes
C.2: Using BP Techniques

• For each variable x, use BP equations to estimate marginal prob.
 \[\Pr [x=T | \text{all function nodes evaluate to 1}] \]
 Note: this is estimating precisely \(M+ / M\)!

• Using these values, apply the counting framework of SampleCount

• Challenge #1: Because of “loops” in formulas, BP equations may not converge to the desired value
 – Fortunately, SampleCount framework does not require any quality guarantees on the estimate for \(M+ / M\)

• Challenge #2: Iterative BP equations simply do not converge for many formulas of interest
 – Can add a “damping parameter” to BP equations to enforce convergence
 – Too detailed to describe here, but good results in practice!

C.3 (estimation with guarantees): Distributed Counting Using XORs

Idea (intuition):

In each round
 – Everyone independently tosses a coin
 – If heads ⇒ stays
 – If tails ⇒ walks out
Repeat till only one person remains
Estimate: \(2^{\#\text{rounds}}\)

Does this work?
• On average, Yes!
• With \(M\) people present, need roughly \(\log_2 M\) rounds till only one person remains

XOR Streamlining: Making the Intuitive Idea Concrete

• How can we make each solution “flip” a coin?
 – Recall: solutions are implicitly “hidden” in the formula
 – Don’t know anything about the solution space structure

• What if we don’t hit a unique solution?

• How do we transform the average behavior into a robust method with provable correctness guarantees?

Somewhat surprisingly, all these issues can be resolved

XOR Constraints to the Rescue

• Special constraints on Boolean variables
 – \(a \oplus b \oplus c \oplus d = 1\)
 satisfied if an odd number of \(a,b,c,d\) are set to 1
 e.g. \((a,b,c,d) = (1,1,1,0)\) satisfies it
 \((1,1,1,1)\) does not
 – \(b \oplus d \oplus e = 0\)
 satisfied if an even number of \(b,d,e\) are set to 1

 – These translate into a small set of CNF clauses
 (using auxiliary variables [Tseitin ‘68])
 – Used earlier in randomized reductions in Theoretical CS
 [Valiant-Vazirani ‘88]
Using XORs for Counting: MBound

Given a formula F
1. Add some XOR constraints to F to get F' (this eliminates some solutions of F)
2. Check whether F' is satisfiable
3. Conclude "something" about the model count of F

Key difference from previous methods:
- The formula changes
- The search method stays the same (SAT solver)

The Desired Effect

If each XOR cut the solution space roughly in half, would get down to a unique solution in roughly $\log_2 M$ steps

Which XOR Constraints to Use?

- A possibility: analyze structural properties of the instance so that F and F' are "related" in some controllable way
- MBound approach: keep it simple ---
 * choose constraint X uniformly at random from all XOR constraints of size k (i.e. with k variables)

 Two crucial properties
 1. For any k, for every truth assignment A, $\Pr[A \text{ satisfies } X] = 0.5$
 2. When $k = n/2$, for every two truth assignments A and B, "A satisfies X" and "B satisfies X" are independent events (pairwise independence)

Obtaining Correctness Guarantees

- For formula F with M models/solutions, should ideally add $\log_2 M$ XOR constraints
- Instead, suppose we add $s > \log_2 M + \alpha$ constraints

 Fix any solution A.
 $\Pr[A \text{ survives } s \text{ XOR constraints }] = 1/2^s < 1/(2^{\alpha M})$

 $\Rightarrow \exp[\text{number of surviving solutions }] < M / (2^{\alpha M}) = 2^{-\alpha}$
 $\Rightarrow \Pr[\text{no. of surviving solns. } \geq 1] < 2^{-\alpha}$ (by Markov's Ineq.)

