
Histogram Refinement for Content-Based Image Retrieval

Greg Pass Ramin Zabih∗

Computer Science Department
Cornell University
Ithaca, NY 14853

gregpass,rdz@cs.cornell.edu
http://www.cs.cornell.edu/home/rdz/refinement.html

Abstract
Color histograms are widely used for content-based

image retrieval. Their advantages are efficiency, and
insensitivity to small changes in camera viewpoint.
However, a histogram is a coarse characterization of
an image, and so images with very different appear-
ances can have similar histograms. We describe a
technique for comparing images called histogram re-
finement, which imposes additional constraints on his-
togram based matching. Histogram refinement splits
the pixels in a given bucket into several classes, based
upon some local property. Within a given bucket, only
pixels in the same class are compared. We describe a
split histogram called a color coherence vector (CCV),
which partitions each histogram bucket based on spa-
tial coherence. CCV’s can be computed at over 5 im-
ages per second on a standard workstation. A database
with 15,000 images can be queried using CCV’s in un-
der 2 seconds. We demonstrate that histogram refine-
ment can be used to distinguish images whose color
histograms are indistinguishable.

1 Introduction
Many applications require methods for comparing

images based on their overall appearance. Color his-
tograms are a popular solution to this problem, and
are used in systems like QBIC [2] and Chabot [6].
Color histograms are computationally efficient, and
generally insensitive to small changes in camera po-
sition. However, a color histogram provides only a
very coarse characterization of an image; images with
similar histograms can have dramatically different ap-
pearances. For example, the images shown in figure 1
have similar color histograms.

In this paper we describe a method which imposes
additional constraints on histogram based matching.
In histogram refinement, the pixels within a given
bucket are split into classes based upon some local
property. Split histograms are compared on a bucket
by bucket basis, similar to standard histogram match-
ing. Within a given bucket, only pixels with the same
property are compared. Two images with identical
color histograms can have different split histograms;

∗To whom correspondence should be addressed

thus, split histograms create a finer distinction than
color histograms. This is particularly important for
large image databases, in which many images can have
similar color histograms.

Figure 1: Two images with similar color histograms

We have experimented with a split histogram called
a color coherence vector (CCV), which partitions pix-
els based upon their spatial coherence. A coherent
pixel is part of some sizable contiguous region, while
an incoherent pixel is not. While the two images
shown in figure 1 have similar color histograms, their
CCV’s are very different.1 For example, red pixels
appear in both images in similar quantities. In the
left image the red pixels (from the flowers) are widely
scattered, while in the right image the red pixels (from
the golfer’s shirt) form a single coherent region.

We begin with a review of color histograms. In sec-
tion 3 we describe histogram refinement, and present
two examples that capture spatial information. Sec-
tion 4 provides examples of refinement-based image
queries and shows that they can give superior results
to color histograms. We compare our work with some
recent algorithms [5, 8, 9, 10] that also combine spatial
information with color histograms.

2 Color Histograms
Color histograms are frequently used to compare

images. Examples of their use in multimedia appli-
cations include scene break detection and querying a
database of images [7, 6, 2]. Color histograms are pop-
ular because they are trivial to compute, and tend to

1The color images used in this paper can be found at
http://www.cs.cornell.edu/home/rdz/refinement.html.



be robust against small changes in camera viewpoint.
For example, Swain and Ballard [12] describe the use
of color histograms for identifying objects. Stricker
and Swain [11] analyze the information capacity of
color histograms.

We will assume that all images are scaled to con-
tain the same number of pixels M . We discretize the
colorspace of the image such that there are n distinct
(discretized) colors. A color histogram H is a vector
〈h1, h2, . . . , hn〉, in which each bucket hj contains the
number of pixels of color j in the image. Typically
images are represented in the RGB colorspace, with a
few of the most significant bits per color channel.

For a given image I, the color histogram HI is a
compact summary of the image. A database of im-
ages can be queried to find the most similar image to
I, and can return the image I ′ with the most similar
color histogram HI′ . Color histograms are typically
compared using the L1-distance or the L2-distance,
although more complex measures have also been con-
sidered [4].

