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Abstract. Motivated by an important and challenging task encountered
in material discovery, we consider the problem of finding K basis patterns
of numbers that jointly compose N observed patterns while enforcing
additional spatial and scaling constraints. We propose a Constraint Pro-
gramming (CP) model which captures the exact problem structure yet
fails to scale in the presence of noisy data about the patterns. We allevi-
ate this issue by employing Machine Learning (ML) techniques, namely
kernel methods and clustering, to decompose the problem into smaller
ones based on a global data-driven view, and then stitch the partial solu-
tions together using a global CP model. Combining the complementary
strengths of CP and ML techniques yields a more accurate and scalable
method than the few found in the literature for this complex problem.

1 Introduction

Consider a setting where our goal is to infer properties of a system by observing
patterns of numbers (e.g., discretized waveforms, locations of peak intensities in
a signal, etc.) at N sample points. Suppose these N patterns are a combination
of K unobserved basis patterns. The pattern decomposition problem seeks to
identify, given patterns at the N sample points as input, K basis patterns that
generate the observed patterns and which of these basis patterns appear at any
given sample point. The sample points are often embedded in the Euclidean
space, enforcing a constraint that points near each other should generally be
explained by a similar subset of patterns (except for a few transition boundaries).

Variants of this problem arise in a number of scenarios. For example, in the
well-known cocktail party problem, the observed patterns are mixtures of voices
of people as recorded by various microphones and the task is to decompose the
signal at each microphone into the voices of individuals — the basis patterns —
contributing to that signal. The microphones observe a spatial correlation, in
the sense that if person’s voice is heard at a microphone, it is likely that it is
also heard at a neighboring microphone but not at a far away one.

Problems such as these fall under the category of source separation problems.
Typically, purely data-driven methods are used for these, relying heavily on pat-
tern recognition from a global analysis of the available data. A limitation of this



approach, however, is that it makes it very difficult to enforce hard constraints.
While one may argue that the spatial and other requirements in problems such
as the cocktail party problem are somewhat “soft”, the setting we consider in
this paper is motivated by a materials science problem that imposes hard con-
straints dictated by physics. When solving this problem, even slight deviation
from the requirements of the underlying physics makes “solutions” meaningless.
Moreover, in this setting, observed patterns are allowed to be superpositions of
basis patterns stretched by a small multiplicative scaling factor, leading to what
we call the Decomposition Problem With Scaling. This problem generalizes a
known NP-complete problem, namely, the Set Basis Problem [19].

Faced with the challenge of handling hard constraints and scaling factors,
we propose a Constraint Programming (CP) approach to solve our variant of
the pattern decomposition problem. Our CP formulation captures the desired
constraints in a detailed and exact fashion. However, as expected, it does not
scale well with problem size once we introduce errors and noise in the input data.
To alleviate this issue, we turn to Machine Learning (ML) and use kernel-based
clustering as a way to guide the CP solver by creating multiple smaller sub-
problems within its reach. After solving these smaller sub-problems with CP,
we take a step back and combine the multiple partial solutions into a consistent
global solution, using the original, global CP model.

Our contributions include bringing this intriguing and challenging problem
to the CP community, providing a CP model for it, and enhancing the global
scalability of the model while preserving local accuracy by exploiting ML meth-
ods for designing a divide-and-conquer approach. Using data from our material
discovery application as a testbed, we demonstrate that the proposed hybrid
ML-CP approach yields more accurate and meaningful solutions than existing,
mostly data-driven approaches.

1.1 Pattern Decomposition for Material Discovery

The particular variant of the pattern decomposition problem considered in this
paper is motivated by an important application in the area of material discovery.
Specifically, a detailed analysis of libraries of inorganic materials has become an
increasingly useful technique in this line of work, as evident from the number and
variety of recently published methods for combinatorial materials research [e.g.,
2, 16]. These libraries can be screened for a desired property, providing an un-
derstanding of the underlying material system. This is an important direction
in computational sustainability [8], and aims to achieve the best possible use of
our available material resources.

A fundamental property of inorganic materials is their crystallographic phase,
and thus creating a “phase map” of an inorganic library across various compo-
sitions is a key aspect of combinatorial materials science. Often, correlations
between the phase map and other material properties provide important in-
sights into the behavior of the material system. For example, a recent study of a
Platinum-Tantalum library revealed an important correlation between crystal-
lographic phase and improved catalytic activity for fuel cell applications [10].



