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Abstract—An approximate distance query data structure is
a compact representation of a graph, and can be queried
to approximate shortest paths between any pair of vertices.
Any such data structure that retrieves stretch 2k − 1 paths
must require space Ω(n1+1/k) for graphs of n nodes. The hard
cases that enforce this lower bound are, however, rather dense
graphs with average degree Ω(n1/k).

We present data structures that, for sparse graphs, substan-
tially break that lower bound barrier at the expense of higher
query time. For instance, general graphs require O(n3/2) space
and constant query time for stretch 3 paths. For the realistic
scenario of a graph with average degree Θ(log n), special cases
of our data structures retrieve stretch 2 paths with Õ(n3/2)
space and stretch 3 paths with Õ(n) space, albeit at the cost
of Õ(

"
n) query time.

Moreover, supported by large-scale simulations on graphs
including the AS-level Internet graph, we argue that our
stretch-2 scheme would be simple and efficient to implement
as a distributed compact routing protocol.

I. INTRODUCTION

An approximate distance query (ADQ) data structure is
a compact representation of a graph that allows retrieval
of an approximate distance between any two vertices in
the graph. The fundamental trade-off in constructing an
ADQ structure is between its size and its stretch: the worst-
case ratio of the distance returned by the data structure
to the actual shortest distance between the two vertices.
For general graphs, the optimal1 space/stretch trade-off was
achieved by Thorup and Zwick [1]: their ADQ structure, for
any graph with n vertices and for any integer k ≥ 2, is of
size O(kn1+1/k) and returns paths with stretch 2k − 1 in
time O(k). However, the hard instances for the matching
lower bound are rather dense graphs, with average degree
Ω(n1/k). The lower bound essentially states that there exist
graphs that are incompressible: if a certain stretch is desired,
then the size of the data structure is lower bounded by the
number of edges in the specially-constructed graph.

Thus, classic ADQ results may be quite far from optimal
for sparse graphs: graphs with low average degree ∆. This
is of key interest since real-world graphs are sparse, with
degrees much closer to logarithmic than polynomial in n.
For instance, letting ∆ = c log2 n, empirically, c ≈ 0.6 for an
AS-level map of the Internet [2], c ≈ 0.4 for a router-level
map of the Internet [2], and c ≈ 1.34,0.65,1.21,5.10,29.9
for social networks Cyworld, Testimonial, Orkut, MySpace,
and Facebook, respectively [3,4].

1For k = 4 and k ≥ 6, the lower bound relies on a conjecture of Erdős.

This paper presents algorithms that, for sparse graphs,
substantially break the classic space/stretch trade-off bar-
rier, albeit at the cost of increased query time. Moreover, we
demonstrate that our approach allows a surprisingly large
fraction of source-destination pairs to retrieve shortest paths
(99.98% in the AS-level map of the Internet), and argue that
our approach could be easily implemented as a distributed
routing scheme.

More specifically, we introduce two new ADQ data struc-
tures which respectively improve stretch and space in com-
parison with the data structure of Thorup and Zwick [1].
For weighted undirected graphs with n vertices and average
degree ∆, we achieve the following constructions:

• For 0 < ϵ ≤ 1/2, a data structure of size Õ(n2−ϵ∆1−ϵ)
that returns stretch 2 paths in O((n∆)ϵ) time.

• For 0 < ϵ < 1 and any positive integer k, a data
structure of size Õ((n∆)(1+1/k)(1−ϵ)) that returns stretch
(4k− 1) paths in O((n∆)ϵ) time.

For example, in dense graphs, obtaining stretch 3 requires
space Ω(n3/2) and constant query time [1], and greater
query time cannot help stretch or space. But when ∆ =
Θ(log n), special cases of our two results yield schemes for:

• stretch 2, space Õ(n3/2), and query time Õ(
"

n); and
• stretch 3, space Õ(n), and query time Õ(

"
n).

The reduction in space is significant: the data structure is
linear in the size of the graph for ϵ ≥ 1/(k + 1), and for
ϵ > 1/(k + 1) it consists of the graph itself plus sublinear
additional state.

Only one other result has improved the space/stretch
trade-off of Thorup and Zwick [1] for sparse graphs: very
recently, Pǎtraşcu and Roditty [5] obtained a scheme with
stretch 2, space O(∆1/3n5/3), and constant time. This is
faster than our stretch-2 scheme, but larger for ϵ = 1

2
(and

for certain smaller ϵ, depending on ∆).

These results are relevant to the area of compact rout-
ing [6], which has applied ADQ techniques to routing
in networks, where routers should require limited state
yet forward packets along short paths. Recent work has
shown how these compact routing tables can be constructed
using distributed protocols [7]–[9], and as discussed above,
the networks in which these protocols might be applied
are sparse. We describe how our stretch-2 scheme can be
implemented in a distributed way similar to [8] – with the
addition of a surprisingly lightweight end-to-end exchange
of less than 5 KB (at most 4 packets) and a small amount of



processing in order to set up a new end-to-end connection.
We complement our theoretical results with extensive

simulations on empirical networks. Interestingly, we find
that in the Internet AS-level topology, our stretch-2 scheme
finds shortest paths for 99.98% of the source-destination
pairs – compared with 34.4% using [1].

In summary, our results represent a step towards char-
acterizing the space/stretch/time trade-off for approximate
distance queries in sparse graphs, and yield a simple, prac-
tical way to improve stretch in compact routing protocols.

Roadmap. We start our discussion with related work in
§II. The notations and definitions used in the paper are
described in §III. We give an overview of our schemes in
§IV. In §V, we prove that average-degree-bounded graphs
are no harder than maximum-degree-bounded graphs. This
allows us to restrict our attention to maximum-degree-
bounded graphs in the rest of the paper. We present our low-
stretch and low-state schemes in §VI and §VII respectively.
§VIII describes how to implement our stretch-2 scheme in
a distributed environment. We present simulation results in
§IX and conclude with open problems in §X.

