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ABSTRACT
Diagnosing problems in networks is a time-consuming and

error-prone process. Existing tools to assist operators pri-

marily focus on analyzing control plane configuration. Con-

figuration analysis is limited in that it cannot find bugs in

router software, and is harder to generalize across protocols

since it must model complex configuration languages and

dynamic protocol behavior.

This paper studies an alternate approach: diagnosing prob-

lems through static analysis of the data plane. This ap-

proach can catch bugs that are invisible at the level of con-

figuration files, and simplifies unified analysis of a network

across many protocols and implementations. We present

Anteater, a tool for checking invariants in the data plane.

Anteater translates high-level network invariants into in-

stances of boolean satisfiability problems (SAT), checks them

against network state using a SAT solver, and reports coun-

terexamples if violations have been found. Applied to a large

university network, Anteater revealed 23 bugs, including for-

warding loops and stale ACL rules, with only five false posi-

tives. Nine of these faults are being fixed by campus network

operators.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network

Operation; D.2.5 [Software Engineering]: Testing and

Debugging

General Terms
Algorithms, Reliability
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1. INTRODUCTION
Modern enterprise networks are complex, incorporating

hundreds or thousands of network devices from multiple

vendors performing diverse codependent functions such as

routing, switching, and access control across physical and

virtual networks (VPNs and VLANs). As in any complex

computer system, enterprise networks are prone to a wide

range of errors [10, 11, 12, 14, 25, 32, 38, 41], such as miscon-

figuration, software bugs, or unexpected interactions across

protocols. These errors can lead to oscillations, black holes,

faulty advertisements, or route leaks that ultimately cause

disconnectivity and security vulnerabilities.

However, diagnosing problems in networks remains a black

art. Operators often rely on heuristics — sending probes, re-

viewing logs, even observing mailing lists and making phone

calls — that slow response to failures.
1
To address this, au-

tomated tools for network diagnostics [14, 43] analyze con-

figuration files constructed by operators. While useful, these

tools have two limitations stemming from their analysis of

high-level configuration files. First, configuration analysis

cannot find bugs in router software, which interprets and

acts on those configuration files. Both commercial and open

source router software regularly exhibit bugs that a�ect net-
work availability or security [41] and have led to multiple

high-profile outages and vulnerabilities [11, 44]. Second,

configuration analysismust model complex configuration lan-
guages and dynamic protocol behavior in order to determine

the ultimate e�ect of a configuration. As a result, these tools

generally focus on checking correctness of a single protocol

such as BGP [14, 15] or firewalls [2, 43]. Such diagnosis will

be unable to reason about interactions that span multiple

protocols, and may have di⇥culty dealing with the diversity

in configuration languages from di�erent vendors making up

typical networks.

We take a di�erent and complementary approach. Instead

of diagnosing problems in the control plane, our goal is to

diagnose problems as close as possible to the network’s ac-
tual behavior through formal analysis of data plane state.

Data plane analysis has two benefits. First, by checking the

results of routing software rather than its inputs, we can

catch bugs that are invisible at the level of configuration

1
As one example, a Cisco design technote advises that “Un-

fortunately, there is no systematic procedure to troubleshoot

an STP issue. ... Administrators generally do not have time

to look for the cause of the loop and prefer to restore con-

nectivity as soon as possible. The easy way out in this case

is to manually disable every port that provides redundancy

in the network. ... Each time you disable a port, check to

see if you have restored connectivity in the network.” [10]
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Figure 1: The work flow of Anteater. Clouds are network devices. Ovals are stages in the work flow. Text on the
edges shows the type of data flowing between stages.

files. Second, it becomes easier to perform unified analysis

of a network across many protocols and implementations,

because data plane analysis avoids modeling dynamic rout-

ing protocols and operates on comparatively simple input

formats that are common across many protocols and imple-

mentations.

This paper describes the design, implementation, and eval-

uation of Anteater, a tool that analyzes the data plane state

of network devices. Anteater collects the network topol-

ogy and devices’ forwarding information bases (FIBs), and

represents them as boolean functions. The network opera-

tor specifies an invariant to be checked against the network,

such as reachability, loop-free forwarding, or consistency of

forwarding rules between routers. Anteater combines the

invariant and the data plane state into instances of boolean

satisfiability problem (SAT), and uses a SAT solver to per-

form analysis. If the network state violates an invariant,

Anteater provides a specific counterexample — such as a

packet header, FIB entries, and path — that triggers the

potential bug.

We applied Anteater to a large university campus network,

analyzing the FIBs of 178 routers that support over 70,000

end-user machines and servers, with FIB entries inserted by

a combination of BGP, OSPF, and static ACLs and routes.

Anteater revealed 23 confirmed bugs in the campus network,

including forwarding loops and stale ACL rules. Nine of

these faults are being fixed by campus network operators.

For example, Anteater detected a forwarding loop between

a pair of routers that was unintentionally introduced after

a network upgrade and had been present in the network for

over a month. These results demonstrate the utility of the

approach of data plane analysis.

Our contributions are as follows:

• Anteater is the first design and implementation of a

data plane analysis system used to find real bugs in

real networks. We used Anteater to find 23 bugs in

our campus network.

• We show how to express three key invariants as SAT

problems, and propose a novel algorithm for handling

packet transformations.

• We develop optimizations to our algorithms and im-

plementation to enable Anteater to check invariants

e⇥ciently using a SAT solver, and demonstrate exper-

imentally that Anteater is su⇥ciently scalable to be a

practical tool.

2. OVERVIEW OF ARCHITECTURE
Anteater’s primary goal is to detect and diagnose a broad,

general class of network problems. The system detects prob-

lems by analyzing the contents of forwarding tables con-

tained in routers, switches, firewalls, and other networking

equipment (Figure 1). Operators use Anteater to check

whether the network conforms to a set of invariants (i.e.,

correctness conditions regarding the network’s forwarding

behavior). Violations of these invariants usually indicate a

bug in the network. Here are a few examples of invariants:

• Loop-free forwarding. There should not exist any packet

that could be injected into the network that would

cause a forwarding loop.

• Connectivity. All computers in the campus network

are able to access both the intranet and the Internet,

while respecting network policies such as access control

lists.

• Consistency. The policies of two replicated routers

should have the same forwarding behavior. More con-

cretely, the possible set of packets that can reach the

external network through them are the same.