The most common technique for creating such a phase map is to first use Xray
diffraction to generate diffraction patterns (continuous waveforms) for sample
points with different compositions. Inferring the phase map from these diffraction
patterns is then done using a laborious manual inspection. Doing this automat-
ically, without human interaction, is a long standing problem in combinatorial
crystallography. Several recent algorithms have been proposed which correctly
solve the phase map for limited cases [3, 4, 14, 15]. In 2007, Long et al. [15]
suggested a hierarchical agglomerative clustering (HAC) approach which aims
to cluster the observed patterns that involve the same subset of basis patterns,
but relies on a manual inspection in order to discover the actual basis patterns.
In a follow-up paper, Long et al. [14] applied non-negative matrixz factorization
(NMF), which approximates (through gradient descent) the observed diffraction
patterns with a linear combination of positive basis patterns. A main limitation
of both approaches lies in the assumption that peaks of a phase will always ap-
pear at the same position and with the same relative intensities in any pattern.
However, the position and intensity of diffraction peaks typically scale as a func-
tion of composition due to chemical alloying. Also, these approaches are unable
to enforce hard constraints such as connectivity requirements.

Our goal is to take the actual physics behind the crystallographic process
(e.g., the nature of scalings in the patterns and connectivity) into account in
order to design a robust and scalable method for solving this problem in the
presence of experimental noise.

2 Problem Description

From a computational perspective, we are interested in solving the following
constraint reasoning (and optimization) problem. We will define this problem
over rational numbers, Q, rather than reals as this ensures that the problem
is within NP; if there is a solution, using rational numbers will allow us to
compactly represent and verify its correctness. We will refer to a set P C QT of
positive rationals as a pattern over positive rational. For a scaling factor s € Q,
let us define the scaled pattern sP as the pointwise scaled version of the pattern
P, namely, sP = {sp | p € P}.

Informally speaking, the problem is the following. Suppose we are given a
graph over N vertices and, associated with each vertex v;, a pattern P; consisting
of a finite set of numbers. Given K < N, the goal is to decompose these N
patterns into K patterns that form a “basis” in the following sense: each P;
must be the union of at most M scaled basis patterns (i.e., scaled versions of at
most M basis patterns must appear at each vertex), and the subgraph formed
by the vertices where the k-th basis pattern appears must be connected.

The problem, illustrated in Figure 1, is formally defined as follows:

Definition 1 (Problem: Pattern Decomposition With Scaling). Let

— G = (V,E) be an undirected graph with V = {v1,...,on},
— P={Py,..., Py} be a collection of N patterns over a finite set S C Q,
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Fig. 1. Left: Toy example illustrating Def. 1. Right: Solution for M = K =2 and § = 2

— M < K < N be positive integers, and 6 > 1 be a rational.

Determine whether there exists a collection B of K basis patterns over S and
scaling factors s;; € {0} U [1/6,6] for 1 <i < N,1 <k < K, such that:

(a) Vi: P; is the union of scaled basis patterns, i.e., P; = Ule sikBr;

(b) Vi: the number of basis patterns with a non-zero coefficient at vertex v; is at
most M, i.e., |{k| si > 0} < M; and

(c) Vk: the subgraph of G induced by Vi, = {v; € V| s > 0} is connected.

Noisy Data. In practice, one may not have accurate information about the pat-
tern P; at each vertex v;. Indeed, in our material discovery application to be
discussed shortly, it is very common for several types of noise to be present in
the patterns provided as input to this problem. For the purposes of this paper,
we will assume that there may be false negatives in the N observed patterns, but
no false positives. In other words, our models will be designed to tolerate missing
elements in patterns, by relaxing the first condition in the problem definition to
P; C U, sikBy rather than requiring a strict equality. Note that this relaxation
severely limits the propagation that a constraint enforcing this condition might
be able to perform, as we can no longer remove an element from a candidate
basis pattern By even if that element (appropriately scaled) does not appear in
the observed pattern P;. We will discuss this issue in more detail in Section 3.