II. RELATED WORK

In this section, we discuss the known lower and upper
bounds for the space/stretch trade-off in the approximate
distance query problem for the regime of sparse graphs.

Lower Bounds. For general graphs, Thorup and Zwick [1]
showed (subject to a conjecture of Erdős) that achieving
(integer) stretch (2k − 1) requires Ω(kn1+1/k) space. Their
proof is information-theoretic, essentially showing that for
any constant stretch, there exist graphs that require storing
as many bits as the number of edges in the graph. For
example, proving that stretch 3 requires Ω(n3/2) space uses
a graph with Θ(n3/2) edges. There is no hope of this proof
technique being helpful in the sparse case; for example
with ∆ = Θ(log n), this technique will only show that
achieving any stretch value (even exact shortest paths)
requires Ω(n log n) bits, which is entirely acceptable.

In fact, a data structure of Θ̃(n∆) bits can permit retrieval
of shortest paths, simply by storing the original graph
and running Dijkstra’s algorithm for each query. Of course,
this takes time Õ(n∆) per query. Thus, in the context of
designing ADQ data structures, the cases of dense and
sparse graphs are quite different. In the dense case the
key is to compress the graph while ensuring that sufficient
information remains to return low-stretch distances. In the
sparse case the graph need not be compressed, but the
trade-off with query time becomes critical.

Very little is known about this trade-off space for sparse
graphs. First, Sommer et al. [10] show that any data
structure that returns stretch t paths in time α requires
space n1+Ω(1/αt). For data structures with constant query
time, this gives a lower bound of space n1+Ω(1/t) for any
stretch t. However, if we allow Ω(log n) query time, their
result implies a trivial lower bound of Ω(n log n) for any
constant stretch. Second, Pǎtraşcu and Roditty [5] prove

that if a widely believed conjecture about the hardness of
set intersection queries holds, then retrieving stretch 2 paths
in constant time requires a data structure of size Ω(n

"
n∆).

For the case of Ω(log n) query time, as in our schemes, no
non-trivial lower bounds are known.

Upper Bounds. Very recently, Pǎtraşcu and Roditty [5]
obtained a data structure that returns stretch 2 paths in
constant time with O(∆1/3n5/3) space (for general graphs,
this would require Θ(n2) space [11]). These queries are
faster than in our stretch-2 scheme, but the structure is
larger whenever our parameter ϵ is such that ϵ > 1+2c

3+3c
where c is such that ∆ =Θ(nc). For example, when ϵ = 1/2,
our stretch-2 data structure has space Õ(∆1/2n3/2) at the
expense of O(

"
n∆) higher query time.

For general sparse graphs, no other results are known.
However, for specific classes of sparse graphs, improvements
are possible in stretch ([12] achieves stretch 2 for Erdős-
Renyi graphs) and in space ([13,14] for power-law graphs).
For more discussion on results for specific classes of sparse
graphs, see [15].

III. NOTATIONS AND DEFINITIONS

Throughout the paper, we let G = (V, E) be a connected,
undirected graph with n = |V | vertices and m = |E| edges.
Unless mentioned otherwise, G is assumed to be weighted
with each edge assigned a non-negative weight.

For any vertex v ∈ V , we denote by N(v) the set of all
the neighbors of v. For any set V ′ ⊂ V , we denote by N(V ′)
the set of all the neighbors of vertices in V ′. We let deg(v)
denote the number of neighbors of vertex v, i.e., deg(v) =
|N(v)|. The graph is said to be maximum-degree-bounded
(or, ∆-degree bounded) if for all vertices v ∈ V , deg(v)≤∆.
We say that the graph is average-degree-bounded graph (or,
has average degree ∆) if 2m/n≤∆.

For any pair of vertices u, v ∈ V , let d(u, v) be the length
of the shortest path between u and v in G and let δ(u, v)
be the length of the path retrieved using the data structure.
The data structure is said to return stretch t paths if for
every pair of vertices u, v ∈ V , d(u, v)≤ δ(u, v) ≤ t · d(u, v).

We will let L ⊂ V denote a distinguished set of “land-
mark” vertices chosen by our algorithms. For any vertex
v ∈ V , we denote by ℓ(v) the nearest neighbor of v in
L (i.e., the vertex a ∈ L that minimizes d(v, a), with ties
broken arbitrarily). The ball of v, B(v), is the set of vertices
w ∈ V for which d(v, w) < d(v,ℓ(v)) and the vicinity of v
is Γ(v) = B(v)∪ N(B(v)).

IV. OVERVIEW OF OUR SCHEMES

Our data structure for stretch 2 is conceptually similar
to the stretch 3 data structure of Thorup and Zwick [1].
For a given graph, they construct a set of vertices, known
as landmarks, such that each vertex has a landmark in
its ball. The data structure stores, for each vertex, the
distance to each vertex in its ball and to its closest landmark;
the landmarks store distances to all vertices in the graph.
One can show that this allows the source to return exact



distances to destinations in its ball and stretch 3 distances
via its landmark for all other destinations.

Intuitively, the cases that attain worst-case stretch in their
data structure are the ones for which the destination v
is just outside the ball of the source u. For such source-
destination pairs, we exploit the idea of vicinity intersection.
Upon receiving a query, we search for nodes in Γ(u)∩Γ(v).
Finding such vertices takes some time; but if any exist, one
of them, w, will lie on the shortest u! v path, so we can
compute the exact distance d(u, v) = d(u, w)+ d(w, v) from
the two vicinity distances. If the vicinities of u and v do not
intersect, the nodes must be relatively distant. Using this
lower bound, we show that a path via the landmark node
has stretch 2. We need to store the vicinities of the nodes for
our data structure; but if the graph is sparse, we show that
this does not increase the space requirements significantly.