3 Histogram Refinement
In histogram refinement the pixels of a given bucket

are subdivided into classes based on local features.
There are many possible features, including texture,
orientation, distance from the nearest edge, relative
brightness, etc. Histogram refinement prevents pixels
in the same bucket from matching each other if they
do not fall into the same class. Pixels in the same class
can be compared using any standard method for com-
paring histogram buckets (such as the L1 distance).
This allows fine distinctions that cannot be made with
color histograms.

As a simple example of histogram refinement, con-
sider a positional refinement where each pixel in a
given color bucket is classified as either “in the cen-
ter” of the image, or not. Specifically, the centermost
75% of the pixels are defined as the “center”. This
produces a split histogram in which the pixels of color
buckets are loosely constrained by their location in
the image. The resulting split histograms can be com-
pared using the L1 distance. We will call this simple
form of histogram refinement centering refinement.
Color coherence vectors

CCV’s are a more sophisticated form of histogram
refinement, in which histogram buckets are partitioned
based on spatial coherence. Our coherence measure
classifies pixels as either coherent or incoherent. A
coherent pixel is a part of a sizable contiguous region,
while an incoherent pixel is not. A color coherence
vector represents this classification for each color in
the image.

The initial stage in computing a CCV is similar to
the computation of a color histogram. We first blur
the image slightly by replacing pixel values with the
average value in a small local neighborhood (currently
including the 8 adjacent pixels). We then discretize
the colorspace, such that there are only n distinct col-
ors in the image.

The next step is to classify the pixels within a given
color bucket as either coherent or incoherent. A coher-
ent pixel is part of a large group of pixels of the same

color, while an incoherent pixel is not. We determine
the pixel groups by computing connected components.
A connected component C is a maximal set of pixels
such that for any two pixels p, p′ ∈ C, there is a path
in C between p and p′. We compute connected com-
ponents using 4-connected neighbors within a given
discretized color bucket. We classify pixels as either
coherent or incoherent depending on the size in pixels
of its connected component. A pixel is coherent if the
size of its connected component exceeds a fixed value
τ ; otherwise, the pixel is incoherent.

For a given discretized color, some of the pixels
with that color will be coherent and some will be in-
coherent. Let us call the number of coherent pixels of
the j’th discretized color αj and the number of inco-
herent pixels βj . Clearly, the total number of pixels
with that color is αj + βj , and so a color histogram
would summarize an image as 〈α1 + β1, . . . , αn + βn〉 .
Instead, for each color we compute the pair (αj , βj)
which we will call the coherence pair for the j’th color.
The color coherence vector for the image consists of
〈(α1, β1) , . . . , (αn, βn)〉 . This is a vector of coherence
pairs, one for each discretized color.

In our experiments, all images were scaled to con-
tain M = 38, 976 pixels, and we have used τ = 300
pixels (so a region is classified as coherent if its area is
about 1% of the image). With this value of τ , an av-
erage image in our database consists of approximately
75% coherent pixels, with a standard deviation of 11%.

Two images I, I ′ can be compared using their
CCV’s, for example by using the L1 distance. Let the
coherence pairs for the j’th color bucket be (αj , βj) in
I and

(
α′

j , β
′
j

)
in I ′. Using the L1 distance to compare

CCV’s, the j’th bucket’s contribution to the distance
between I and I ′ is

∆CCV =
∣∣(αj − α′

j)
∣∣ +

∣∣(βj − β′
j)

∣∣ . (1)

Note that when using color histograms to compare I
and I ′, the j’th bucket’s contribution is

∆CH =
∣∣(αj + βj) − (α′

j + β′
j)

∣∣ . (2)

It follows that CCV’s create a finer distinction than
color histograms. A given color bucket j can contain
the same number of pixels in I as in I ′, but these pixels
may be entirely incoherent in I and entirely coherent
in I ′ (i.e., α = β′ = 0). Formally, ∆CH ≤ ∆CCV
follows from equations 1 and 2, and the fact that the
L1 distance obeys the triangle inequality.