Anteater checks invariants through several steps. First,

Anteater collects the contents of FIBs from networking equip-

ment through vtys (terminals), SNMP, or control sessions

maintained to routers [13, 22]. These FIBs may be simple IP

longest prefix match rules, or more complex actions like ac-

cess control lists or modifications of the packet header [1, 21,

28]. Second, the operator creates new invariants or selects

from a menu of standard invariants to be checked against

the network. This is done via bindings in Ruby or in a

declarative language that we designed to streamline the ex-

pression of invariants. Third, Anteater translates both the

FIBs and invariants into instances of SAT, which are re-

solved by an o�-the-shelf SAT solver. Finally, if the results

from the SAT solver indicate that the supplied invariants

are violated, Anteater will derive a counterexample to help

diagnosis.

The next section describes the design and implementa-

tion in more detail, including writing invariants, translating

the invariants and the network into instances of SAT, and

solving them e⇥ciently.

3. ANTEATER DESIGN
A SAT problem evaluates a set of boolean formulas to

determine if there exists at least one variable assignment

such that all formulas evaluate to true. If such an assignment



Symbol Description

G Network graph (V,E,P)

V Vertices (e.g., devices) in G
E Directed edges in G
P Policy function for edges

Figure 2: Notation used in Section 3.

exists, then the set of formulas are satisfiable; otherwise they
are unsatisfiable.

SAT is an NP-complete problem. Specialized tools called

SAT solvers, however, use heuristics to solve SAT e⇥ciently

in some cases [8]. Engineers use SAT solvers in a number of

di�erent problem domains, including model checking, hard-

ware verification, and program analysis. Please see §7 for

more details.

Network reachability can, in the general case, also be NP-

complete (see Appendix). We cast network reachability and

other network invariants as SAT problems. In this section we

discuss our model for network policies, and our algorithms

for detecting bugs using sets of boolean formulas and a SAT

solver.

Anteater uses an existing theoretical algorithm for check-

ing reachability [39], and we use this reachability algorithm

to design our own algorithms for detecting forwarding loops,

detecting packet loss (i.e., “black holes”), and checking for-

warding consistency between routers. Also, we present a

novel algorithm for handling arbitrary packet transforma-

tions.

3.1 Modeling network behavior
Figure 2 shows our notation. A network G is a 3-tuple

G = (V,E,P), where V is the set of networking devices and

possible destinations, E is the set of directed edges repre-

senting connections between vertices. P is a function defined

on E to represent general policies.

Since many of the formulas we discuss deal with IP prefix

matching, we introduce the notation var =
width

prefix to

simplify our discussion. This notation is a convenient way

of writing a boolean formula saying that the first width bits

of the variable var are the same as those of prefix. For

example, dst ip =24 10.1.3.0 is a boolean formula testing

the equality between the first 24 bits of dst ip and 10.1.3.0.
The notion var ⌃=

width

prefix is the negation of var =
width

prefix.
For each edge (u, v), we define P(u, v) as the policy for

packets traveling from u to v, represented as a boolean for-

mula over a symbolic packet. A symbolic packet is a set of

variables representing the values of fields in packets, like the

MAC address, IP address, and port number. A packet can

flow over an edge if and only if it satisfies the corresponding

boolean formulas. We use this function to represent general

policies including forwarding, packet filtering, and transfor-

mations of the packet. P(u, v) is the conjunction (logical

and) over all policies’ constraints on symbolic packets from

node u to node v.
P(u, v) can be used to represent a filter. For example, in

Figure 3 the filtering rule on edge (B,C) blocks all pack-

ets destined to 10.1.3.128/25; thus, P(B,C) has dst ip ⌃=25

10.1.3.128 as a part of it. Forwarding is represented as a

constraint as well: P(u, v) will be constrained to include

only those symbolic packets that router u would forward to

A!

B!

C! A:!
10.1.1.0/24 -> DIRECT!
10.1.2.0/24 -> B!
10.1.3.0/24 -> B!

B:!
10.1.1.0/24 -> A!
10.1.2.0/24 -> DIRECT!
10.1.3.0/24 -> C!C:!

10.1.1.0/24 -> B!
10.1.2.0/24 -> B!
10.1.3.0/24 -> DIRECT!

A! B! C!

10.1.1.0/24! 10.1.2.0/24! 10.1.3.0/24!
a! b! c!

B->C:!
10.1.3.128/25 -> DROP!

P(A, a) = dst ip =24 10.1.1.0

P(A,B) = dst ip =24 10.1.2.0 ⌃ dst ip =24 10.1.3.0

P(B,A) = dst ip =24 10.1.1.0

P(B, b) = dst ip =24 10.1.2.0

P(B,C) = dst ip =24 10.1.3.0 ⇧ dst ip ⌅=25 10.1.3.128

P(C,B) = dst ip =24 10.1.1.0 ⌃ dst ip =24 10.1.2.0

P(C, c) = dst ip =24 10.1.3.0

Figure 3: An example of a 3-node IP network. Top:

Network topology, with FIBs in dashed boxes. Bot-

tom: graph used to model network behavior. Ovals rep-
resent networking equipment; rounded rectangles rep-
resent special vertices such as destinations, labeled by
lower case letters. The lower half of the bottom figure
shows the value of P for each edge in the graph.

router v. The sub-formula dst ip =24 10.1.3.0 in P(B,C) in

Figure 3 is an example.

Packet transformations – for example, setting a quality of

service bit, or tunneling the packet by adding a new header

– might appear di�erent since they intuitively modify the

symbolic packet rather than just constraining it. Somewhat

surprisingly, we can represent transformations as constraints

too, through a technique that we present in §3.4.

3.2 Checking reachability
In this subsection, we describe how Anteater checks the

most basic invariant: reachability. The next subsection,

then, uses this algorithm to check higher-level invariants.

Recall that vertices V correspond to devices or destina-

tions in the network. Given two vertices s, t ⇧ V , we define

the s-t reachability problem as deciding whether there exists

a packet that can be forwarded from s to t. More formally,

the problem is to decide if there exists a symbolic packet

p and an s ; t path such that p satisfies all constraints

P along the edges of the path. Figure 4 shows a dynamic

programming algorithm to calculate a boolean formula f
representing reachability from s to t. The boolean formula

f has a satisfying assignment if and only if there exists a

packet that can be routed from s to t in at most k hops.



function reach(s, t, k,G)

r[t][0]⇤ true

r[v][0]⇤ false for all v ⇧ V (G) \ t
for i = 1 to k do

for all v ⇧ V (G) \ t do
r[v][i]⇤

_

(v,u)⌅E(G)

(P(v, u) � r[u][i� 1])

end for

end for

return

_

1⇥i⇥k

r[s][i]

Figure 4: Algorithm to compute a boolean formula rep-
resenting reachability from s to t in at most k hops in
network graph G.

function loop(v,G)

v⇤ ⇤ a new vertex in V (G)

for all (u, v) ⇧ E(G) do

E(G)⇤ E(G) ⌥ {(u, v⇤)}
P(u, v⇤)⇤ P(u, v)

end for

Test satisfiability of reach(v, v⇤, |V (G)|, G)

Figure 5: Algorithm to detect forwarding loops involving
vertex v in network G.