The above data structure is of large space since it requires
storing (a) shortest paths from the landmarks to all other
vertices; and (b) the vicinities of every vertex. To avoid
the first requirement, our second data structure stores the
exact distances only between all pairs of landmarks. This
uses significantly less space; for instance, in a graph with
n vertices, storing shortest paths between every pair of"

n landmarks requires space at most linear in the size
of the graph. To overcome the second requirement, our
second data structure computes the vicinities on the fly
during a query; we show that for sparse graphs, this can
be done in sublinear time. If the vicinities of u and v
intersect, the exact distance is returned. If not, a low stretch
path can be retrieved by concatenating the paths from u
to ℓ(u), from ℓ(u) to ℓ(v), and finally ℓ(v) to v. This
scheme can be generalized to further reduce space at the
expense of increased stretch: rather than storing shortest
paths between landmarks, we approximate these distances
with the schemes of [1].

V. AVERAGE-DEGREE BOUNDED GRAPHS ARE NO HARDER THAN

MAXIMUM-DEGREE BOUNDED GRAPHS

In this section, we show that in the context of designing
ADQ data structures, average-degree-bounded graphs are
no harder than maximum-degree-bounded graphs. In par-
ticular, assume that we have a data structure + that is of
size O(S) and returns stretch-s paths in O(T ) time for any
∆-degree bounded graph on n vertices, where S and T are
functions of n, ∆ and s. For any fixed stretch s and fixed
∆, we require S(O(n)) = O(S(n)) and T (O(n)) = O(T (n)),
which is true for all functions S and T of interest since
S = O(n2) and T = O(n2) for any non-trivial ADQ data
structure. We show that + can be used to build a data
structure of size O(S) that returns stretch-s paths on a graph
with average degree ∆ in at most O(T ) time.

Let G = (V, E) be a connected graph with average degree
∆. Given G, we will first create a ∆-degree bounded graph
G∆ = (V∆, E∆). Then, we show how + can be used on G∆
to return stretch-s paths on G.

The Reduction. For each vertex v ∈ V , create αv =
⌈deg(v)/∆⌉ vertices v1, v2, . . . , vαv

in V∆. For each edge

e = (u, v) ∈ E, if deg(u) ≤ ∆ and deg(v) ≤ ∆, create an
edge e = (u1, v1) in E∆. For each vertex v ∈ V , we arbitrarily
distribute N(v) in G to the vertices corresponding to v in
G∆ such that for i = 1,2, . . . , (αv − 1), |N(v) ∩ N(vi)| = ∆
and |N(v) ∩ N(vαv

)| = (deg(v) − (αv − 1) ·∆). Finally, for
each pair vi , vi+1, we create an edge in E∆ of weight 0.

In order to answer an approximate distance query for any
pair of vertices u, v ∈ V , we use + to answer approximate
distance queries between u1, v1 ∈ V∆ in G∆ and let the
length of the path returned by the data structure be δ′.
We output the distance δ′ as an approximate distance for
the pair of vertices in G.

State and Query Time. We first prove that asymptotically,
the size of the data structure and the query time are not
increased due to the reduction. Fix some stretch s. Recall
that S(O(n)) = O(S(n)) and T (O(n)) = O(T (n)); all we
need to show is that the number of vertices in G∆ are within
a constant factor of the number of vertices in G.

Claim 5.1: G∆ is a ∆-degree bounded graph with O(n)
vertices.

Proof: The degree boundedness is trivial from the con-
struction. We prove the claim regarding number of vertices.
The reduction implies that |V∆| =

∑

v∈V ⌈deg(v)/∆⌉ =
|V | +
∑

v∈V ⌊deg(v)/∆⌋. This gives us an upper bound:
|V∆|≤ |V |+
∑

v∈V deg(v)/∆ = 2 · |V |.

Stretch. Consider any pair of vertices u, v ∈ V at distance
d in G. It is trivial that in G∆, the distance between the
vertices u1, v1 ∈ V∆ is d ′ = d. The data structure + returns
a path of distance at most δ′ = s · d ′ = s · d, which is of
stretch s.

In §VI, we discuss how this reduction can be intuitively
interpreted when it is incorporated into the algorithm of the
next section, so that the algorithm runs directly on G rather
than G∆. In the rest of the paper, we restrict our attention
to ∆-degree bounded graphs only.

VI. REAR: REDUCED APPROXIMATION RATIO APPROXIMATE

DISTANCE QUERIES

In this section, we construct a data structure that, for
any 0 < ϵ ≤ 1/2, is of size Õ(n2−ϵ∆1−ϵ) and returns
stretch-2 paths in Õ((n∆)ϵ) time, for any ∆-degree bounded
graph. The discussion in §V then immediately implies such
a scheme exists for all graphs with O(n∆) edges.

A. Constructing the data structure

Let G = (V, E) be a ∆-degree bounded graph. Fix some
0 < ε ≤ 1/2. Our construction begins by sampling each
vertex independently at random with probability n−ϵ∆1−ϵ ,
creating a set L of sampled “landmark” vertices. Our data
structure stores, for each vertex in L, a hash table containing
the shortest distance to every other vertex in G. Further-
more, the data structure stores for each vertex v ∈ V\L:

• ℓ(v) and the “ball radius” rv = d(v,ℓ(v)).
• a hash table holding the shortest distance to each vertex

in Γ(v) = B(v)∪ N(B(v)).