Further, we will make the assumption that for every basic pattern, there
is at least one recurrent element that is not missing in every observed pattern
involving this basic pattern. This assumption is often quite realistic in many
applications where elements of a pattern are, for example, locations of peaks in
a waveform. Indeed, even though the highest peak of a given basic pattern might
not be observed as the highest one in each pattern where it appears, it is quite
unlikely to completely disappear due to noise.

Other Dimensions to the Elements of a Pattern. Depending on the particular
application under consideration, the elements of a pattern may have associated
with them other dimensions as well that an algorithm may be able to exploit.
E.g., when elements correspond to “locations” of peaks in a waveform, they
naturally have height and width of the corresponding peaks associated with
them as well. We will use these additional dimensions, specifically height, in
the material discovery application experiments in order to control the amount of
tolerable error. The machine learning part of our hybrid method will also exploit
height and width indirectly when computing the similarity between patterns.
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Fig. 2. Left: Pictorial depiction of the problem, showing 29 sample locations each cor-
responding to a composition and associated with an observed x-ray diffraction pattern.
The green, blue, yellow, and red colored regions denote pure phase regions. Also shown
are two mixed regions, formed by the overlap of a4+ § and « + §. Right: Multiplicative
shift in waveforms as one moves from one point to an adjacent one; waveforms are
shown stacked up vertically to highlight the shift.

2.1 Motivating Application: Phase Identification in Materials

A combinatorial method for discovering new materials involves sputtering three
metals (or oxides) onto a silicon wafer, resulting in a so-called thin film. The goal
is to identify structural regions in thin films. Any location on a thin film corre-
sponds to a crystal with a particular composition of the three sputtered metals
(or oxides); a number of such locations are sampled during experimentation, as
shown with black dots in Figure 2. The structural information of this crystal
lattice is usually characterized by its x-ray diffraction pattern — a continuous
waveform obtained by electromagnetic radiation. The resulting diffraction pat-
tern associated with each location represents the intensity of the electromagnetic
waves as a function of the scattering angle of radiation (see Figure 2).

The pattern observed at any location is often a superposition of a number
of basis patterns, known as phases, possibly stretched by a small multiplicative
scaling factor; the shifts are depicted in the right panel of Figure 2 where adjacent
lines correspond to waveforms observed at adjacent locations. In other words, a
thin film involves a small number of basic crystallographic phases, and the crystal
corresponding to each sampled location lies either in a pure region comprising
of just one phase, or a mized region made from a superposition of multiple,
possibly stretched phases (e.g., the waveform shown in the middle of the left
panel of Figure 2 is the superposition of the ones shown above and below it).

Given the diffraction patterns at N sampled locations, the problem is to
compute the most likely phase map, i.e., the set of phases that are involved at
any location of the thin film and in which proportion. A sub-problem, often
considered in the literature [e.g., 15], is to cluster the sampled locations such
that locations in each cluster are superpositions of the same subset of phases.

When three metals are used for this experiment, the result is referred to as a
ternary diagram. A physical constraint in a ternary diagram is that independent
of the total number of phases present, the number of phases that may appear
at any given location is at most 3. Furthermore, if 3 phases do appear at a



location, then it does not leave any degree of freedom for the aforementioned
shifts to happen, i.e., only pure regions or mixed regions comprising 2 phases
exhibit shifting.

We can cast this problem as the Pattern Decomposition With Scaling prob-
lem discussed earlier, with an additional constraint enforcing scaling factors to
be precisely 1 when 3 phases appear at a location. The idea is to pre-process
these x-ray diffraction patterns by performing peak detection, for which reliable
techniques are available in the context of materials science. This results in a
finite set of scattering angles — a pattern in our earlier notation — at which peaks
are observed at a given sampled location. Specifically, NV is the number of sam-
pled locations, G is obtained by Delaunay triangulation over the sampled points
based on their given x-y coordinates on the thin film, P is the set of such patterns
associated with each location, M = 3, ¢ is typically 1.15 (i.e., allowing shifts by
a maximum scaling factor of 15%), K is the number of underlying phases or
basis patterns we are interested in discovering. Without loss of generality, we fix
S to be the set of all scattering angles (i.e., pattern elements) at which a peak
is observed in the sampled locations.