This part of Anteater is similar to an algorithm proposed by

Xie et al. [39], expressed as constraints rather than sets of

packets.

To guarantee that all reachability is discovered, one would

pick in the worst case k = n � 1 where n is the number of

network devices modeled in G. A much smaller k may su⇥ce

in practice because path lengths are expected to be smaller

than n� 1.

We give an example run of the algorithm for the network

of Figure 3. Suppose we want to check reachability from

A to C. Here k = 2 su⇥ces since there are only 3 devices.

Anteater initializes P as shown in Figure 3 and the algorithm

initializes s ⇤ A, t ⇤ C, k ⇤ 3, r[C][0] ⇤ true, r[A][0] ⇤
false, and r[B][0] ⇤ false. After the first iteration of the

outer loop we have:

r[A][1] = false

r[B][1] = P(B,C)

= (dst ip =24 10.1.3.0 � dst ip ⌃=25 10.1.3.128)

After the second iteration we have:

r[A][2] = r[B][1] � P(A,B)

= dst ip =24 10.1.3.0 � dst ip ⌃=25 10.1.3.128 �
(dst ip =24 10.1.2.0  dst ip =24 10.1.3.0)

r[B][2] = false

The algorithm then returns the formula r[A][1]  r[A][2].

3.3 Checking forwarding loops, packet loss,
and consistency

The reachability algorithm can be used as a building block

to check other invariants.

function packet_loss(v,D,G)

n⇤ the number of network devices in G
d⇤ a new vertex in V (G)

for all u ⇧ D do

(u, d)⇤ a new edge in E(G)

P(u, d)⇤ true

end for

c⇤ reach(v, d, n, G)

Test satisfiability of ¬c

Figure 6: Algorithm to check whether packets starting at
v are dropped without reaching any of the destinations
D in network G.

Loops. Figure 5 shows Anteater’s algorithm for detect-

ing forwarding loops involving vertex v. The basic idea of

the algorithm is to modify the network graph by creating a

dummy vertex v⇤ that can receive the same set of packets

as v (i.e., v and v⇤ have the same set of incoming edges and

edge policies). Thus, v-v⇤ reachability corresponds to a for-

warding loop. The algorithm can be run for each vertex v.
Anteater thus either verifies that the network is loop-free,

or returns an example of a loop.

Packet loss. Another property of interest is whether

“black holes” exist: i.e., whether packets may be lost with-

out reaching any destination. Figure 6 shows Anteater’s al-

gorithm for checking whether packets from a vertex v could

be lost before reaching a given set of destinations D, which

can be picked as (for example) the set of all local destination

prefixes plus external routers. The idea is to add a “sink”

vertex d which is reachable from all ofD, and then (in the al-

gorithm’s last line) test the absence of v-d reachability. This

will produce an example of a packet that is dropped or con-

firm that none exists.
2
Of course, in some cases packet loss

is the correct behavior. For example, in the campus network

we tested, some destinations are filtered due to security con-

cerns. Our implementation allows operators to specify lists

of IP addresses or other conditions that are intentionally

not reachable; Anteater will then look for packets that are

unintentionally black-holed. We omit this extension from

Figure 6 for simplicity.

Consistency. Networks commonly have devices that are

expected to have identical forwarding policy, so any dif-

fering behavior may indicate a bug. Suppose, for exam-

ple, that the operator wishes to test if two vertices v1 and

v2 will drop the same set of packets. This can be done

by running packet_loss to construct two formulas c1 =

packet_loss(v1, D,G) and c2 = packet_loss(v2, D,G), and

testing satisfiability of (c1 xor c2). This o�ers the opera-

tor a convenient way to find potential bugs without specifi-

cally listing the set of packets that are intentionally dropped.

Other notions of consistency (e.g., based on reachability to

specific destinations) can be computed analogously.

3.4 Packet transformations
The discussion in earlier subsections assumed that packets

2
This loss could be due either to black holes or loops. If

black holes specifically are desired, then either the loops can

be fixed first, or the algorithm can be rerun with instructions

to filter the previous results. We omit the details.



traversing the network remain unchanged. Numerous pro-

tocols, however, employ mechanisms that transform packets

while they are in flight. For example, MPLS swaps labels,

border routers can mark packets to provide QoS services,

and packets can be tunneled through virtual links which in-

volves prepending a header. In this subsection, we present

a technique that flexibly handles packet transformations.

Basic technique. Rather than working with a single sym-

bolic packet, we use a symbolic packet history. Specifically,

we replace each symbolic packet s with an array (s0, . . . , sk)
where s

i

represents the state of the packet at the ith hop.

Now, rather than transforming a packet, we can express a

transformation as a constraint on its history: a packet trans-

formation f(·) at hop i induces the constraint s
i+1 = f(s

i

).

For example, an edge traversed by two MPLS label switched

paths with incoming labels �in1 , �in2 and corresponding outgo-

ing labels �out1 , �out2 would have the transformation constraint

_

j⌅{1,2}

⇣
s
i

.label = �in
j

� s
i+1.label = �out

j

⌘
.

Another transformation could represent a network address

translation (NAT) rule, setting an internal source IP address

to an external one:

s
i+1.source ip = 12.34.56.78

A NAT rule could be non-deterministic, if a snapshot of the

NAT’s internal state is not available and it may choose from

multiple external IP addresses in a certain prefix. This can

be represented by a looser constraint:

s
i+1.source ip =24 12.34.56.0

And of course, a link with no transformation simply induces

the identity constraint:

s
i+1 = s

i

.

We let T
i

(v, w) refer to the transformation constraints for

packets arriving at v after i hops and continuing to w.

Application to invariant algorithms. Implementing

this technique in our earlier reachability algorithm involves

two principal changes. First, we must include the transfor-

mation constraints T in addition to the policy constraints

P. Second, the edge policy function P(u, v), rather than

referring to variables in a single symbolic packet s, will be
applied to various entries of the symbolic packet array (s

i

).

