
An Epistemic Characterization of Zero Knowledge

Joseph Y. Halpern, Rafael Pass, and Vasumathi Raman
Computer Science Department

Cornell University
Ithaca, NY, 14853, U.S.A.

e-mail: {halpern, rafael, vraman}@cs.cornell.edu

March 16, 2009

Abstract

Halpern, Moses and Tuttle presented a definition of interactive proofs using a notion they called
practical knowledge, but left open the question of finding an epistemic formula that completely
characterizes zero knowledge [Goldwasser, Micali, and Rackoff 1989]; that is, a formula that holds
iff a proof is zero knowledge. We present such a formula, and show that it does characterize zero
knowledge. Moreover, we show that variants of the formula characterize variants of zero knowledge
such as concurrent zero knowledge [Dwork, Naor, and Sahai 2004] and proofs of knowledge [Feige,
Fiat, and Shamir 1987; Tompa and Woll 1987].

1 Introduction

The notions of interactive proof and zero knowledge were introduced by Goldwasser, Micali, and Rack-
off [1989], and have been the subject of extensive research ever since. Informally, an interactive proof is
a two-party conversation in which a “prover” tries to convince a polynomial-time “verifier” of the truth
of a fact ϕ (where ϕ typically has the form x ∈ L, where x is a string and L is a language or set of
strings) through a sequence interactions. An interactive proof is said to be zero knowledge if, whenever
ϕ holds, the verifier has an algorithm to generate on its own the conversations it could have had with the
prover during an interactive proof of ϕ (according to the correct distribution of possible conversations).
Intuitively, the verifier does not learn anything from talking to the prover (other than ϕ) that it could
not have learned on its own by generating the conversations itself. Consequently, the only knowledge
gained by the verifier during an interactive proof is that ϕ is true. The notion of “knowledge” used
in zero knowledge is based on having an algorithm to generate the transcript of possible conversations
with the prover; the zero-knowledge condition places a restriction on what the verifier is able to generate
after interacting with the prover (in terms of what he could generate before). The relationship between
this ability to generate and logic-based notions of knowledge is not immediately obvious. Having a
logic-based characterization of zero knowledge would enhance our understanding and perhaps allow
us to apply model-checking tools to test whether proofs are in fact zero knowledge. However, getting
such a characterization is not easy. Since both probability and the computational power of the prover
and verifier play crucial roles in the definition of zero knowledge, it is clear that the standard notion of
knowledge (truth in all possible worlds) will not suffice.

Halpern, Moses and Tuttle [1988] (HMT from now on) were the first to study the relationship
between knowledge and being able to generate. They presented a definition of interactive proofs using
a notion they called practical knowledge. They proved that, with high probability, the verifier in a zero-
knowledge proof of x ∈ L practically knows a fact ψ at the end of the proof iff it practically knows
x ∈ L ⇒ ψ at the beginning of the proof; they call this property knowledge security. Intuitively, this
captures the idea that zero knowledge proofs do not “leak” knowledge of facts other than those that
follow from x ∈ L. They also define a notion of knowing how to generate a y satisfying a relation
R(x, y), and prove that, with high probability, if the verifier in a zero-knowledge proof of x ∈ L knows
how to generate a y satisfying R(x, y) at the end of the proof, then he knows how to do so at the
beginning as well; they called this property generation security. This captures the intuition that at the
end of a zero-knowledge proof, the verifier cannot do anything that it could not do at the beginning.

HMT left open the question of finding an epistemic formula that completely characterizes zero
knowledge; that is, a formula that holds iff a proof is zero knowledge [Goldwasser, Micali, and Rackoff
1989]. In this paper we present a strengthening of knowledge security and generation security that we
call relation hiding, which we show does characterize zero knowledge. Moreover, we show that variants
of relation hiding characterize variants of zero knowledge such as concurrent zero knowledge [Dwork,
Naor, and Sahai 2004] and proofs of knowledge [Feige, Fiat, and Shamir 1987; Tompa and Woll 1987].

2 Background

In this section, we review the relevant background both in cryptography (interactive proof systems and
zero knowledge) and epistemic logic (specifically, modeling knowledge and probability using the runs

1

and systems framework [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Tuttle 1993]). In addition,
we introduce some of the notation that will be needed for our new results.