4 Experimental Results
We have implemented histogram refinement, and

have used it for image retrieval from a large database.
Our database consists of 14,554 images, which are
drawn from a variety of sources. Our largest sources
include the 11,667 images used in Chabot [6], the 1,440
images used in QBIC [2], and a 1,005 image database
available from Corel. In addition, we included a few
groups of images in PhotoCD format. Finally, we have
taken a number of MPEG videos from the Web and
segmented them into scenes. We have added one or



two images from each scene to the database, totaling
349 images. The image database thus contains a wide
variety of imagery.

We have compared our results with a number of
color histogram variants. These include the L1 and
L2 distances, with both 64 and 512 color buckets.
We include a small amount of smoothing as it em-
pirically improved performance. On our database, the
L1 distance with the 64-bucket RGB colorspace gave
the best results, and is used as a benchmark.

Hand examination of our database revealed 75
pairs of images which contain different views of
the same scene. Examples are shown in figures 2
and 3. One image is selected as a query image,
and the other represents a “correct” answer. In each
case, we have shown where the second image ranks,
when similarity is computed using color histograms
or using histogram refinement. Specifically, results
are shown using CCV’s, centering refinement, and
a successive refinement technique described in sec-
tion 6.1. The color images shown are available at
http://www.cs.cornell.edu/home/rdz/refinement.html.
4.1 Centering refinement results

In 69 of the 75 cases, centering refinement pro-
duced better results, while in 4 cases it produced worse
results (there were 2 cases where the ranks did not
change). The average change in rank due to center-
ing refinement was an improvement of 55 positions
(this included all 75 cases). The average percentage
change in rank was an improvement of 41%. In the
69 cases where centering refinement performed bet-
ter than color histograms, the average improvement
in rank was 60 positions, and the average percentage
improvement was 49%. In the 4 cases where color his-
tograms performed better than centering refinement,
the average rank improvement was 10 positions. We
have not yet analyzed these 4 cases to determine why
centering refinement fails.

To analyze the statistical significance of this data,
we formulate the null hypothesis H0 which states that
centering refinement is equally likely to cause a posi-
tive change in ranks (i.e., an improvement) or a neg-
ative change. We will discard the 2 ties to simplify
the analysis. Under H0, the expected number of pos-
itive changes is 36.5, with a standard deviation of√

73/2 ≈ 4.27. The actual number of positive changes
is 69, which is more than 7.6 standard deviations
greater than the number expected under H0. We can
therefore reject H0 at any standard significance level
(such as 99.9%).
4.2 CCV results

In 68 of the 75 cases, CCV’s produced better re-
sults, while in 7 cases they produced worse results.
The average change in rank due to CCV’s was an im-
provement of 68 positions (note that this included the
7 cases where CCV’s do worse). The average percent-
age change in rank was an improvement of 35%. In the
68 cases where CCV’s performed better than color his-
tograms, the average improvement in rank was 77 po-
sitions, and the average percentage improvement was
56%. In the 7 cases where color histograms performed
better, the average improvement was 17 positions.

The null hypothesis H0 states that CCV’s are
equally likely to cause a positive change in ranks (i.e.,
an improvement) or a negative change. Under H0,
the expected number of positive changes is 37.5, with
a standard deviation of

√
75/2 ≈ 4.33. The actual

number of positive changes is 68, which is more than 7
standard deviations greater than the number expected
under H0. We can therefore reject H0 at any standard
significance level (such as 99.9%).

When CCV’s produced worse results, it was always
due to a change in overall image brightness (i.e., the
two images were almost identical, except that one was
brighter than the other). Because CCV’s use dis-
cretized color buckets for segmentation, they are more
sensitive to changes in overall image brightness than
color histograms. We believe that this difficulty can
be overcome by using a better colorspace than RGB,
as we discuss in section 6.2.