So it is parameterized with the relevant entry index, which

we write as P
i

(u, v); and when computing reachability we

must check the appropriate positions of the array. Incorpo-

rating those changes, Line 5 of our reachability algorithm

(Fig. 4) becomes

r[v][i]⇤
_

(v,u)⌅E(G)

(T
i�1(v, u) � P

i�1(v, u) � r[u][i� 1]) .

The loop detection algorithm, as it simply calls reachabil-

ity as a subroutine, requires no further changes.

The packet loss and consistency algorithms have a compli-

cation: as written, they test satisfiability of the negation of

a reachability formula. The negation can be satisfied either

with a symbolic packet that would be lost in the network,

or a symbolic packet history that couldn’t have existed be-

cause it violates the transformation constraints. We need to

di�erentiate between these, and find only true packet loss.

To do this, we avoid negating the formula. Specifically, we

modify the network by adding a node � acting as a sink for

lost packets. For each non-destination node u, we add an

edge u⌅ � annotated with the constraint that the packet is

dropped by u (i.e., the packet violates the policy constraints

on all of u’s outgoing edges). We also add an edge w ⌅ �
with no constraint, for each destination node w ⌃⇧ D. We

can now check for packet loss starting at v by testing satis-

fiability of the formula reach(v, �, n � 1, G) where n is the

number of nodes and G is the network modified as described

here.

The consistency algorithm encounters a similar problem

due to the xor operation, and has a similar solution.

Notes. We note two e�ects which are not true in the sim-

pler transformation-free case. First, the above packet loss

algorithm does not find packets which loop (since they never

transit to �); but of course, they can be found separately

through our loop-detection algorithm.

Second, computing up to k = n � 1 hops does not guar-

antee that all reachability or loops will be discovered. In

the transformation-free case, k = n � 1 was su⇥cient be-

cause after n � 1 hops the packet must either have been

delivered or revisited a node, in which case it will loop in-

definitely. But transformations allow the state of a packet to

change, so revisiting a node doesn’t imply that the packet

will loop indefinitely. In theory, packets might travel an

arbitrarily large number of hops before being delivered or

dropped. However, we expect k ⇥ n � 1 to be su⇥cient in

practice.

Application to other invariants. Packet transforma-

tions enable us to express certain other invariants succinctly.

Figure 7 shows a simplified version of a real-world exam-

ple from our campus network. Most servers are connected

to the external network via a firewall, but the PlanetLab

servers connect to the external network directly. For secu-

rity purposes, all tra⇥c between campus servers and Plan-

etLab nodes is routed through the external network, except

for administrative links between the PlanetLab nodes and

a few trusted servers. One interesting invariant is to check

whether all tra⇥c from the external network to protected

servers indeed goes through the firewall as intended.

This invariant can be expressed conveniently as follows.

We introduce a new field inspected in the symbolic packet,

and for each edge (f, v) going from the firewall f towards

the internal network of servers, we add a transformation

constraint:

T
i

(f, v) = s
i+1.inspected⇤ 1.

Then for each internal server S, we check whether

(s
k

.inspected = 0) �R(ext, S)

where ext is the node representing the external network, and

R(S, ext) is the boolean formula representing reachability

from ext to S computed by the reach algorithm. If this

formula is true, Anteater will give an example of a packet

which circumvents the firewall.

4. IMPLEMENTATION
We implemented Anteater on Linux with about 3,500 lines

of C++ and Ruby code, along with roughly 300 lines of

auxiliary scripts to canonicalize data plane information from
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Figure 7: An example where packet transformations al-
low convenient checking of firewall policy. Solid lines
are network links; text on the links represents a trans-
formation constraint to express the invariant. Clouds
represent omitted components in the network.

Foundry, Juniper and Cisco routers into a comma-separated

value format.

Our Anteater implementation represents boolean func-

tions and formulas in the intermediate representation format

of LLVM [23]. LLVM is not essential to Anteater; our in-

variant algorithms could output SAT formulas directly. But

LLVM provides a convenient way to represent SAT formulas

as functions, inline these functions, and simplify the result-

ing formulas.

In particular, Anteater checks an invariant as follows. First,

Anteater translates the policy constraints P and the trans-

formation constraints T into LLVM functions, whose argu-

ments are the symbolic packets they are constraining. Then

Anteater runs the desired invariant algorithm (reachability,

loop detection, etc.; §3), outputting the formula using calls

to the P and T functions. The resulting formula is stored

in the @main function. Next, LLVM links together the P,

T , and @main functions and optimizes when necessary. The

result is translated into SAT formulas, which are passed into

a SAT solver. Finally, Anteater invokes the SAT solver and

reports the results to the operator.

Recall the example presented in §3.2. We want to check

reachability from A to C in Figure 3. Anteater translates

the policy function P(B,C) into function @p_bc(), and puts

the result of dynamic programming algorithm into @main():

define @p_bc(%s
i

, %s
i+1) {

%� = load %s
i

.dst_ip
%1 = and %�, �xffffff��
%2 = icmp eq �xa�1�3��, %1
%3 = and %�, �xffffff8�
%4 = icmp eq �xa�1�38�, %3
%5 = xor %4, true
%6 = and %2, %5
ret %6 }

@pkt = external global

define void @main() {
%� = call @p_bc(@pkt, @pkt)
%1 = call @p_ab(@pkt, @pkt)
%2 = and %�, %1
call void @assert(%2)
ret void
}

The function @p_bc represents the function

P(B,C) = dst ip =24 10.1.3.0 � dst ip ⌃=25 10.1.3.128

The function takes two parameters %s
i

and %s
i+1 to support

packet transformations as described in §3.4.
The @main function is shown at the right side of the snip-

pet. @p_ab is the LLVM function representing P(A,B). @pkt
is a global variable representing a symbolic packet. Since

there is no transformation involved, the main function calls

the policy functions @p_bc and @p_ab with the same sym-

bolic packet. The call to @assert indicates the final boolean

formula to be checked by the SAT solver. Next, LLVM

performs standard compiler optimization, including inlining

and simplifying expressions, whose results are shown on the

left:

define void @main() {
%� = load @pkt.dst_ip
%1 = and %�, �xffffff��
%2 = icmp eq %1, �xa�1�3��
%3 = and %�, �xffffff8�
%4 = icmp ne %3, �xa�1�38�
%5 = and %2, %4
%6 = and %�, �xfffffe��
%7 = icmp eq %6, �xa�1�2��
%8 = and %5, %7
call void @assert(i1 %8)
ret void }