In general, the goal from a material discovery perspective is two-fold: explain
the diffraction patterns observed at the IV locations with the fewest number K
of phases, while also minimizing the error resulting from missing peaks and other
noise in the data. We will assume for the purposes of this paper that although
we might miss some peaks (i.e., false negatives), the scattering angle where we
do observe a peak is accurate (i.e., no false positives). Given the small range of
K in reality (typically 5-8), we will take K to be a parameter of the problem
and attempt to minimize error introduced due to missing peaks. As a practically
relevant objective function, we use the sum of the estimated heights of missing
peaks. Note that “heights” and “peaks” are not part of the formal definition of
the satisfaction problem, Pattern Decomposition With Scaling. Nonetheless, this
data is readily available for this material discovery application and we use it to
enhance the problem with a realistic objective function. In fact, when discussing
the machine learning part to boost scalability, we will use for computing “simi-
larity” between locations not only the scattering angles where peaks appear but
also a discretized version of the complete waveforms.

2.2 NP-Completeness

In order to prove that the Pattern Decomposition With Scaling problem as
defined above is NP-hard, we simplify it in three steps to what is called the Set
Basis Problem, which is known to be NP-complete. First, let M = K, i.e., allow
the K basis patterns to appear at any vertex. Second, let the underlying graph
G be a clique, thereby trivially satisfying the third condition in the problem
definition (subgraph connectivity). Finally, let § = 1, thereby forcing all scaling
factors s;; to be either 0 or 1. With these three modification steps, our problem
simplifies to what is known in the literature as the Set Basis Problem, defined
as follows and known to be NP-complete [19]:



Definition 2 (Set Basis Problem [19]). Given a collection P = {P,..., Py}
of N subsets of S and an integer K satisfying 2 < K < N, is there a collection
B of K subsets of S such that for all 1 < i < N there exist B; C B such that
P, = UBeBiB?

To see that the Pattern Decomposition With Scaling problem is within NP,
we observe that given a candidate solution to the problem, namely a collection
B of K subsets of S and scaling factors s;; € Q for 1 <i < N,1 <k < K, one
can easily verify in polynomial time that all requirements of the problem are
satisfied. Note that defining the problem over QQ rather than the reals ensures
that if an instance has a solution, then there is also one with all s;; € Q, allowing
succinct representation and efficient verification of a candidate solution.

Together, these imply that this problem is NP-complete.

3 A Constraint Programming Formulation

We first describe a CP formulation of this problem assuming no errors, i.e., no
missing elements in patterns nor experimental noise in the element value. A
natural way to encode this problem is to have one variable for each element of
each of the N patterns indicating which of the K basic patterns “explains” this
element. This formulation, however, results in too many variables and also fails
to account for overlaps, i.e., that an element of an observed pattern may in fact
be explained by multiple basic patterns (since we take the union of basic pat-
terns in the problem definition). An alternative formulation can try to analyze
the N given patterns to identify which elements are shared between neighboring
vertices of G, and use this as a basis for creating basis patterns. This formulation
too results in too many variables and constraints. We present below a formu-
lation that proved to be the most successful. This formulation explicitly uses
the underlying basis patterns as the central variables, and merges sets of large
numbers of constraints into global ones in order to reduce memory consumption.

In a preprocessing step, we compute the set r;; as P; normalized by its jth
element. For example, if P5 corresponds to {1,2,4}, then r5 2 becomes {1/2,1, 2}.

Variables. We model whether a basis pattern & is present in a pattern P; using a
decision variable py;. According to the assumption mentioned in Section 2, there
is at least one element of any basis pattern that appears in all sample points
in which this basis pattern is present. As a result, if we use this element as a
normalizing one, the set of elements of this basis pattern becomes the same in all
of these sample points. We represent the normalizing element of basis pattern & in
sample point P; as py;, whose domain is {0, 1, ..., | P;|} and where value 0 denotes
that basis pattern k is not present in pattern P;. Furthermore, auxiliary Boolean
variable ay; indicates whether basis pattern k appears in P; while auziliary set
variable g represents the normalized elements of pattern k& and initially ranges
over all possible scaled elements. The domain representation used for the g;x
variables is the classical subset-bound, yet more advanced representations ([see
eg. 7, 11]) might further enhance the model.