4.3 Efficiency
We have experimented with a number of different

techniques for histogram refinement. CCV’s are the
most computationally expensive method of these, and
will be our focus in discussing efficiency.

There are two phases to the computation involved
in querying an image database. First, when an im-
age is inserted into the database, a CCV must be
computed. Second, when the database is queried,
some number of the most similar images must be re-
trieved. Most methods for content-based indexing in-
clude these distinct phases. For both color histograms
and CCV’s, these phases can be implemented in linear
time with a single pass over the image.

We ran our experiments on a 50 MHz SPARCsta-
tion 20, and provide the results from color histogram-
ming for comparison. Color histograms can be com-
puted at 67 images per second, while CCV’s can be
computed at 5 images per second. Using color his-
tograms, 21,940 comparisons can be performed per
second, while with CCV’s 7,746 can be performed
per second. The images used for benchmarking are
232×168. Both implementations are preliminary, and
the performance can definitely be improved.

5 Related Work
Our work has focused on the use of spatial infor-

mation to refine color histograms. Recently, several
authors have proposed algorithms for comparing im-
ages that combine spatial information with color his-
tograms. Hsu et al. [5] attempts to capture the spatial
arrangement of the different colors in the image, in
order to perform more accurate content-based image
retrieval. Rickman and Stonham [8] randomly sam-
ple the endpoints of small triangles and compare the
distributions of these triplets. Smith and Chang [9]
concentrate on queries that combine spatial informa-
tion with color. Stricker and Dimai [10] divide the
image into five partially overlapping regions and com-
pute the first three moments of the color distributions
in each image. We will discuss each approach in turn.

Hsu [5] begins by selecting a set of representative
colors from the image. Next, the image is partitioned



Histogram: 198. Centering refinement: 42. CCV: 33. Successive refinement: 6.

Histogram: 78. Centering refinement: 54. CCV: 12. Successive refinement: 7.

Histogram: 119. Centering refinement: 60. CCV: 36. Successive refinement: 25.

Histogram: 38. Centering refinement: 17. CCV: 4. Successive refinement: 1.

Figure 2: Example queries with their partner images, plus ranks under various methods. Lower ranks indicate
better performance.



Histogram: 88. Centering refinement: 35. CCV: 20. Successive refinement: 13.

Histogram: 310. Centering refinement: 214. CCV: 177. Successive refinement: 160.

Histogram: 411. Centering refinement: 282. CCV: 84. Successive refinement: 56.

Histogram: 50. Centering refinement: 37. CCV: 27. Successive refinement: 22.

Figure 3: Additional example queries with ranks. Lower ranks indicate better performance.



into rectangular regions, where each region is pre-
dominantly a single color. The partitioning algorithm
makes use of maximum entropy. The similarity be-
tween two images is the degree of overlap between re-
gions of the same color. Hsu presents results from a
database with 260 images, which show that their ap-
proach can give better results than color histograms.

While the authors do not report running times,
it appears that Hsu’s method requires substantially
more computation than the approach we describe. A
CCV can be computed in a single pass over the image,
with a small number of operations per pixel. Hsu’s
partitioning algorithm in particular appears much
more computationally intensive than our method.
Hsu’s approach can be extended to be independent
of orientation and position, but the computation in-
volved is quite substantial. In contrast, our method is
naturally invariant to orientation and position.

Rickman and Stonham [8] randomly sample pixel
triples arranged in an equilateral triangle with a fixed
side length. They use 16 levels of color hue, with non-
uniform quantization. Approximately a quarter of the
pixels are selected for sampling, and their method
stores 372 bits per image. They report results from
a database of 100 images.

Smith and Chang’s algorithm also partitions the
image into regions, but their approach is more elabo-
rate than Hsu’s. They allow a region to contain multi-
ple different colors, and permit a given pixel to belong
to several different regions. Their computation makes
use of histogram back-projection [12] to back-project
sets of colors onto the image. They then identify color
sets with large connected components.