:formula
(let (?t1 (bvand p� �xffffff��))
(let (?t2 (= ?t1 �x�a�1�3��))
(let (?t3 (bvand p� �xffffff8�))
(let (?t4 (not (= ?t3 �x�a�1�38�)))
(let (?t5 (and ?t2 ?t4))
(let (?t6 (bvand p� �xfffffe��))
(let (?t7 (= ?t6 �x�a�1�2��))
(let (?t8 (and ?t5 ?t7))
(?t8)))))))))

Then the result is directly translated into the input format

of the SAT solver, which is shown in the right. In this exam-

ple, it is a one-to-one translation except that @pkt.dst_ip is

renamed to p�. After that, Anteater passes the formula into

the SAT solver to determine its satisfiability. If the formula

is satisfiable, the SAT solver will output an assignment to

pkt.�/p�, which is a concrete example (the destination IP in

this case) of the packet which satisfies the desired constraint.

The work flow of checking invariants is similar to that of

compiling a large C/C++ project. Thus Anteater uses o�-
the-shelf solutions (i.e. make -j16) to parallelize the check-

ing. Anteater can generate @main functions for each instance

of the invariant, and check them independently (e.g., for

each starting vertex when checking loop-freeness). Paral-

lelism can therefore yield a dramatic speedup.

Anteater implements language bindings for both Ruby

and SLang, a declarative, Prolog-like domain-specific lan-

guage that we designed for writing customized invariants,

and implemented on top of Ruby-Prolog [34]. Operators can

express invariants via either Ruby scripts or SLang queries;

we found that both of them are able to express the three

invariants e⇥ciently. The details of SLang are beyond the

scope of this paper.

5. EVALUATION
Our evaluation of Anteater has three parts. First (§5.1),

we applied Anteater to a large university campus network.

Our tests uncovered multiple faults, including forwarding

loops, tra⇥c-blocking ACL rules that were no longer needed,

and redundant statically-configured FIB entries.

Second (§5.2), we evaluate how applicable Anteater is to

detecting router software bugs by classifying the reported

e�ects of a random sample of bugs from the Quagga Bugzilla

database. We find that the majority of these bugs have the

potential to produce e�ects detectable by Anteater.

Third (§5.3), we conduct a performance and scalability

evaluation of Anteater. While far from ideal, Anteater takes

moderate time (about half an hour) to check for static prop-

erties in networks of up to 384 nodes.

We ran all experiments on a Dell Precision WorkStation

T5500 machine running 64-bit CentOS 5. The machine had

two 2.4 GHz quad-core Intel Xeon X5530 CPUs, and 48

GB of DDR3 RAM. It connected to the campus network

via a Gigabit Ethernet channel. Anteater ran on a NFS

volume mounted on the machine. The implementation used

LLVM 2.9 and JRuby 1.6.2. All SAT queries were resolved

by Boolector 1.4.1 with PicoSAT 936 and PrecoSAT 570 [8].

All experiments were conducted under 16-way parallelism.



Invariants Loops
Packet

loss
Consistency

Alerts 9 17 2
Being fixed 9 0 0

Stale config. 0 13 1

False pos. 0 4 1

No. of runs 7 6 6

Figure 8: Summary of evaluation results of Anteater on
our campus network.

5.1 Bugs found in a deployed network
We applied Anteater to our campus network. We collected

the IP forwarding tables and access control rules from 178

routers in the campus. The maximal length of loop-free

paths in the network is 9. The mean FIB size was 1,627

entries per router, which were inserted by a combination of

BGP, OSPF, and static routing. We also used a network-

wide map of the campus topology as an additional input.

We implemented the invariants of §3, and report their

evaluation results on our campus network. Figure 8 reports

the number of invariant violations we found with Anteater.

The row Alert shows the number of distinct violations de-

tected by an invariant, as a bug might violate multiple in-

variants at the same time. For example, a forwarding loop

creating a black hole would be detected by both the invariant

for detecting forwarding loops and the invariant for detecting

packet loss. We classified these alerts into three categories.

First, the row Being fixed means the alerts are confirmed

as bugs and currently being fixed by our campus network

operators. Second, the row Stale configuration means that

these alerts result from explicit and intentional configuration

rules, but rules that are outdated and no longer needed. Our

campus network operators decided to not fix these stale con-

figurations immediately, but plan to revisit them during the

next major network upgrade. Third, False positive means

that these alerts flag a configuration that correctly reflected

the operator’s intent and these alerts are not bugs. Finally,

No. of runs reports the total number of runs required to

issue all alerts; the SAT solver reports only one example

violation per run. For each run, we filtered the violations

found by previous runs and rechecked the invariants until

no violations were reported.

5.1.1 Forwarding loops
Anteater detected nine potential forwarding loops in the

network. One of them is shown in Figure 9 highlighted by

a dashed circle. The loop involved two routers: node and

bypass-a. Router bypass-a had a static route for prefix

130.126.244.0/22 towards router node. At the same time,

Router node had a default route towards router bypass-a.
As shown in the FIBs, according to longest prefix match

rules, packets destined to 130.126.244.0/23 from router bypass-a
could reach the destination. Packets destined to the prefix

130.126.244.0/22 but not in 130.126.244.0/23 would fall into

the forwarding loop.

Incidentally, all nine loops happened between these two

routers. According to the network operator, router bd 3
used to connect with router node directly, and node used to

connect with the external network. It was a single choke

point to aggregate tra⇥c so that the operator could deploy

Intrusion Detection and Prevention (IDP) devices at one

Core! Core!

Dist!

bd 1! bd 2! bd 3!

…!

Exit! Firewall!

bypass-a!

bypass-b!node!

bypass-a:!
S 130.126.244.0/22 -> node!
O 130.126.244.0/23 -> node!
S  0.0.0.0/0 -> bypass-b!

node:!
C 130.126.244.0/23 -> DIRECT!
S 0.0.0.0 -> bypass-a!

External 
Network!

Dist2!

Figure 9: Top: Part of the topology of the campus net-
work. Ovals and solid lines are routers and links respec-
tively. The oval with dashed lines circles the location
where a forwarding loop was detected. Bottom: Frag-
ments of data plane information in the network. S stands
for static, O stands for OSPF, and C stands for con-
nected.

single point. The IDP device, however, was unable to keep

up after the upgrade, so router bypass-a was introduced to

o⇤oad the tra⇥c. As a side e�ect, the forwarding loops were

also introduced when the operator configured forwarding for

that router incorrectly.