Constraints. We first express the relationship between the auxiliary variables
ax; and the decision variables py; as follows:

(aki:0)<:>(pk¢=0) VlSkSK,lgiSn (1)

At this point, we can directly enforce that a pattern has to be composed of at
least one basis pattern, and at most M:

K
1<) au<M V1<i<n (2)

s=1

Next, anytime a pattern P; involves a particular basis pattern k, every element
of k£ has to match one of the normalized elements of P;. Formally:

(prs = J) = (qx C 7r45) VI<k<K,1<i<n,1<j<|P (3)

Nonetheless, in order to fully determine g5 from the pg;’s, we require that all
elements of a pattern appear in one of the basis patterns that compose this point.
First, if a pattern is made of only one basis pattern, their elements should be
identical, up to a scaling factor. It means that if py; is set to be equal to j, then
r;; also has to be a subset of g;. Second, if a pattern P; is made of two basic
patterns k and k', then every element of P, has to appear in ¢ or in g;,, when
normalized by their respective scaling factor. The first case translates into:

K
(i =3 AY asi=1)=(ry Cq) VI<k<KI1<i<nl1<j<I|P| (4)
s=1

while the second one entails the following equation:

K
(pri =G Aprrs =3 A Za“' = 2) = (member(ri;[j"], 1) V member (r:;[5"], qrr))
s=1

V1<kk <K1<i<n1<jj, i <|P| (5)

Similarly, we derive constraints for points that are made of g basis patterns,
where 3 < g < M. Then, we guarantee that the scaling factors of a basis pattern
belong to a valid range. For two patterns to be composed of the same basis
pattern, these constraints require that the two respective normalizing elements
are not too far apart in the pattern. This step relies as well on a preprocessing
step of the data, in order to compute the relative distances and to post the
required constraints. For a given § > 1, we consider that this preprocessing step

yields a set & = {(i, 4,4, ") 5,’5[[]7,]] <1/6Vv gi[[jj,]] > 0,1 < '} of pairs of elements

that do not satisfy this property (typically 6 < 1.15). It yields:

(pri = §) = (Presr #5') V1<k<K,(i,j4i,j)eP (6)

Finally, we implement a special-purpose global constraint, called basisPattern-
Connectivity which maintains the set of basis patterns in every connected com-
ponent. Formally, if ag;, = 1 and ag;, = 1, then there exists an undirected
path 43 — dg--+ — 44 such that ay;, = 1 for all 1 < u < ¢. We could perform
propagation based on component and bridge information [see 13, 17], however in
practice this extra filtering does not seem to justify the added overhead for our



particular problem setting. Instead we simply make sure that the aforementioned
statement is not violated. We define this constraint as:

basisPatternConnectivity({ar:|1 < i < n}) V1I<k<K (7)

During search, the branching variables are the py;s. The variable ordering using
an arbitrary BFS on G to statically order the vertices v;, and dynamically select
k such that a neighbor of v; has set its phase k, proved to be the most successful.

Symmetry Breaking. In order to break symmetries, we systematically assign
either an already existing basis pattern or the lowest one available. This means
that for example, given the three basis patterns q1, g2 and g3, and considering
a new pattern P;, the variables ps,...,pk,; must be assigned value 0. This is
reminiscent, for example, of work on the Steel Mill Slab Design [12].

3.1 Handling Errors and Noisy Data

In order to handle missing elements, we adapt constraints (3) to allow for ele-
ments of ¢, not to appear in P;, even if the sample point P; involves basis pattern
k. Therefore, the propagation of constraints (3) gets weaker, as we can no longer
filter out an element of ¢, that is anomalously missing from a sample point (see
following section). Also, to avoid a trivial solution in which all possible elements
belong to g, we introduce an optimization objective that aims to minimize ei-
ther the overall number of missing elements or the overall relative importance
of the missing elements. The importance of an element is application specific,
and in the case of our motivating application, a natural way to penalize for a
missing peak is to consider its inferred height: the higher the missing peak, the
worse the solution. Finally, note that handling missing elements does not affect
constraints (4) nor (5), as we do not allow for false positives.

Also, in order to account for noise, we introduce a precision value that repre-
sents how far off an observed value can be from its true one. Thus, in constraints
(3) to (5), when checking whether an element belongs to a set, we use this
precision to assess whether the element appears as a slightly different value.