Size of the data structure. Note that E[|L|] = n1−ϵ∆1−ϵ ,
and hence, storing shortest distances from vertices in L to
all vertices in the graph requires O(n2−ϵ∆1−ϵ) space in ex-
pectation. Using a standard argument as in [1, Lemma 3.2],
for any vertex v we have E[|B(v)|] = O(nϵ∆−(1−ϵ)). Since
the graph is ∆-degree bounded, |N(B(v))| = ∆|B(v)| =
O(nϵ∆ϵ) in expectation and hence, the data structure re-
quires O(n1+ϵ∆ϵ) expected space for the hash tables at each
vertex in V\L. Storing the shortest distance to ℓ(v) and rv

requires O(1) space for each vertex in V\L. Hence, the total
expected size is O(n2−ϵ∆1−ϵ).

The space bound above is in expectation. Using a Chernoff
bound, the details of which we omit, it is easy to show
that the bound holds with high probability for a logarithmic
factor larger size, i.e., Õ(n2−ϵ∆1−ϵ).

B. Answering distance queries

The algorithm QUERY-2(u, v) to approximate the distance
between vertices u and v is shown in Fig. 1. The algorithm
first checks whether v ∈ Γ(u) or u ∈ Γ(v), in which case it
directly reads d(u, v) from the hash table maintained at u
or v respectively. If v /∈ Γ(u) and u /∈ Γ(v), the algorithm
performs a vicinity intersection check: it queries each of the
vertices w ∈ Γ(u) and checks if w ∈ Γ(v). If at least one such
w is found, it returns the minimum of d(u, w)+d(w, v) over
all such w. If there is no such w, the algorithm queries u and
v for their vicinity radii ru and rv . If ru < rv, the algorithm
returns d(u,ℓ(u)) + d(ℓ(u), v); else it returns d(v,ℓ(v)) +
d(ℓ(v),u).

Analysis of the query answering algorithm. We obtain an
upper bound of 2 on the stretch of the distance between
the vertices returned by QUERY-2(u, v). The proof uses the
following lemma.

Lemma 6.1 (Vicinity Intersection Lemma): If d(u, v) <
ru+ rv , there exists a vertex x ∈ V such that x ∈ Γ(u)∩Γ(v).
Proof. The lemma is trivially true if d(u, v) < ru. So,
consider the case when ru ≤ d(u, v) < ru + rv . Let P =
(u, v1, v2, . . . , vk, v) denote the shortest path between u and
v in G. Note that if k < 2, v1 is a neighbor of both u and v,
making the lemma true. So, consider the cases when k ≥ 2.

Let i1 = max{i : vi ∈ B(u)} and i2 = min{ j : vj ∈ B(v)}.
If i2 ≤ i1 + 1, we are done since Γ(u) = B(u) ∪ N(B(u)).
Consider the case when i2 > i1 + 1 and let i1 < i′ < i2 be
some index between i1 and i2. Note that vi′ is neither in
B(u), nor in B(v). Hence, we have that d(u, vi′) ≥ ru and
d(v, vi′) ≥ rv , which implies d(u, v) = d(u, vi′) + d(vi′ , v) ≥
ru + rv , contradicting the assumption of the lemma. "

Claim 6.2: If d(u, v) < ru + rv , QUERY-2(u, v) returns the
exact distance between u and v in Õ(nϵ∆ϵ) time.

Proof: If d(u, v)< ru+ rv, then, by Lemma 6.1 we have
that there must be at least one vertex x ∈ Γ(u), such that
x ∈ Γ(u) ∩ Γ(v). The algorithm reads the “exact” distance
d(u, x) from the hash-table maintained at vertex u and the
“exact” distance d(v, x) from the hash-table maintained at
vertex v. From the proof of vicinity intersection lemma, we
note that among all such vertices x ∈ Γ(u) ∩ Γ(v), there

must be at least one vertex which lies on the shortest path
between u and v, and this vertex minimizes the “min-d”
variable returned by the algorithm resulting in a distance
estimate of stretch 1. Since this requires checking all the
vertices in Γ(u) (or Γ(v)), the query time is Õ(nϵ∆ϵ).

For the case when d(u, v) ≥ ru + rv , we show that our
scheme results in a stretch at most 2.

Theorem 6.3: If d(u, v) ≥ ru + rv , the algorithm
QUERY-2(u, v) returns a distance estimate of stretch at most
2 in Õ(nϵ∆ϵ) time.

Proof: When d(u, v) ≥ ru + rv , the distance estimate
returned by the scheme is δ(u, v) = d(u,ℓ(u)) + d(ℓ(u), v).
By the triangle inequality, d(ℓ(u), v) ≤ d(ℓ(u),u) + d(u, v).
Hence, δ(u, v) ≤ 2·d(u,ℓ(u))+d(u, v). Since d(u,ℓ(u)) = ru,
we get δ(u, v) ≤ 2 · ru + d(u, v). Similarly, we can prove
that δ(u, v) ≤ 2 · rv + d(u, v). Hence, we get that δ(u, v) ≤
2 ·min{ru, rv}+ d(u, v).

Without loss of generality, assume that ru ≤ rv. Then,
the condition in the lemma implies that d(u, v)≥ 2 · ru. The
above discussion implies that the distance estimate returned
is at most 2 · ru + d(u, v) giving a stretch of at most 2 ·
d(u, v)/d(u, v)≤ 2.

C. Discussion

Implications for unweighted graphs. In the special case
of unweighted graphs, a simple modification of our scheme
gives us a data structure that, for any 0< ϵ ≤ 1/2 is of size
Õ(n2−ϵ) and given any two vertices u and v at distance d
returns a distance of at most (2d+1) in Õ(nϵ) time. The only
known o(n2) data structure for such approximation ratio is
again due to the recent result of Pǎtraşcu and Roditty [5]
that requires O(n5/3) space and takes constant query time.
See [15] for detailed discussion.