If we add "too many" XORs, $\Pr[F \text{ remains satisfiable }]$ is "low"
Obtaining Correctness Guarantees

Theorem: If F is still satisfiable after s random XOR constraints,
then F has $\geq 2^s - \alpha$ solutions with prob. $\geq (1 - 2^{-\alpha})$

E.g. $\alpha = 4 \Rightarrow 93\%$ correctness confidence

Observe: confidence increases exponentially with α

Algorithm Mbound [lower bound]

Parameters: slack factor α, num iterations t, XOR length k
Input : Boolean formula F
Output: lower bound on model count of F

1. Repeat t times:
 a. Add s random XOR constrains of size k to F to get F'
 b. Check F' for satisfiability using a SAT solver
2. If F' is satisfiable in all t cases, output $2^s - \alpha$

Theorem: MBound returns a correct lower bound with probability at least $(1 - 2^{-\alpha})$

Boosting Correctness Guarantees

Simply repeat the whole process!

E.g. iterate 4 times independently with s constraints and $\alpha = 2$.
Pr $[F$ is satisfiable in every iteration $] < 1/4^4 < 0.004$

If F is satisfiable after adding s random XOR constraints in each of 4 iterations,
then F has at least 2^{s-2} solutions with prob. ≥ 0.996.

Algorithm Mbound [upper bound]

Parameters: slack factor α, num iterations t
Input : Boolean formula F on n variables
Output: lower bound on model count of F

1. Repeat t times:
 a. Add s random XOR constrains of size $n/2$ to get F'
 b. Check F' for satisfiability using a SAT solver
2. If F' is unsatisfiable in all t cases, output $2^s + \alpha$

Theorem: MBound returns a correct upper bound with probability at least $(1 - 2^{-\alpha})$

Analysis relies on pairwise independence, Chebychev’s ineq.
Algorithm Mbound [hybrid]

Parameters: slack factor α, number of iterations t
Input: Boolean formula F on n variables
Output: lower bound on model count of F

1. Repeat t times:
 a. Add s random XOR constrains to F to get F'
 b. Count solutions of F' using an exact counter
2. Let $m = \min$ count for F' obtained over iterations
3. Output $m \cdot 2^{-\alpha}$

Theorem: MBound-hybrid returns a correct lower bound with probability at least $(1 - 2^{-\alpha t})$

Summarizing MBound

- Can use any state-of-the-art SAT solver off the shelf
- Random XOR constraints independent of both the problem domain and the SAT solver used
- Very high provable correctness guarantees on reported bounds on the model count
 - May be boosted simply by repetition
 - Further boosted by “averaging within buckets, minimizing over buckets”
- Purely random XOR constraints are generally large
 - Not ideal for current SAT solvers
- In practice, must use relatively short XORs
 - Issue: Higher variation over different runs
 - Good news: lower bound correctness guarantees still hold
 - Better news: short XORs do work surprisingly well in practice (fairly low variation) \textsc{[Gomes-Hoffmann-Sabharwal-Selman ’07]}

XORs for General CSPs

General constraint satisfaction problems (CSPs):
- Domains richer than $\{0,1\}$
- Constraints richer than “clauses”
 - any constraint, specified succinctly or even as a truth table
- E.g. $x_1 \in \{0,1,2,3,4\}$, $x_2 \in \{30, 31, \ldots, 50\}$,
 $x_3 \in \{\text{Mon, Tue, Wed, \ldots}\}$, …
 if (x_3 after Mon) then ($x_2 \cdot x_1 \leq x_4$)

MBound can be extended to CSPs

Method 1: Link CSP variables to binary vars. ($x_i = k \iff y_{ik} = \text{True}$)
 a. Individual domain filtering for XORs
 b. Global domain filtering using Gaussian elimination

Method 2: Use “generalized XORs” directly on CSP variables
 e.g. $x_1 + x_7 + x_{22} + x_{3d} = r \pmod{d}$

PART IV: Solution Sampling
Tutorial Roadmap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 1. Game-based framework
 2. Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining

Solution Sampling

- Problem: Given a CNF formula F, generate a uniform sample from the set of solutions of F.