3.2 Limitations of the Pure CP Approach: Scaling

Although this CP model captures the details of the problem very well, it scales
very poorly — especially when errors are introduced in the data in terms of
missing peaks. In Table 1, we show the running time of the CP model on (small)
instances of various sizes from our material discovery application. Experiments
were conducted using IBM ILOG CP Solver version 6.5 deployed on 3.8 GHz
Intel Xeon machines with 2GB memory running Linux 2.6.9-22.ELsmp. The time
limit used was 1,200 seconds. The observed patterns in each of these instances
can, in reality, be explained by K = 6 basic patterns. We create simpler versions
of the problem by fizing some of these basic patterns as a partial solution, leaving
K’ €{0,1,...,6} unknown basic patterns, for each of which we have a row in



Table 1. Scaling of the pure CP model, without errors (pure) and with errors. Rows:
num. of unknown basic patterns. Cols: num. of observed patterns. Timeout 1,200 sec.

N =10 N =15 N =18 N =28 N =219
pure errors pure errors pure errors pure errors pure errors
K = 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 1.1 3.5
K' =1 0.0 0.1 0.0 0.1 0.0 0.3 0.1 0.4|115.3 343.2
K = 0.0 0.2 0.0 0.3 1.0 — 1.4 — —
K' = 0.5 717.3 0.5 384.8 276.0
K’ =4 |668.5 — | 824.2 — —

K = [ _

the table (K’ = 6 is omitted as all instances timed out in this case). As we see,
for all NV, the instances go from being solvable in a fraction of a second to not
solvable in 20 minutes extremely fast. Moreover, when errors are introduced in
the form of missing peaks, the scaling behavior becomes worse. Finally, even
with a very small problem size such a N = 10 and the ideal case of no errors,
we cannot solve for all 6 (or even 5) basic patterns. It becomes evident that we
need a methodology that can allow us to scale to instances of realistic sizes (e.g.,
over 100 patterns and with K’ = 6). This will be the subject of the rest of this
paper.

4 Boosting Scalability: Exploiting Kernel-Based
Clustering to Guide the CP Formulation

The CP approach discussed thus far attempts to accurately solve the full prob-
lem under certain assumptions and, as we saw, fails to scale up to instance sizes
of interest as soon as errors are introduced. We discuss in this section how we
can leverage ideas from machine learning (ML), specifically kernel-based simi-
larity measures and clustering, in order to make the problem solving task easier
for the CP formulation. This integration of the two approaches is inspired by
their complementary strengths: While CP techniques are excellent at enforcing
detailed constraints at a local level, data-driven ML methods are more robust
to noise and good at recognizing global patterns of similarity.
The integration uses the following 4-step “divide-and-conquer” process:

i. use kernel methods to analyze the patterns P; at a global scale in order to
compute a robust similarity measure between pairs of patterns;

ii. use clustering with this similarity measure to “over-segment” the N vertices
into J clusters and choose a set V) of vertices associated with each cluster
based on their distance to the cluster centroid; the vertices in these V) are
expected to be explained by the same subset of basis patterns;

iii. solve the CP formulation, without the connectivity constraint, on the sub-
graph induced by the vertices in each V') to obtain a partial solution defined
by a collection of basis patterns BY) each of size at most M; and

iv. glue the basis patterns BY) found for the J sub-problems together using a
global CP formulation in order to obtain the full set B of K basis patterns.



4.1 Kernels as Robust Similarity Measures

Assuming D is an upper bound on the number of elements in each input pattern,
we will think of the N input patterns as the input dataset X € QV*P where
each of the N patterns is represented by its D “features” in the D-dimensional
space. One can model rich, non-linear relationships between the D base features
by instead representing the N patterns in a much larger feature space, one of
dimension L > D. Thus, instead of modeling non-linear relationships directly in
D dimensions, one achieves the same effect more easily by still modeling linear
relationships but in a much higher dimensional space, using an expanded feature
representation ¢(X) € QV*E.

The problem, of course, is that explicitly constructing this L-dimensional
space and working in it can be computationally prohibitive. Kernel methods
solve this issue by allowing us to directly model the desired inner product, i.e.,
the “similarity” measure, (¢(X), (X)), and reduce the dimensionality we must
deal with while leaving open, in principle, the possibility of even an infinite-
dimensional underlying feature expansion (L = oo). Note that this inner product
computation results in the construction of a symmetric positive semi-definite
N x N matrix, independent of the dimension L of the much expanded feature
space. This matrix is known as the kernel.

