OOPSLA 17 Artifact - Step By Step Guide

Fabian Muehlboeck, Cornell University
Ross Tate, Cornell University
({fabianm,ross}@cs.cornell.edu)

Paper: Sound Gradual Typing is Nominally Alive and Well

Note: We provide our Artifact for both a Windows and a Ubuntu environ-
ment. In cases where the Windows setup differs from the Ubuntu setup, the
text applying to Windows is added between [brackets] (except for discussions of
command-line arguments, where brackets have the usual semantics of denoting
placeholders). The instructions are phrased assuming you are using on of the
provided Virtual Machines. Specific locations of things may differ if you use the
standalone setup.

1 Running the Benchmarks

1.1 Steps
e Run run_benchmarks.sh [run_all benchmarks.bat]| on the Desktop

e NOTE: the output of the scripts may contain some error messages about
files either not or already existing. These are most likely due to the simple
way we tried to ensure to make the benchmarks re-runnable - we move all
result files from previous runs (which may not exist) into a new backup
folder (which may already exist).

1.2 Description

The purpose of this artifact is to first and foremost allow others to reproduce
the results of our benchmarks. Hence, the user’s home folder [the desktop]
contains the folder BENCHMARKS containing all the benchmark programs run-
ning reasonably on Ubuntu [all our benchmark programs] (it turns out that
the C# programs are written in a way that neither Mono nor the newer Core
CLR deal with very well. This is probably because no one would seriously
write C# programs like that. In our case, we wrote the programs this way
because we are trying to stay close to the Racket originals). The shell [batch]
script on the desktop should run all programs and leave csvs with the running
times and bar graph/scatterplot images (depending on the benchmark) in the
BENCHMARKS folder. There is a shell [batch] script for each kind of benchmark
in the BENCHMARKS folder that can be run individually.



On a modern desktop, the whole benchmark suite should take around 1-3
days to complete (mostly due to Snake; Sieve takes a few hours and the Python-
related benchmarks should be completed within minutes). The results usually
show little variance, so the process can be sped up by just running the Snake
and Sieve benchmarks 1 instead of 10 times. For that, all the lines calling
Benchmark.exe in the files {sieve,snake}.sh[.bat] need to have the argument
“n 10” changed to “n 1”.

2 Comparing the Programs in Different Lan-
guages

2.1 Steps

e Racket:Nom : compare the files NG_sieve/annotated/*.ng with their
counterparts in racket_sieve/annotated (similar for snake).

e Python:Nom : compare the file NG_bm_go/annotated/bm_go_main.ng with
its counterpart py_bm_go/typed-source/bm_go.py (similar for other python-
based benchmarks).

e C#:Nom : compare the files NG_sieve/annotated/*.ng with their coun-
terparts in csharp_sieve/annotated (similar for snake).

2.2 Description

Since we took our Benchmarks from Benchmarking suites created for other
gradually typed languages and compare the results of Nom with the results for
the respective languages, an obvious question is how the source and behavior of
our programs compare.

2.2.1 Nom and Racket

The two Racket programs we adapted from the benchmark suite of Takikawa et
al., Snake and Sieve, are relatively simple programs that do not rely on very
complicated types or contracts, thus, the basic layout of the programs should
strike the reader as similar. However, the main point for why we think that
there is a reasonable comparison to make is that we took care to make the Nom
programs imiate the number of transitions between typed and untyped code.
This can be verified in two steps: first, the reader should observe that the control
flow of the program is the same in the Nom versions as in the Racket versions,
in the sense that there is a corresponding method for each Racket function in
the corresponding file and control flow works the same way. The only exception
is a recursive function in Sieve — stream-get — that we had to convert into
an iterative loop because we don’t have tail call elimination. The function does
call itself, thus there is no typed/untyped module transition that is lost this
way. Second, since Nom’s gradual typing is more fine-grained than Racket’s



(i.e. Nom allows to changed “typedness” for individual values, while in Racket
a whole module is either typed or untyped), type information from typed code
might “leak” into untyped code and thus eliminate checks. We combat this by
casting values where type information would play a role that are coming from
other modules to Dyn in the unannotated versions of each module to mimic
Racket’s behavior more closely.