Smith and Chang’s image database contains 3,100
images. Again, running times are not reported, al-
though their algorithm does speed up back-projection
queries by pre-computing the back-projections of cer-
tain color sets. Their algorithm can also handle cer-
tain kinds of queries that our work does not address;
for example, they can find all the images where the
sun is setting in the upper left part of the image.

Stricker and Dimai [10] compute moments for each
channel in the HSV colorspace, where pixels close to
the border have less weight. They store 45 floating
point numbers per image. Their distance measure for
two regions is a weighted sum of the differences in
each of the three moments. The distance measure
for a pair of images is the sum of the distance be-
tween the center regions, plus (for each of the 4 side
regions) the minimum distance of that region to the
corresponding region in the other image, when rotated
by 0, 90, 180 or 270 degrees. Because the regions over-
lap, their method is insensitive to small rotations or
translations. Because they explicitly handle rotations
of 0, 90, 180 or 270 degrees, their method is not af-
fected by these particular rotations. Their database
contains over 11,000 images, but the performance of
their method is only illustrated on 3 example queries.
Like Smith and Chang, their method is designed to
handle certain kinds of more complex queries that we
do not consider.

6 Extensions
There are a number of ways in which our histogram

refinement could be extended and improved. One
generalization is to further subdivide split histograms
based on additional features; we refer to this process
as successive refinement. Another extension centers
on improving the choice of colorspace.
6.1 Successive refinement

In successive refinement the buckets in a split his-
togram are further subdivided based on additional fea-
tures. Much as we distinguish between pixels of sim-
ilar color by coherence, we can distinguish between
pixels of similar coherence by some additional feature.
We can apply this method repeatedly; each refinement
imposes an additional constraint on what it means for
two pixels to be similar.

We have implemented a simple successively refined
histogram. A color histogram was first split with co-
herence constraints (to create a CCV). Successive re-
finement was enforced on both the coherent and in-
coherent pixels of the CCV. We used the centering
refinement introduced in section 3. With successive
refinement, pixels are divided into four classes based
on coherence versus incoherence, and on whether or
not they were in the centermost 75% of the image.
The L1 distance was used as a comparison measure.
Examples of the successively refined histogram’s per-
formance are shown in figures 2 and 3. These prelim-
inary results seem promising.

We have also investigated successive refinement
based on intensity gradients. Again, the initial re-
finement was based on coherence, and the successive
refinement was enforced identically on coherent and
incoherent pixels. We have further classified pixels
based on the gradient magnitude or on the gradient
direction. The results we obtained are quite prelimi-
nary, but they seem to indicate a statistically signifi-
cant improvement over CCV’s.

The best system of constraints to impose on the
image is an open issue. Any combination of features
might give effective results, and there are many possi-
ble features to choose from. However, it is possible to
take advantage of the temporal structure of a succes-
sively refined histogram. One feature might serve as
a filter for another feature, by ensuring that the sec-
ond feature is only computed on pixels which already
possess the first feature.

For example, the perimeter-to-area ratio can be
used to classify the relative shapes of color regions.
If we used this ratio as an initial refinement on color
histograms, incoherent pixels would result in statisti-
cal outliers, and thus give questionable results. This
feature is better employed after the coherent pixels
have been segregated. Refining a histogram not only
makes finer distinctions between pixels, but functions
as a statistical filter for successive refinements.
6.2 Choice of colorspace

Many researchers spend considerable effort on se-
lecting a good set of colors. Hsu [5], for example,
assumes that the colors in the center of the image
are more important than those at the periphery, while
Smith and Chang [9] use several different thresholds to



extract colors and regions. A wide variety of different
colorspaces have also been investigated for content-
based image retrieval, such as the opponent-axis col-
orspace [12] and the Munsell colorspace [2].