Typically used generic kernel functions include the linear or cosine kernel
xZij, the polynomial kernel (XZT-xj +1)* of degree k, and the Gaussian or radial

basis function (RBF) kernel exp(f%). Two specific material-discovery
characteristics, however, pose a big challenge when computing similarity between
x-ray diffraction waveforms — the inherent peak shifts (with multiplicative scal-
ing) and varying peak intensity or height levels. This is especially true in cases
where the presence of small peaks indicates a novel phase and the existence of
a new crystal structure. In order to address this we propose to use the dynamic
time warping technique [18] to construct a global alignment kernel. Such a ker-
nel was recently used successfully in the context of Bayesian classification [6].
The idea is to construct a kernel from minimum-cost alignment of two sequences
_ llei — ¢4?
2
row of the minimum-cost alignment matrix. We refer the reader to Damoulas
et al. [6] for further details.

X;,X; based on DTW: kprw(xi,%;) = exp( ) where c¢; is the *"

4.2 Clustering and Sample Selection

Having constructed the kernel matrix capturing similarity between the patterns
at the N vertices of our underlying graph G, we now seek to create small subsets
V@ 1 < j < J, of the vertices such that all vertices within each V) are
the unions of the same subset of basis patterns, scaled appropriately. The sub-
problems induced by these small subsets will be passed on to the CP model to be
solved exactly to discover the basic patterns appearing in each of these subsets.
Therefore, we would ideally like these subsets to be small enough to be solvable



by the CP model, and at the same time large enough so that if there is shifting
involved, the corresponding scaling factor can be recovered by the CP model.
To this end, we use k-means algorithm [5] with multiple initializations (cen-

troids of clusters) and the Euclidean distance d(k;, k;) = (SN (kin — kjn)” )1/2
as metric. We over-segment the kernel by choosing a large number of clusters
when performing k-means. The final proposed vertices, V) are chosen from

within each cluster based on their proximity to the cluster centroid.

4.3 Scaling CP: Solving Sub-Problems and Fusing Solutions

Assuming the vertices of V) are the unions of the same subset of basis patterns,
we know by definition of the problem that at most M basis patterns compose all
the patterns of these vertices. Therefore, this is in fact a pattern decomposition
problem with scaling by itself, where N = |V ()| and K = M. If this subproblem
is within the reach of the CP model (cf. Section 3.2), then we will have uncovered
M of the initial K basis patterns. Otherwise, or if our previous assumption about
the vertices of V) turns out to be wrong, the CP model will simply not be able
to solve the instance, and will then consider the next cluster of points. Hence,
every cluster may provide up to M basis patterns and contribute to a pool of
basis patterns. After taking care of redundancy within this pool (which, is in the
worst case, exponential in M), the pool is made of at most K basis patterns,
and is used to initialize the basis patterns of the global CP model, thus typically
becoming a much simpler problem (again, cf. Section 3.2).

5 Empirical Validation

In order to evaluate the performance of the hybrid method described above, we
use our material discovery application as the testbed. As discussed in Section 3.2,
the pure CP approach suffers from very poor scaling. On the other end, data-
driven approaches such as non-negative matrix factorization (NMF) used in the
literature [14] for such problems suffer, as we will show, from low accuracy — to
the point that “solutions” found by them for material discovery instances can be
meaningless. Our hybrid method avoids both of these extreme kinds of failures,
in scaling and in accuracy.

Instance Generation. We use the same underlying known phase map for the
Al-Li-Fe system [1] that was used for the instances discussed in Section 3.2.
Specifically, this is a ternary system composed of 6 phases or basis patterns,
a, 3,7, 6, €, and (; see Figure 3 for a pictorial depiction. These 6 phases appear
together at various locations in the “triangle” in different combinations to gener-
ate 7 mixed regions, such as {«, d}, {«, 7, d}, etc. Recall that each location in the
ternary diagram corresponds to a certain composition of the three constituent
elements, in this case Al, Li, and Fe and these compositions can be sampled
at various granularities. For the rest of this paper, we will focus on a realistic
instance size, 219, and a smaller instance size, 91.
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Fig. 3. Ternary system com- Fig. 4. DTW-Gaussian kernel as a similarity mea-
posed of Al Li, and Fe. sure. Left: N = 91. Right: N = 219.