Implications of the average-to-max-degree-bound re-
duction. The results in this section combined with the
reduction of §V immediately give us a data structure of
size Õ(n2−ϵ∆1−ϵ), which for any graph with at most O(n∆)
edges, returns stretch-2 paths in Õ(nϵ∆ϵ) time. However, we
can actually incorporate the reduction into the algorithm in
a simple way that yields intuition and eases implementation.

Specifically, let G be the graph with average degree
∆. The reduction implies that each vertex v in G which
has degree deg(v) > ∆ effectively “emulates” ⌈deg(v)/∆⌉
vertices in G∆. Now consider constructing the data struc-
ture presented in this section. While sampling vertices for
the landmark set L, the vertex v is now sampled with
probability n−ϵ∆1−ϵ⌈deg(v)/∆⌉, i.e., with probability that is
proportional to the degree of v. Moreover, due to Claim 5.1,
the size of B(v) remains unchanged asymptotically (B(v)
and hence Γ(v) may change, but not their size). Thus, the
implications of the reduction are simple: just sample each
vertex v in the graph with probability n−ϵ∆1−ϵ⌈deg(v)/∆⌉
rather than probability n−ϵ∆1−ϵ . In other words, rather than
sampling vertices uniform-randomly, they are sampled with
probability proportional to their degree.



QUERY-2(u, v):

If v ∈ Γ(u)
return d(u, v)

Else if u ∈ Γ(v)
return d(v,u)

Else if VICINITY-INTERSECTION(u, v) <∞
return VICINITY-INTERSECTION(u, v)

Else if (ru < rv)
return d(u,ℓ(u)) + d(ℓ(u), v)

Else
return d(v,ℓ(v)) + d(ℓ(v),u)

VICINITY-INTERSECTION(u, v):

min-d←∞
For each w ∈ Γ(u)

If w ∈ Γ(v) and d(u, w) + d(v, w)<min-d
min-d← d(u, w) + d(v, w)

return min-d

Fig. 1. Answering approximate distance queries with stretch-2. d(x , y) is the exact distance from x to y, stored in a hash table at x .

An optimization. Although the worst-case stretch for REAR
is 2, we can apply simple heuristics to improve the stretch in
practice. Recall that the worst-case stretch in REAR occurs
for source-destination pairs u, v for which Γ(u) ∩ Γ(v) = 2;
the query may return a path, for instance, u ! ℓ(u) ! v
that is of stretch 2. The main observation is that for such
source-destination pairs, there may exist a w ∈ Γ(u) for
which the length of the path u ! w ! ℓ(w) ! v is less
than the path u ! ℓ(u) ! v. The approximate distance
query can then be answered by the data structure as the
minimum of the distances retrieved by checking all w ∈ Γ(u)
(see §VIII for implementation details). Since checking the
length of the paths u ! w ! ℓ(w) ! v for all w ∈ Γ(u)
takes (asymptotically) the same time as checking the vicinity
intersection, the heuristic does not increase the query time,
with potential improvements in stretch of retrieved paths.
Indeed, we show in §IX that this heuristic increases the
number of source-destination pairs that retrieve shortest
paths by almost 25%.

VII. RES: REDUCED SPACE APPROXIMATE DISTANCE QUERIES

In this section, we give a data structure that, for any
0< ϵ < 1, is of size Õ((n∆)(1+1/k)(1−ϵ)) and returns stretch-
(4k− 1) paths in O(nϵ∆ϵ) time for any graph with O(n∆)
edges.

A. Constructing the data structure

Let G = (V, E) be a ∆-degree bounded graph. Fix some
0< ϵ < 1 and some integer k > 0. Our construction of data
structure + begins by sampling each vertex independently
at random with probability n−ϵ∆1−ϵ , creating a set L of
sampled vertices. We now create a complete graph G′ with
vertices in L as the vertex set and for each pair l1, l2 ∈ L, the
weight of the edge (l1, l2) being the shortest path between
l1 and l2 in G. We run the approximate distance oracle
from Thorup and Zwick on G′ to construct a data structure
+′ that stores (2k−1)-approximate shortest paths between
every pair of vertices in L. Furthermore, the data structure
stores, for each node v ∈ V , the nearest neighbor (the node
a ∈ L that minimizes d(v, a), ties broken arbitrarily) of v in
L and the shortest distance to ℓ(v). + stores +′ as a sub-
data structure. Furthermore, + also stores the entire graph.

Size of the data structure. Note that E[|L|] =
(n∆)1−ϵ and hence, the size of the data structure +′ is
O((n∆)(1+1/k)(1−ϵ)). For ε < 1/(k + 1), the size of +′
asymptotically dominates the size of the graph and hence,
the size of the data structure + is O((n∆)(1+1/k)(1−ϵ)). For
ϵ > 1/(k+1), the size of the graph dominates the size of +,
resulting in size linear in the size of the graph. As earlier,
the space bound holds with high probability with an extra
logarithmic factor.

B. Answering distance queries

For any node v ∈ V , we denote by rv the “ball radius”
d(v,ℓ(v)). Let QUERYTZ(u, v) be the query algorithm for
the Thorup-Zwick scheme that returns (2k−1)-approximate
distances between nodes u and v.