These loops are reachable from 64 of 178 routers in the

network. All loops have been confirmed by the network op-

erator and they are currently being fixed.

5.1.2 Packet loss
Anteater issued 17 packet loss alerts, scattered at routers

at di�erent levels of hierarchy. One is due to the lack of

default routes in the router; three are due to blocking tra⇥c

towards unused IP spaces; and the other 13 alerts are be-

cause the network blocks tra⇥c towards certain end-hosts.

We recognized that four alerts are legitimate operational

practice and classified them as false positives. Further in-

vestigation of the other 13 alerts shows that they are stale

configuration entries: seven out of 13 are internal IP ad-

dresses that were used in the previous generation of the net-

work. The other six blocked IP addresses are external, and

they are related to security issues. For example, an external

IP was blocked in April 2009 because the host made phish-

ing attempts to the campus e-mail system. The block was

placed to defend against the attack without increasing the

load on the campus firewalls.

The operator confirmed that these 13 instances can be

dated back as early as September 2008 and they are un-

necessary, and probably will be removed during next major

network upgrade.



5.1.3 Consistency
Based on conversations with our campus network opera-

tors, we know that campus routers in the same level of hier-

archy should have identical policies. Hence, we picked one

representative router in the hierarchy and checked the con-

sistency between this router and all others at the same level

of hierarchy. Anteater issued two new alerts: (1) The two

core routers had di�erent policies on IP prefix 10.0.3.0/24;
(2) Some building routers had di�erent policies on the pri-

vate IP address ranges 169.254.0.0/16 and 192.168.0.0/16.
Upon investigating the alert we found that one router ex-

posed its web-based management interface through 10.0.3.0/24.
The other alert was due to a legacy issue that could be

dated back to the early 1990’s: according to the design doc-

uments of the campus, 169.254.0.0/16 and 192.168.0.0/16
were intended to be only used within one building. Usually

each department had only one building and these IP spaces

were used in the whole department. As some departments

spanned their o⇥ces across more than one building, net-

work operators had to maintain compatibility by allowing

this tra⇥c to go one level higher in the hierarchy, and let

the router at higher level connect them together by creating

a virtual LAN for these buildings.

5.2 Applicability to router bugs
Like configuration errors, defects in router software might

a�ect the network. These defects tend to be out of the scope

of configuration analysis, but Anteater might be able to de-

tect the subset of such defects which manifest themselves in

the data plane.

To evaluate the e�ectiveness of Anteater’s data plane anal-

ysis approach for catching router software bugs, we stud-

ied 78 bugs randomly sampled from the Bugzilla repository

of Quagga [30]. Quagga is an open-source software router

which is used in both research and production [31]. We stud-

ied the same set of bugs presented in [41]. For each bug, we

studied whether it could a�ect the data plane, as well as

what invariants are required to detect it. We found 86%

(67 out of 78) of the bugs might have visible e�ects on data

plane, and potentially can be detected by Anteater.

Detectable with packet_loss and loop. 60 bugs could be

detected by the packet loss detection algorithm, and 46 bugs

could be detected by the loop detection algorithm. For ex-

ample, when under heavy load, Quagga 0.96.5 fails to up-

date the Linux kernel’s routing tables after receiving BGP

updates (Bug 122). This can result in either black holes or

forwarding loops in the data plane, which could be detected

by either packet_loss or loop.

Detectable with other invariants. 7 bugs can be detected by

other network invariants. For example, in Quagga 0.99.5, a

BGP session could remain active after it has been shut down

in the control plane (Bug 416). Therefore, packets would

continue to follow the path in the data plane, violating the

operator’s intent. This bug cannot be detected by either

packet_loss or loop, but it is possible to detect it via a

customized query: checking that there is no data flow across

the given link. We reproduced this bug on a local Quagga

testbed and successfully detected it with Anteater.

No visible data plane e�ects. 11 bugs lack visible e�ects on
the data plane. For example, the terminal hangs in Quagga

0.96.4 during the execution of show ip bgp when the data
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plane has a large number of entries (Bug 87). Anteater is

unable to detect this type of bug.

5.3 Performance and scalability

5.3.1 Performance on the campus network
Figure 10 shows the total running time of Anteater when

checking invariants on the campus network. We present both

the time spent on the first run and the total time to issue

all alerts.

Anteater’s running time can be broken into three parts:

(a) compiling and executing the invariant checkers to gen-

erate IR; (b) optimizing the IR with LLVM and generating

SAT formulas; (c) running the SAT solver to resolve the

SAT queries.

The characteristics of the total running time di�er for the
three invariants. The reason is that a bug has di�erent im-

pact on each invariant; thus the number of routers needed

to be checked during the next run varies greatly. For exam-

ple, if there exists a forwarding loop in the network for some

subnet S, the loop-free forwarding invariant only reports

routers which are involved in the forward loop. Routers that

remain unreported are proved to loop-free with respect to

the snapshot of data plane, provided that the correspond-

ing SAT queries are unsatisfiable. Therefore, in the next

run, Anteater only needs to check those routers which are

reported to have a loop. The connectivity and consistency

invariants, however, could potentially report that packets

destined for the loopy subnet S from all routers are lost,

due to the loop. That means potentially all routers must be

checked during the next run, resulting in longer run time.

5.3.2 Scalability

Scalability on the campus network. To evaluate Anteater’s

scalability, we scaled down the campus network while hon-

oring its hierarchical structure by removing routers at the

lowest layer of the hierarchy first, and continuing upwards
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Figure 11: Scalability results of the loop-free forward-
ing invariant on di�erent subsets of the campus network.
The parameter k was set to n� 1 for each instance.

until a desired number of nodes remain. Figure 11 presents

the time spent on the first run when running the forwarding

loop invariant on di�erent subsets of the campus network.

Figure 12 breaks down the running time for IR genera-

tion, linking and optimization, and SAT solving. We omit

the time of code generation since we found that it is negli-

gible. Figure 12 shows that the running time of these three

components are roughly proportional to the square of the

number of routers. Interestingly, the running time for SAT

solver also roughly fits a quadratic curve, implying that it

is able to find heuristics to resolve our queries e⇥ciently for

this particular network.