2.2.2 Nom and Reticulated Python

Python is a lot closer to Nom, so the programs we adapted from Vitousek et al.
are a lot closer to their source material. Note that the python files used for the
benchmarks are already compiled down to Python from Reticulated Python, so
we included the Reticulated python files in a folder called “typed-source” in each
of the python benchmark folders. The biggest differences you should see are:
first, that Nom doesn’t feature generics, so the “raw” list class ArrayList has
to suffice for all list-like types. Second, since Nom does not have implicit Nulls,
static fields and constructors are a little more restricted. In particular, while all
newly introduced fields have to be initialized before the super-constructor call,
the use of the this pointer is disallowed until afterwards. Thus, as an example
from the go benchmark, the classes EmptySet and Board each have a field of
the other type, and EmptySet uses a structural type specifying a particular
method of Board (which we model with an interface) as a constructor argument.
Therefore, we created a dummy class implementing said interface, an instance
of which is given to the EmptySet constructor that is called within Board’s
constructor when it initializes its fields. An alternative to this strategy would
have been to use the type modifier ! for Board’s field to be able to leave it null
until the this pointer is available. This modifier essentially indicates that the
field may contain null or an EmptySet, but can optimistically be treated as an
EmptySet — however, uses of it will always have a run-time type check inserted
to make sure that the value is indeed not null. Some other locations use the !
modifier, such as the reference field in the Square class in Go.

2.2.3 C#

The C+# programs are essentially translated 1:1 from Nom. C# does have
lambdas and generic types, but they do not interact well with the gradual
guarantee (which is important for the arbitrary mixing of modules to work). In
any case, a “real” C# program would be written with a completely different
structure, but the same goals as for Nom apply (have the same behavior in terms
of typed/untyped transitions), and the translation from Nom should satisfy that
goal.



3 Checking the Output of the Benchmarks

3.1 Steps

e Look at images corresponding to the benchmarks in the BENCHMARKS folder.
They should match the information in the graphs in our paper (the python-
related benchmarks are separate by language for scaling reasons and sepa-
rate by benchmark to make the scripts more modular; the important part
is whether the typed or untyped version of the program is faster).

e Look at the two additional images sieve_stats.png and snake_stats.png
to verify our claims about matching the Racket version’s level of typed/un-
typed interaction.

3.2 Description

The first set of images simply plots the running times of each configuration for
the different benchmarks and languages. As Snake has 256 configurations, the
configurations are grouped by the number of typed modules in a scatter-plot,
just like in the paper.

The last two images are not in the paper, but we mention that we verified
that the translated programs have levels of interaction between the modules
and thus typed and untyped code that match those reported by Takikawa et al.
(they put the number of interactions between modules in those two benchmarks
into a range between one million and one billion). We don’t know how to
easily produce those counts for Racket, so we are just trying to get into the
right ballpark. The figures are based on the number of times any object’s type
identifier is checked by the run time. This also happens in some cases in typed
code (such as for interface method table lookups), but the increase of such cases
over typed code means some sort of type checking or type-based decision making
is going on, and for both sieve and snake, this difference is in the hundreds of
millions (note the scales of the figures). A single transition between typed and
untyped code may involve multiple checks and type lookups, but as the number
of arguments of a function is typically low, the multiplier is probably 2 or 3,
which still remains in the upper part of the range suggested by Takikawa et al.
Together with the structural match between the Nom and Racket versions of
the programs, these numbers should give us confidence that the programs are
comparable with respect to being a stress-test for gradual typing.

4 Technicalities

Refer to this section if things go wrong or you want to try out things that are
not included in the benchmark by default. These explanations should be enough
to understand what the shell [batch| scripts are doing and how to edit them if
necessary.



4.1 Important Programs and Scripts
4.1.1 Benchmark.exe

Takes care of creating all configurations of a program, compiling and running
them, interpreting their timing output and creating standardized result csvs.
It expects there to be at least subfolder “annotated” and “unannotated” in a
benchmark folder, containing the same file names. There can be a “shared”
folder whose contents are copied into every configuration. Benchmark.exe will
create another subfolder called “benchmark” that will in turn contain a subfolder
for every configuration, plus the “.csv” files containing the timings of every run.
It’s command-line arguments are as follows:

e “l] [Language]”: one of:

— ng-bash [ng]: Nom

— py3 [py]: Python (NOTE: the Benchmark.exe shipped with the orig-
inal Artifact only knows py and interprets it as using the “python3”
command as a hack. That is, it will not work with Python on Win-
dows, nor will it work with the new Ubuntu-scripts)

— cs-momno [cs]: CSharp
— ng-bash-stats [ng-stats|: Nom with run-time statistics collection
turned on (do not use to measure timings)

e ‘“r [Benchmark-Root-Dir]”: the root directory of the benchmark to run.
Usually a subfolder of BENCHMARKS, e.g. “-r NG_sieve”

e “n [num-of-runs]”: the number of runs of a particular benchmark (pre-
sumably to take the average timing afterward).