Suppose we perform an approximate distance query for
a pair of nodes u, v ∈ V . The two nodes u and v run
any shortest-path algorithm that stops when u (respectively,
v) has computed Γ(u) (respectively Γ(v)) and shortest
distances to nodes in Γ(u) (respectively Γ(v)). This can be
done since the graph is stored in the data structure. Both
u and v temporarily store this information in a hash table.
If v ∈ Γ(u) or u ∈ Γ(v), the algorithm directly reads the
distance between u and v from the hash table. If none
of the nodes has the other node in its hash table, the
algorithm checks for “vicinity intersection”, i.e., for each
node x ∈ Γ(u), the algorithm checks if x ∈ Γ(v). If such a
node is found, the algorithm returns the sum of the shortest
distances from u to x and from v to x . If no such x exists,
the algorithm returns d(u,ℓ(u))+QUERYTZ(u, v)+d(v,ℓ(v)).
Finally, the hash tables are deleted from nodes u and v. The
algorithm QUERY(u, v) for distance query between nodes u
and v is shown in Fig. 2.

Analysis of the query answering algorithm. In terms
of query time, we note that running the shortest-path
algorithm requires at most O(nϵ∆ϵ) time for a ∆-degree
bounded graph. For stretch analysis, similar to Claim 6.2,
one can prove that if d(u, v) < ru + rv , the algorithm
QUERY(u, v) returns exact shortest distances in O(nϵ∆ϵ)
time. For the case when d(u, v) ≥ ru + rv , we show that
our scheme results in a stretch at most (4k− 1).



QUERY(u, v):

Compute Γ(u)
Compute Γ(v)
If v ∈ Γ(u)

return d(u, v)
Else if u ∈ Γ(v)

return d(v,u)
Else if VICINITY-INTERSECTION(u, v) <∞

return VICINITY-INTERSECTION(u, v)
Else

return d(u,ℓ(u)) +QUERYTZ(u, v) + d(ℓ(v), v)

Fig. 2. Answering approximate distance queries with stretch-3. d(x , y) is
the exact distance from x to y stored in a hash table at x . The VICINITY-
INTERSECTION(u, v) algorithm is same as shown in Fig. 1. QUERYTZ(u, v)
is the query algorithm for the Thorup-Zwick scheme that, for any integer
k > 0, returns (2k− 1)-approximate distances between nodes u and v.

Theorem 7.1: If d(u, v) ≥ ru + rv , the algorithm
QUERY(u, v) returns, in the worst case, distance estimate of
stretch-(4k− 1) between u and v in O(nϵ∆ϵ) time.

Proof: When d(u, v) ≥ ru + rv, the distance esti-
mate returned by the scheme is δ(u, v) = d(u,ℓ(u)) +
QUERYTZ(u, v) + d(ℓ(v), v). Since QUERYTZ(u, v) returns
(2k − 1)-approximate distances, we have that δ(u, v) ≤
d(u,ℓ(u))+(2k−1)d(ℓ(u),ℓ(v))+d(ℓ(v), v). By the triangle
inequality, d(ℓ(u),ℓ(v)) ≤ d(ℓ(u),u) + d(u, v) + d(v,ℓ(v)).
Hence, δ(u, v) ≤ 2k · d(u,ℓ(u)) + (2k − 1)d(u, v) + 2k ·
d(v,ℓ(v)). Since d(u,ℓ(u)) = ru and d(u,ℓ(v)) = rv , we get
δ(u, v) ≤ 2k · ru + (2k − 1)d(u, v) + 2k · rv = 2k(ru + rv) +
(2k−1)d(u, v). Using the condition of the theorem, we get
δ(u, v) ≤ 2k · d(u, v) + (2k − 1)d(u, v) = (4k − 1) · d(u, v),
which we set out to prove.

C. Discussion

Perhaps the most interesting result that follows from the
above construction is for ϵ = 1/(k + 1). This gives us a
data structure that is of size linear in the size of the graph
and answers (4k− 1)-approximate distance queries in time
O((n∆)1/(k+1)) for all graphs with O(n∆) edges; no such
construction was previously known. Moreover, the above
data structure can be easily modified to get another data
structure that returns stretch (4k−1) paths in O(nϵ∆) time
and has size Õ(n(1+1/k)(1−ϵ)): independent of the density of
the graph.

The optimization. An optimization similar to that in §VI
is again possible for the algorithm described in this section.
During the vicinity check, when the source u queries each of
the vertices w ∈ Γ(u), it could actually query for its distance
to ℓ(v) and combine this with d(u, w) and d(v,ℓ(v)) to
retrieve the distance from the source to the destination
vertex. Again, the approximate distance query can then be
answered by the data structure as the minimum of all the
distances retrieved by querying the vertices in the vicinity of
the source resulting in improved stretch in practice without
any asymptotic increase in the query time.

VIII. APPLICATION TO NETWORK ROUTING

Work on compact routing has applied the traditional
results from approximate distance query problem [1] to
network routing problems in order to find short paths while
using little memory at routers. These solutions have been
proposed as centralized algorithms [6] and more recently as
distributed protocols for wireless sensor networks [7], the
Internet [8] and peer-to-peer networks [9]. In this section,
we discuss a surprisingly lightweight scheme that can be in-
corporated in distributed routing protocol implementations
of the Thorup-Zwick (TZ) scheme, [8] for instance, to get a
distributed routing protocol for our stretch-2 data structure.

TZ scheme and REAR. REAR can be incorporated into
the the proposed distributed adaptations [7]–[9] of the TZ
scheme with minimal changes. This is due to the fact that
the construction in REAR, in concept, is similar to the TZ
scheme: both schemes construct a set L of vertices and
each vertex v stores a corresponding nearest neighbor ℓ(v)
and certain vertices in its neighborhood. The first difference
between REAR and the TZ scheme is that the set L is
sampled proportional to node degree rather than uniform-
randomly. Second, REAR differs from TZ in terms of the
information stored in the data structure: for any vertex v,
while TZ only requires storing the ball B(v), REAR stores
Γ(v). Both modifications are easy changes to the distributed
protocols of [7]–[9]. Third, to route from s to d, REAR
allows s to set up an initial connection to d by using the TZ
algorithm. This initial connection gives a path of stretch 3,
via an essentially unmodified proof of [1,6]. The final task
is to improve the stretch from 3 to 2.