For these instances, we generated synthetic x-ray diffraction data by start-
ing with known diffraction patterns of constituent phases from the JCPDS
database [1] with parameters reflecting those of a recently developed combi-
natorial crystallography technique [9]. This diffraction data was then converted
into a set of peaks to generate discrete patterns with typically 20-30 peaks. The
effect of experimental noise on the inability to detect low-intensity peaks was
simulated by the random removal of Gaussian peaks from the synthetic data
with probability proportional to the square of the inverse peak height. The total
heights of the peaks removed was provided as a parameter for instance genera-
tion. This noise model intends to legitimately reflect not only the true underlying
physics (e.g., overlapping peaks), but also experimental imperfections of the thin
film on which the metals/oxides are sputtered during experimentation.

Results. All experiments were conducted on the same machine and using the
same CP solver as in Section 3.2. We first used the DTW-Gaussian kernel as a
measure of similarity between sampled locations. Figure 4 depicts the resulting
similarity matrix for N = 91 and 219; the latter is admittedly hard to understand
visually because of too fine a granularity. A point (z,y) in this symmetric matrix
is depicted as white if x and y are deemed to be similar, and 0 otherwise; e.g., the
main diagonal, representing (x, ) similarity, is white. A similarity matrix such
as this is generally considered to be good if areas within it have clear rectangular
boundaries, thus identifying small groups of points that are similar to each other
but different from the rest of the points. Compared to other standard kernels,
we found this DTW-Gaussian kernel to perform the best.

Starting with this kernel as the similarity measure, we used k-means cluster-
ing to obtain 50 clusters and asked for 4 points closest to the resulting cluster
centroids to generate 50 very small sub-problems for the CP model. Note that
these 50 sub-problems are not necessarily disjoint. We then solved each sub-
problem with a corresponding CP model (without the connectivity constraint,
as mentioned earlier), each of which was either easily solved (average 0.4 sec)
when feasible or discarded after 30 seconds if no solution was found in that
time. Note that we need to solve a sub-problem this way first for M = 1 and
then for M = 2, which takes 60 seconds in the worst case. When solved, each
of them identified 1 or 2 basic patterns or phases; recall that the sub-problem
data is insufficient to distinguish between 1 and 3 basic patterns. In the final
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Fig. 5. Results: appearance (white) or not (black) of the 6 phases underlying the Al-Li-
Fe system. Top: the true values. Middle: phases found by our hybrid method. Bottom:
phases found by the competing NMF approach.

‘global’ phase, we used these partial solutions to initialize a full CP model of the
complete instance as discussed in Section 4.3.

The resulting 6 basic patterns found by the hybrid model are depicted in
Figure 5, where the spread of each basis pattern over the composition space
appears in white. The top line shows the true answer, which we know from the
construction of the instance. The middle row shows the result as produced by
our hybrid method. We observe that this solution is extremely close to the true
answer in each one of the 6 basic patterns, except for some noise at the bound-
aries, and it translates into a precision/recall performance across all sampled
points, averaged over individual phases of 77.4% / 84.2%.

The bottom row shows the results obtained by the NMF approach recently
proposed for this problem. Comparatively, it results in a precision/recall perfor-
mance of 39.5% / 77.9%. We see that this “solution” is in fact nowhere close to
the true answer. Moreover, it violates the hard constraints imposed by physics,
such as connectivity (violated for patterns @ and ¢) and no more than 3 basis
patterns appearing at any location (violated essentially everywhere). This high-
lights the inability of purely data-driven approaches to effectively deal with hard
constraints — a clear strength of CP based approaches.

On the instance with fewer locations (91), we also obtained similar results
(and faster) but we omit them here due to lack of space.

6 Conclusion

We explored the use of CP techniques to solve a challenging and interesting
problem studied for the most part by researchers in data-driven sub-fields of
computer science, or by application domain experts such as physicists in the
case of our motivating application — a deeper understanding and discovery of
new materials. Our CP model captures the details of the Pattern Decomposition
With Scaling problem much better than, say, a matrix factorization or clustering
approach, but at the high expense of poor scaling. We therefore introduce a
hybrid model that avoids the pitfalls of CP and ML individually, and results in
meaningful solutions respecting hard constraints while preserving scalability.
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