Scalability on synthesized autonomous system (AS) networks.
We synthesized FIBs for six AS networks (ASes 1221, 1755,

3257, 3967, 4755, 6461) based on topologies from the Rock-

etfuel project [36], and evaluated the performance of the

forwarding loop invariant. We picked k = 64 in this exper-

iment. To evaluate how sensitive the invariant is to the

complexity of FIB entries, we defined L as a parameter

to control the number of “levels” of prefixes in the FIBs.

When L = 1, all prefixes are non-overlapping /16s. When

L = 2, half of the prefixes (chosen uniform-randomly) are

non-overlapping /16s, and each of the remaining prefixes is a

sub-prefix of one random prefix from the first half — thus ex-

ercising the longest-prefix match functionality. For example,

with L = 2 and two prefixes, we might have p1 = 10.1.0.0/16
and p2 = 10.1.1.0/24. Figure 13 shows Anteater’s running

time on these generated networks; the L = 2 case is only

slightly slower than L = 1.

It takes about half an hour for Anteater to check the

largest network (AS 1221 with 384 vertices). These results

have a large degree of freedom: they depend on the com-

plexity of network topology and FIB information, and the

running time of SAT solvers depends on both heuristics and

random number seeds. These results, though inconclusive,

indicate that Anteater might be capable of handling larger

production networks.
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Scalability on networks with packet transformations. We

evaluated the case of our campus network with network ad-

dress translation (NAT) devices deployed. We manually in-

jected NAT rules into the data in three steps. First, we

picked a set of edge routers. For each router R in the set,

we created a phantom router R⇤
which only had a bidirec-

tional link to R. Second, we attached a private subnet for

each phantom router R⇤
, and updated the FIBs of both R

and R⇤
accordingly for the private subnet. Finally, we added

NAT rules as described in §3.4 on the links between R⇤
and

R.

Figure 14 presents the running time of the first run of the

loop-free forwarding invariant as a function of the number

of routers involved in NAT. We picked the maximum hops

k to be 20 since the maximum length of loop-free paths is 9

in our campus network.

The portion of time spent in IR generation and code gen-

eration is consistent among the di�erent number of NAT-

enabled routers. The time spent on linking, optimization

and SAT solving, however, increases slowly with the num-

ber of NAT-enabled routers.

6. DISCUSSION
Collecting FIB snapshots in a dynamic network. If FIBs

change while they are being collected, then Anteater could

receive an inconsistent or incomplete view of the network.

This could result in false negatives, false positives, or reports

of problems that are only temporary (such as black holes and

transient loops during network convergence).

There are several ways to deal with this problem. First,

one could use a consistent snapshot algorithm [17, 24]. Sec-

ond, if the network uses a software-defined networking ap-

proach [28], forwarding tables can be directly acquired from

centralized controllers.

However, our experience shows that the problem of con-

sistent snapshots may not be critical in many networks, as

the time required to take a snapshot is small compared to
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the average time between changes of the FIBs in our campus

network. To study the severity of this problem over a longer

timespan, we measured the frequency of FIB changes on

the Abilene Internet2 IP backbone, by replaying Internet2’s

BGP and IS-IS update traces to reconstruct the contents of

router FIBs over time. BGP was responsible for the major-

ity (93%) of FIB changes. Internal network (IS-IS) changes

occurred at an average frequency of just 1.2 events per hour

across the network.

We also note that if changes do occur while downloading

FIBs, we can avoid a silent failure. In particular, Cisco

routers can be configured to send an SNMP trap on a FIB

change; if such a trap is registered with the FIB collection

device, and received during the FIB collection process, the

process may be aborted and restarted.

Collecting FIB snapshots in the presence of network fail-
ures. Network reachability problems might make acquir-

ing FIBs di⇥cult. Fortunately, Anteater can make use of

solutions available today, including maintaining separately

tunneled networks at the forwarding plane [22, 13] or op-

erating through out-of-band control circuits [3], in order to

gather data plane state. (More philosophically, we note that

if parts of the network are unreachable, then one problem

has already been discovered.)

Would using control plane analysis reduce overhead? Anteater’s

runtime leaves room for improvement. However, using con-

trol plane analysis in place of Anteater does not address this

problem, as the invariants of interest are computationally

di⇥cult (see Appendix) regardless of whether the informa-

tion is represented at the control or data plane. It’s unclear

whether one approach can be fundamentally faster; di�er-
ences may come down to the choice of which invariants to

test, and implementation details. However, we note that

the data plane analysis approach may be easier because un-
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NAT rules.

like control plane analysis, it need not predict future system

inputs or dynamic protocol convergence.

Extending Anteater to handle more general properties. The

generality of boolean satisfiability enables Anteater to han-

dle other types of network properties beyond those presented

in this paper. For example, Anteater could model network

latency by introducing a new field in the symbolic packet to

record the packet’s total latency, and increasing it at each

hop according to the link’s latency using our packet trans-

formation algorithms. (The SAT solver we used supports

arithmetic operations such as +,�,⇥ that would be useful

for representing network behavior and constraints involving

latency.)

Of course, some bugs are beyond Anteater’s reach, such as

those that have no e�ect on the contents of forwarding state.

That includes some hardware failures (e.g., corrupting the

contents of the packet during forwarding), and configuration

issues that do not a�ect the FIB.

7. RELATED WORK
Static analysis of the data plane. The research most closely

related to Anteater performs static analysis of data plane

protocols. Xie et al. [39] introduced algorithms to check

reachability in IP networks with support for ACL policies.

Their design was a theoretical proposal without an imple-

mentation or evaluation. Anteater uses this algorithm, but

we show how to make it practical by designing and imple-

menting our own algorithms to use reachability to check

meaningful network invariants, developing a system to make

these algorithmically complex operations (see the Appendix)

tractable, and using Anteater on a real network to find 23

real bugs. Xie et al. also propose an algorithm for handling

packet transformations. However, their proposal did not

handle fully general transformations, requiring knowledge of

an inverse transform function and only handling non-loopy

paths. Our novel algorithm handles arbitrary packet trans-

formations (without needing the inverse transform). This



distinction becomes important for practical protocols that

can cause packets to revisit the same node more than once

(e.g., MPLS Fast Reroute).

Roscoe et al. [33] proposed predicate routing to unify the

notions of both routing and firewalling into boolean ex-

pressions, Bush and Gri⇥n [9] gave a formal model of in-

tegrity (including connectivity and isolation) of virtual pri-

vate routed networks, and Hamed et al. [19] designed algo-

rithms and a system to identify policy conflicts in IPSec,

demonstrating bug-finding e⇥cacy in a user study. In con-

trast, Anteater is a general framework that can be used to

check many protocols, and we have demonstrated that it can

find bugs in real deployed networks.