Implementing vicinity intersection. REAR requires the
source and the destination to perform a vicinity intersection
in order to guarantee a path with stretch 2 (see Lemma 6.1).
We show how vicinity intersection can be implemented in
practice with a surprisingly lightweight exchange of very
few packets. Recall, from the discussion above, that the
initial connection gives the source a path to the destination
with stretch 3. The source can then send the list of vertices
in its vicinity to the destination using this path. For the
router-level map of the Internet measured by CAIDA [2],
which consists of n = 192,244 routers and has average
degree ∆ ≃ 0.4 log2 n, this requires the source to transfer
approximately 4.64 kilobytes of data (4 ·

"
n∆ bytes, since

IPv4 addresses are 4 bytes). On today’s Internet, packets
are generally allowed to be at least 1500 bytes long, so this
would take just four packets; with jumbo frames [16], it
would take just one. The destination can then perform a
vicinity intersection, which requires Õ(

"
n∆) time asymp-

totically but using the above numbers requires less than
1161 hash table lookups which is fast in practice.2 Upon
executing the vicinity intersection, the destination informs
the source whether the vicinities intersect or not. If they do,
it can inform the source of the vertex (or vertices) at which

2If the destination is a server, this could be a burden; but note that
we could just as easily flip the protocol around so the source does the
computation.



vicinities intersect. This requires at most one packet which
can be routed from the destination through the source via
a stretch-3 path. The source-destination pair, after sending
five or fewer packets, now have a route with stretch 2.

In practice, this is likely to be efficient even for rela-
tively short-lived connections. For much larger networks, of
course, the exchange of vicinity information would require
more bandwidth and computation; but since a stretch-3
path is available immediately, the reduction to stretch 2 can
be treated as an optimization for longer flows in order to
amortize the overhead.

Probing and Shortcutting. The protocol for implementing
vicinity intersection discussed above does not exploit the
optimization discussed in §VI for heuristically improving
the stretch for the retrieved paths. We discuss the im-
plementation aspects related to the optimization. Imple-
menting the optimization in practice leads to a process,
which we call probing and shortcutting (P&S). P&S requires
the source vertex to probe the vertices in its vicinity for
improving stretch. We argue that this can be achieved
with an extremely low overhead probing scheme. Once the
source vertex finds a vertex in its vicinity that provides a
better stretch, the source can conveniently switch the traffic
through the shortcut path. We only discuss the probing
mechanism, since shortcutting can be implemented easily
in practice (note that the destination is oblivious to the
shortcutting mechanism and hence, P&S does not require
any handshaking mechanism).

For the probing mechanism, assume that the source opens
an initial connection to a destination. The source, every
10th packet, can probe a vertex in its vicinity (the question
on deciding an appropriate order of probing the vertices
in vicinity is discussed below) requesting the length of the
route available from this vertex to the destination. These
packets can be extremely small compared to the other data
packets, leading to an extremely small overhead in terms
of bandwidth consumed (just a fraction 0.1 more packets
that are of negligible size compared to the data packets).
Since the source-destination connections that account for
most of the bandwidth sent on the networks are very long
[17,18], we believe it is reasonable to amortize the cost of
the probing over the lifetime of the connection.

In terms of the order of probing, we consider two
heuristics. Farthest-first, in which the source probes the
vertices that are the boundary vertices of its vicinity; and,
closest-first, in which the source performs probing starting
with the closest vertices (its neighbors). We show, through
evaluations, that the former performs better than the latter.

IX. EVALUATION RESULTS

In this section, we evaluate the performance of REAR
and RES schemes on large-scale synthetic and realistic
topologies. We first present our methodology, followed by
a summary of the evaluation results and conclude with a
detailed discussion on the results.

A. Methodology

Schemes. We evaluate three schemes: the stretch-3 TZ
scheme, REAR: the stretch-2 scheme from §VI with ϵ = 1/2,
and RES: the stretch-3 scheme (for k = 1) from §VII with
ϵ = 1/2. Furthermore, we evaluate REAR and RES schemes
with and without the P&S optimization discussed in earlier
sections. For the TZ scheme, we sampled each vertex (for set

L) with probability
"

log n/n. For REAR and RES, each ver-

tex was sampled with probability
"

n log n×deg(v)/ log2 n.
All the constants in the big-O notation were set to be 1.

Simulator. We wrote a static simulator to simulate the
above schemes. Hence, from the perspective of application
to distributed compact routing protocols, the results pre-
sented in this section assume a static network topology
and give post-convergence results only. As outlined in §VIII,
a distributed implementation of our stretch-2 scheme is a
straightforward extension of past work, but we leave a full
dynamic evaluation to future work. Our static simulator
allows us to evaluate the schemes at much larger scale.

Topologies. We present evaluation results for three topolo-
gies. (1) G(n, m) random graphs, i.e., n= 16384 nodes with
m uniform-random edges, with m set so that the average
degree is 6, (2) geometric random graphs with n = 16384
nodes with average degree 6, and (3) a 33,014 node AS-
level map of the Internet (referred to as the Internet graph
in this section) [2].

For G(n, m) graphs and the Internet graph, link weights
are 1; for geometric random graphs, a link’s weight is the
Euclidean distance between the position of its two vertices.
For G(n, m) graphs and for geometric random graphs, we
generated 10 different topologies with the same parameters
and our results are the average of evaluations of these
topologies. For geometric random graphs, we sampled a
set of “source” vertices and evaluated the performance of
the schemes from these sources to all the destinations.
We found [15] that sampling 1/4 of the nodes as sources
provided accurate results.