- Worst-case computational complexity: $\#P$-hard
 - Recall $P^\#P$ contains PH
 - NP is the first level out of an infinite number of levels in PH

- In practice, can often settle for "near"-uniform samples

Sampling Using Systematic Search #1

Enumeration-based solution sampling

- Compute the model count M of F (systematic search)
- Select k from $\{1, 2, \ldots, M\}$ uniformly at random
- Systematically scan the solutions again and output the kth solution of F (solution enumeration)

- Purely uniform sampling
- Works well on small formulas (e.g. residual formulas in hybrid samplers)
- Requires two runs of exact counters enumerators like Relsat (modified)
- Scalability issues as in exact model counters

Sampling Using Systematic Search #2

“Decimation”-based solution sampling

- Arbitrarily select a variable x to assign value to
- Compute M, the model count of F
- Compute $M+$, the model count of $F_{x=T}$
- With prob. $M+/M$, set value=T; otherwise set value=F
- Let $F \leftarrow F_{x=value}$; Repeat the process

- Purely uniform sampling
- Works well on small formulas (e.g. hybrid samplers)
- Does not require solution enumeration ⇒ easier to use advanced techniques like component caching
- Requires $2N$ runs of exact counters
- Scalability issues as in exact model counters
Markov Chain Monte Carlo Sampling

MCMC-based Samplers
[Madras '02; Metropolis et al. '53; Kirkpatrick et al. '83]

- Based on a Markov chain simulation
 - Create a Markov chain with states \([0,1]^n\) whose stationary distribution is the uniform distribution on the set of satisfying assignments of \(F\)
- Purely-uniform samples if converges to stationary distribution
 - Often takes exponential time to converge on hard combinatorial problems
 - In fact, these techniques often cannot even find a single solution to hard satisfiability problems
- Newer work: using approximations based on factored probability distributions has yielded good results
 - E.g. Iterative Join Graph Propagation (IJGP)
 - [Dechter-Kask-Mateescu '02, Gogate-Dechter '06]

Sampling Using Local Search

WalkSat-based Sampling
[Selman-Kautz-Coen '93]

- Local search for SAT: repeatedly update current assignment (variable "flipping") based on local neighborhood information, until solution found
- WalkSat: Performs focused local search giving priority to variables from currently unsatisfied clauses
 - Mixes in freebie-, random-, and greedy-moves
- Efficient on many domains but far from ideal for uniform sampling
 - Quickly narrows down to certain parts of the search space which have "high attraction" for the local search heuristic
 - Further, it mostly outputs solutions that are on cluster boundaries

XorSample: Sampling using XORs
[Gomes-Sabharwal-Selman '06]

XOR constraints can also be used for near-uniform sampling

Given a formula \(F\) on \(n\) variables, do
1. Add "a bit too many" random XORs of size \(k=n/2\) to \(F\) to get \(F'\)
2. Check whether \(F'\) has exactly one solution
 - If so, output that solution as a sample

Correctness relies on pairwise independence

Hybrid variation: Add "a bit too few". Enumerate all solutions of \(F'\) and choose one uniformly at random (using an exact model counter+enumerator / pure sampler)
Correctness relies on "three-wise" independence
The “Band Effect”

XORSample does not have the “band effect” of SampleSat

E.g. a random 3-CNF formula

KL-divergence from uniform:

<table>
<thead>
<tr>
<th></th>
<th>XORSample</th>
<th>SampleSat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.002</td>
<td>0.085</td>
</tr>
</tbody>
</table>

Sampling disparity in SampleSat:

- solns 1-32 sampled ~2,900x each
- solns 33-48 sampled ~6,700x each

Recap

1. Automated Reasoning
 - The complexity challenge
 - State of the art in Boolean reasoning
 - Boolean logic, expressivity

2. QBF Reasoning
 - A new range of applications
 - Quantified Boolean logic
 - Solution techniques overview
 - Modeling
 - Game-based framework
 - Dual CNF-DNF approach

3. Model Counting
 - Connection with sampling
 - A new range of applications
 - Solution techniques
 1. Exact counting
 2. Estimation
 3. Bounds with correctness guarantees

4. Solution Sampling
 - Solution techniques
 1. Systematic search
 2. MCMC methods
 3. Local search
 4. Random Streamlining

Thank you for attending!

A recent SAT (and beyond) survey chapter to appear in the Handbook of Knowledge Representation, available at Ashish’s webpage

Ashish Sabharwal: http://www.cs.cornell.edu/~sabhar

Bart Selman: http://www.cs.cornell.edu/selman