Static analysis of control plane configuration. Analyzing

configurations of the control plane, including routers [6, 14]

and firewalls [2, 5, 43], can serve as a sanity check prior

to deployment. As discussed in the introduction, configura-

tion analysis has two disadvantages. First, it must simulate

the behavior of the control plane for the given configura-

tion, making these tools protocol-specific; indeed, the task of

parsing configurations is non-trivial and error-prone [26, 41].

Second, configuration analysis will miss non-configuration

errors (e.g., errors in router software and inconsistencies be-

tween the control plane and data plane [18, 27, 41]; see our

study of such errors in §5.2).
However, configuration analysis has the potential to de-

tect bugs before a new configuration is deployed. Anteater

can detect bugs only once they have a�ected the data plane

— though, as we have shown, there are subtle bugs that fall

into this category (e.g., router implementation bugs, copy-

ing wrong configurations to routers) that only a data plane

analysis approach like Anteater can detect. Control plane

analysis and Anteater are thus complementary.

Intercepting control plane dynamics. Monitoring the dy-

namics of the control plane can detect a broad class of fail-

ures [16, 20] with little overhead, but may miss bugs that

only a�ect the data plane. As above, the approach is com-

plementary to ours.

Tra⇥c monitoring. Tra⇥c monitoring is widely used to de-

tect network anomalies as they occur [4, 29, 35, 37]. Anteater’s

approach is complementary: it can provably detect or rule

out certain classes of bugs, and it can detect problems that

are not being triggered by currently active flows or that do

not cause a statistical anomaly in aggregate tra⇥c flow.

SAT solving in other settings. Work on model checking,

hardware verification and program analysis [7, 40, 42] of-

ten encounter problems that are NP-Complete. They are

often reduced into SAT problems so that SAT solvers can

solve them e�ectively in practice. This work inspired our

approach of using SAT solving to model and analyze data-

plane behavior.

8. CONCLUSION
We presented Anteater, a practical system for finding bugs

in networks via data plane analysis. Anteater collects data

plane information from network devices, models data plane

behavior as instances of satisfiability problems, and uses for-

mal analysis techniques to systematically analyze the net-

work. To the best of our knowledge, Anteater is the first

design and implementation of a data plane analysis system

used to find real bugs in real networks.

We ran Anteater on our campus network and uncovered

23 bugs. Anteater helped our network operators improve

the reliability of the campus network. Our study suggests

that analyzing data plane information could be a feasible

approach to assist debugging today’s networks.
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Appendix
In this appendix, we discuss the complexity of the basic problem

of determining reachability in a network given its data plane state.

The di⇥culty of determining reachability depends strongly on

what functions we allow the data plane to perform. If network

devices implement only IP-style longest prefix match forwarding

on a destination address, it is fairly easy to show that reachability

can be decided in polynomial time. However, if we augment the

data plane with richer functions, the problem quickly becomes

di⇥cult. As we show below, packet filters make reachability NP-

Complete; and of course, reachability is undecidable in the case

of allowing arbitrary programs in the data plane.

It is useful to mention how this complexity relates to the ap-

proach of Xie et al. [39], whose reachability algorithm is essen-

tially the same as ours, but written in terms of set union/inter-

section operations rather than SAT. As pointed out in [39], even

with packet filters, the reachability algorithm terminates within

O(V 3) operations. However, this algorithm only calculates a for-

mula representing reachability, and does not evaluate whether

that formula is satisfiable. In [39], it was assumed that evalu-

ating the formula (via set operations in the formulation of [39])

would be fast. This may be true in many instances, but in the

general case deciding whether one vertex can reach another in the

presence of packet filters is not in O(V 3), unless P = NP. Thus,

to handle the general case, the use of SAT or similar techniques

is required since the problem is NP-complete. We choose to use

an existing SAT solver to leverage optimizations for determining

satisfiability.

We now describe in more detail how packet filters make reach-

ability NP-Complete. The input to the reachability problem con-

sists of a directed graph G = (V,E), the boolean policy function

Q(e, p) which returns true when packet p can pass along edge e,
and two vertices s, t ⇤ V . The problem is to decide whether there

exists a packet p and an s ; t path in G, such that Q(e, p) = true
for all edges e along the path. (Note this problem definition does

not allow packet transformations.) To complete the definition of

the problem, we must specify what sort of packet filters the pol-

icy function Q can represent. We could allow the filter to be any

boolean expression whose variables are the packet’s fields. In this

case, the problem can trivially encode arbitrary SAT instances

by using a given SAT formula as the policy function along a sin-

gle edge s ⇥ t, with no other nodes or edges in the graph, with

the SAT formula’s variables being the packet’s fields. Thus, that

formulation of the reachability problem is NP-Complete.

One might wonder whether a simpler, more restricted definition

of packet filters makes the problem easy. We now show that even

when Q for each edge is a function of a single bit in the packet

header, the problem is still NP-complete because the complexity

can be encoded into the network topology.

Proposition 1. Deciding reachability in a network with single-
bit packet filters is NP-Complete.

Proof. Given a packet and a path through the network, since

the length of the path must be < |V |, we can easily verify in

polynomial time whether the packet will be delivered. Therefore

the problem is in NP.

To show NP-hardness, suppose we are given an instance of a

3-SAT problem with n binary variables x1, . . . , xn

and k clauses

C1, . . . , C
k

. Construct an instance of the reachability problem as

follows. The packet will have n one-bit fields corresponding to the

n variables x
i

. We create k + 1 nodes v0, v1, . . . , v
k

, and we let

s = v0 and t = v
k

. For each clause C
i

, we add three parallel edges

e
i1, ei2, ei3 all spanning v

i�1 ⇥ v
i

. If the first literal in clause C
i

is some variable x
i

, then the policy function Q(e
i1, p) = true if

and only if the ith bit of p is 1; otherwise the first literal in C
i

is

the negated variable x
i

, and we let Q(e
i1, p) = true if and only

if the ith bit of p is 0. The policy functions for e
i2 and e

i3 are

constructed similarly based on the second and third literals in C
i

.

With the above construction a packet p can flow from v
i�1

to v
i

if and only if C
i

evaluates to true under the assignment

corresponding to p. Therefore, p can flow from s to t if and only if

all 3-SAT clauses are satisfied. Thus, since 3-SAT is NP-complete,

reachability with single-bit packet filters is NP-complete.