B. Results and Discussions

Stretch comparison with the TZ-scheme. Fig. 3 shows
the performance of the three schemes for various graph
topologies (TZ is the original TZ scheme, TZ-d scheme is
discussed below). The most notable result of this evaluation
is that REAR allows retrieval of exact shortest paths for
nearly all source-destination pairs: 98.94% in the G(n, m)
graph, and 99.98% in the Internet graph. Though G(n, m)
graphs and the Internet graph have highly different struc-
tures, these graphs have a common feature: for nearly all
source-destination pairs, the two vicinities intersect, thus
providing a shortest path. In the G(n, m) graph (in which
96.2% source-destination pairs have intersecting vicinities),
this occurs since, with high probability, the diameter of the
graph is roughly at most twice the vicinity radius. In the
Internet graph (in which 96.8% source-destination pairs
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Fig. 3. Complementary CDF of Stretch in G(n, m) random graph (left), geometric random graph (middle) and Internet graph (right).
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Fig. 5. Mean stretch versus query time for REAR (left) and RES (right) for 16, 384 node G(n, m) graph with average degree 6.

have intersecting vicinities), vicinity intersection likely oc-
curs at the “core” networks of the Internet. Since TZ scheme
does not exploit the vicinity intersection, its performance is
significantly worse than our schemes (only 34.4% of the
source-destination pairs retrieved shortest paths).

The surprising difference between the performance of
the two schemes may be due to the difference in which
these schemes construct the landmark set L. We evaluated
a modified version of the TZ scheme that uses the same set
L as used by our schemes (see TZ-d in Fig. 3). Although
this improves the performance of the TZ scheme (74.2% of
the source-destination pairs now retrieve shortest paths), it
is still much worse than the REAR and RES schemes. We,
hence, believe that the high performance of our schemes is
indeed due to the vicinity intersection idea.

For geometric random graphs, REAR allows retrieval of
shortest paths only for 70.7% of the source-destination
pairs in comparison to 42.9% for the TZ scheme; indeed,
only 4.8% of the source-destination pairs have intersecting
vicinities. However, REAR consistently performs better than
the TZ-scheme, which in turn performs better than RES.

Finally, while the TZ-scheme performs better than RES on
an average, the worst-case stretch for the TZ-scheme is
consistently worse than RES. We believe that this is due to
the P&S optimization, that allows many source-destination
pairs to retrieve shorter paths due to short-cutting.

Stretch comparison of REAR and RES. The performance
of REAR and RES for various graph topologies is compared
in Fig. 4. We note that, as expected, REAR consistently per-
forms better than RES, even without the P&S optimization.
However, the more interesting observation is that the P&S
optimization is much more effective in RES. In particular,
we note that the tail of RES without the P&S optimization
is significantly reduced when the optimization is used.

For G(n, m) graphs, the stretch for 99% of the source-
destination pairs is less than 1.15 using REAR. For RES,
this is almost 1.3 (optimized version) and 1.5 (unopti-
mized version). The case of geometric random graphs is
rather interesting: first, we observe that not many source-
destination pairs have intersecting vicinities, otherwise RES
without the P&S optimization would not have achieved such
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Fig. 6. Mean stretch versus query time for REAR (left) and RES (right) for 16, 384 node geometric random graph with average degree 6.

a low fraction of source-destination pairs retrieving shortest
paths (only around 11%). Despite this, REAR performs
surprisingly well: almost 48% of the source-destination pairs
retrieve shortest paths without the P&S optimization and al-
most 71% retrieve shortest paths with the P&S optimization.

Stretch versus Query Time. For G(n, m) graphs, Fig. 5
shows the variation of mean stretch – averaged over all
source-destination pairs – with the number of queries for
REAR and RES schemes, for the farthest-first and closest-first
heuristics discussed in §VIII. We see a clear trend of “di-
minishing returns” where a few initial queries significantly
reduce the stretch compared to no queries, after which the
improvement is minimal. Based on the results, we conclude
that in general, the farthest-first heuristic performs better in
terms of the stretch with smaller query time. For the same
two heuristics for stretch versus query time, Fig. 6 shows
the results for REAR and RES schemes for the geometric
random graph; we note that it is significantly better to
start querying with the farthest nodes in the vicinity. Since
the vicinities of most source-destination pairs intersect (and
if they intersect, they do at least at one of the farthest
nodes), queries starting from the farthest nodes achieved
an improved stretch (quickly!). In terms of stretch versus
query time, the results for the Internet graph were very
similar to that of G(n, m) graphs.

X. CONCLUSIONS

This paper presented algorithms which significantly im-
prove the space and stretch of approximate distance query
schemes in the realistic case of sparse graphs, and argued
that our increased query time is reasonable in practice.
Allowing increased query time to improve the space/stretch
trade-off brings up several interesting open problems:

• Can the query time of our schemes be reduced? In
other words, can one design a data structure of size
O(n
"

n∆) that returns stretch-2 paths in o(
"

n∆) time?
• We sketched a distributed implementation of our REAR

scheme, but not RES. While it seems significantly more
challenging, a distributed version of RES could have
significant implications in practice: One could achieve
stretch 3 with constant amount of storage at nodes in
the network.

• The most intriguing problem is to compute lower
bounds for data structures that take Ω(log n) query time

and return constant stretch paths. The holy grail of the
approximate distance query problem for sparse graphs
is whether one can design a data structure of size O(m)
that yields constant stretch paths in O(polylog(n)) time.
This would be a very significant result.
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