The choice of colorspace is a particularly signifi-
cant issue for CCV’s, since they use the discretized
color buckets to segment the image. A perceptually
uniform colorspace, such as CIE Lab, should result in
better segmentations and improve the performance of
CCV’s. A related issue is the color constancy prob-
lem, which causes objects of the same color to ap-
pear rather differently depending upon the lighting
conditions. The simplest effect of color constancy is a
change in overall image brightness; this is responsible
for the negative examples obtained in our experiments
with CCV’s. Standard histogramming methods are
sensitive to image gain. More sophisticated methods,
such as color ratio histograms [3] or the use of color
moments [10], might alleviate this problem. These
methods, like most proposed improvements to color
histograms, can also be used in histogram refinement.
For example, color moments could be computed sepa-
rately for coherent and incoherent pixels.

7 Conclusions
We have described a method for imposing addi-

tional constraints on histogram based matching called
histogram refinement. This idea can be extended by
placing further constraints on the split histogram it-
self. Both histogram refinement and successive refine-
ment are general methods for improving the perfor-
mance of histogram based matching. If the initial his-
togram is a color histogram, and it is refined based
on coherence, then the resulting split histogram is a
CCV. But there is no requirement that this refine-
ment be based on coherence, or even that the initial
histogram be based on color.

Most research in content-based image retrieval has
focused on query by example (where the system au-
tomatically finds images similar to an input image).
However, other types of queries are also important.
For example, it is often useful to search for images
in which a subset of another image (e.g. a particu-
lar object) appears. This would be particularly useful
for queries on a database of videos. One approach to
this problem might be to generalize histogram back-
projection [12] to separate pixels based on spatial co-
herence, or some other local property.

It is clear that larger and larger image databases
will demand more complex similarity measures. This
added time complexity can be offset by using efficient,
coarse measures that prune the search space by remov-
ing images which are clearly not the desired answer.
Measures which are less efficient but more effective can
then be applied to the remaining images. Baker and
Nayar [1] have begun to investigate similar ideas for
pattern recognition problems. To effectively handle
large image databases will require a balance between
increasingly fine measures (such as histogram refine-
ment) and efficient coarse measures.

Acknowledgments
We wish to thank Virginia Ogle for giving us access

to the Chabot imagery, and Thorsten von Eicken for
supplying additional images. Greg Pass has been sup-
ported by Cornell’s Alumni-Sponsored Undergraduate
Research Program. We also thank Vera Kettnaker and
Justin Miller for helping produce the data.

References
[1] Simon Baker and Shree Nayar. Pattern rejection.

In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 544–549,
1996.

[2] M. Flickner et al. Query by image and video
content: The QBIC system. IEEE Computer,
28(9):23–32, September 1995.

[3] Brian V. Funt and Graham D. Finlayson. Color
constant color indexing. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
17(5):522–529, May 1995.

[4] J. Hafner, H. Sawhney, W. Equitz, M. Flickner,
and W. Niblack. Efficient color histogram index-
ing for quadratic form distance functions. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 17(7):729–736, July 1995.

[5] Wynne Hsu, T. S. Chua, and H. K. Pung. An in-
tegrated color-spatial approach to content-based
image retrieval. In ACM Multimedia Conference,
pages 305–313, 1995.

[6] Virginia Ogle and Michael Stonebraker. Chabot:
Retrieval from a relational database of images.
IEEE Computer, 28(9):40–48, September 1995.

[7] Alex Pentland, Rosalind Picard, and Stan
Sclaroff. Photobook: Content-based manipula-
tion of image databases. International Journal of
Computer Vision, 18(3):233–254, June 1996.

[8] Rick Rickman and John Stonham. Content-based
image retrieval using color tuple histograms.
SPIE proceedings, 2670:2–7, February 1996.

[9] John Smith and Shih-Fu Chang. Tools and tech-
niques for color image retrieval. SPIE proceedings,
2670:1630–1639, February 1996.

[10] Markus Stricker and Alexander Dimai. Color in-
dexing with weak spatial constraints. SPIE pro-
ceedings, 2670:29–40, February 1996.

[11] Markus Stricker and Michael Swain. The capac-
ity of color histogram indexing. In Proceedings of
IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 704–708, 1994.

[12] Michael Swain and Dana Ballard. Color index-
ing. International Journal of Computer Vision,
7(1):11–32, 1991.