[

s”: instructs the benchmarker to skip the compilation step. It will
assume that the benchmark subdirectory of the benchmark is already in
a state where all configurations have been compiled and are ready for

execution

“ )

e “-¢”: cleanup. The benchmarker will delete files that would be rebuilt in
another compilation step, such as compiled executables, after running the
benchmark.

“ 7

e “-w”: nowait. By default, the benchmarker waits for some user input
at the end of its run. This is undesirable for scripts that run multiple
benchmarks, so “-w” should be used for scripts.

e “—no-parallelization”. By default, the benchmarker tries to run several
compiler instances for different configurations in parallel. This has caused
problems for snake, so be advised to use this flag there. The actual timed
runs of compile programs are never run in parallel.

e “~toolroot [racket-binary-dir]”. Can be used to use a different version
of racket than the system default. Should point to wherever raco and
racket can be found.



4.1.2 NominalGradual.exe

This is the Nom compiler. It takes all “.ng” files in a folder and generates C
code corresponding to the program composed of those “.ng” files. A C compiler
will need to compile those C files into an actual executable. The Nom compiler
has the following command-line arguments (it might show more in the usage
information, but most of those are defunct):

[13 )

e ‘“r [root-dir]”: the directory in which the compiler should look for “.ng
files

e “m [main-class-name = Main]”: the name of the class that contains the
main method. By default it is Main.

.

s”: turns on the collection of run-time statistics (used by the “-stats”
versions of Nom in Benchmark.exe). The final executable generated by
the C compiler will create a file called statsout.txt [statsout-win. txt]
in the directory where it was run at the end of its run containing those
statistics. They may not necessarily all be easy to interpret.

4.2 plot.py and scatterplot.py

These scripts are used to generate the images representing the benchmark tim-
ings. plot.py creates bar graphs, scatterplot.py creates scatterplots, meant
for benchmarks with large numbers of configurations that should be grouped by
the number of typed modules (i.e. snake). Both use the following scheme for
command-line arguments: the first argument is either “SHOW?” or a file name
for an image (e.g. “image.png”) that tells the script where to direct the output.
“SHOW?” will let the script immediately display the graph, otherwise it will
save the graph to the given file name. After the first argument, arguments come
in pairs. The first is a csv file as output by Benchmark.exe containing timing
data. The second is the display name of the language to be used in the graph’s
legend. An example of such a pair is “ng_sieve.csv Nom”.

4.3 process-stats.py

This script collects the run-time statistics generated by using a “-stats”-version
of Nom in Benchmark.exe from all the configurations of a given benchmark
(second argument, as in “r” for Benchmark.exe) and creates a graph of one
of the lines of the statistics (the fourth argument is the 0-based line number
in the statistics file). If there are more than 16 configurations, the graph is
a scatterplot, otherwise a bar chart. The first argument is the file name of
the image that the graph should be saved to or “SHOW?”, as in plot.py and
scatterplot.py. The third argument is the file name of the statistics file,
which depends on the platform. It is statsout.txt [statsout-win.txt].



4.4 [lang]ship folders and benchmark-util

The folders csship, ngship, and pyship contain files that are copied into every
benchmark configuration of the respective languages. Racket needs the folder
benchmark-util to be registered as a module, using the command raco link
benchmark-util in the BENCHMARKS folder (the shipped VMs already have this
done, and the scripts that run all benchmarks make sure it is done, too). The
csship and ngship may be important if issues arise, especially when setting up
on Windows. They contain the scripts to compile C# and C code, which on
Windows have to set up the compiler environment first (call vcvarsall x64).
In some Windows setups, this may need to be adjusted. The benchmarker
usually uses the fastcompile scripts. The compile scripts don’t optimize and
add debugging symbols in case those are needed.