2.1 Interactive Proof Systems

An interactive protocol is an ordered pair (P, V) of probabilistic Turing machines. P and V share a
read-only input tape; each has a private one-way, read-only random tape; each has a private work tape;
and P and V share a pair of one-way communication tapes, one from P to V being write-only for
P and read-only for V , and the other from V to P being write-only for V and read-only for P . An
execution of the protocol (P, V) is defined as follows. At the beginning, the input tape is initialized with
some common input x, each random tape is initialized with an infinite sequence of random bits, each
work tape may or may not be initialized with an initial string, and the communication tapes are initially
blank. The execution then proceeds in a sequence of rounds. During any given round, V first performs
some internal computation making use of its work tape and other readable tapes, and then sends a
message to P by writing on its write-only communication tape; P then performs a similar computation.
Either P or V may halt the interaction at any time by entering a halt state. V accepts or rejects the
interaction by entering an accepting or rejecting halt state, respectively, in which case we refer to the
resulting execution as either an accepting or rejecting execution. The running time of P and V during
an execution of (P, V) is the number of steps taken by P and V respectively, during the execution. We
assume that V is a probabilistic Turing machine running in time polynomial in |x|, and hence that it
can perform only probabilistic, polynomial-time computations during each round. For now we make no
assumptions about the running time of P .

Denote by (P (s) ↔ V (t))(x) the random variable that takes two random strings ρp, ρv ∈ {0, 1}∗
as input and outputs an execution of (P, V) in which the prover’s work tape is initialized with s, the
verifier’s work tape is initialized with t, the input tape is initialized with x, and ρp, ρv are the contents of
the prover and verifier’s respective random tapes. We can think of x as the common input, and of s and
t as containing the prover and verifier’s auxiliary information as well as the common input respectively.
Let xt denote the common input contained in the verifier’s state t (xs is defined analogously). We
sometimes write x rather than xs or xt, when s and/or t are clear from context. Let Acceptsv[(P (s)↔
V (t))(x)] be the random variable that takes two infinite random strings ρp, ρv ∈ {0, 1}∞ as input, and
outputs true iff the verifier enters an accept state at the end of the execution of the protocol (P, V) where
ρp and ρv are the contents of the prover and verifier’s respective random tapes, and false otherwise.

Informally, an interactive protocol (P, V) is an interactive proof system for a language L if, when
run on input x (and possibly some auxiliary inputs in s and t), after the protocol, if the prover and
verifier are both “good”—that is, the prover uses P and the verifier uses V—the verifier is almost
always convinced that x ∈ L. Moreover, no matter what protocol the prover uses, the verifier will
hardly ever be convinced that x ∈ L if it is not. The “almost always” and “hardly ever” are formalized
in terms of negligible functions. A function ε : N → [0, 1] is negligible if for every positive integer k
there exists an n0 ∈ N such that for all n > n0, ε(n) < 1

nk ; that is, ε is eventually smaller than any
inverse polynomial. Finally, let PrUk

denote the uniform probability over strings in ({0, 1}∞)k. For
ease of notation, we typically omit the subscript k when it does not play a significant role or is clear
from context, writing just PrU .

Definition 1 An interactive protocol (P, V) is an interactive proof system for language L if the follow-
ing conditions are satisfied:

2

• Completeness: There exists a negligible function ε such that for sufficiently large |x| and for every
s and t, if x ∈ L then

Pr
U

[Acceptsv[(P (s)↔ V (t))(x)]] ≥ 1− ε(|x|).

• Soundness: There exists a negligible function δ such that for sufficiently large |x|, for every pro-
tocol P ∗ for the prover, s, and t, if x 6∈ L then

Pr
U

[Acceptsv[(P ∗(s)↔ V (t))(x)]] ≤ δ(|x|).

The completeness condition is a guarantee to both the good prover and the good verifier that if
x ∈ L, then with overwhelming probability the good prover will be able to convince the good verifier
that x ∈ L. The soundness condition is a guarantee to the good verifier that if x 6∈ L, then the probability
that an arbitrary (possibly malicious) prover is able to convince the good verifier that x ∈ L is very low.
The probability here is taken over the runs of the protocol where the the verifier’s initial information is
s, the prover’s initial information is t, and x is the common input. The probability is generated by the
random coin flips of the prover and verifier (which in turn determine what happens in the run); we do
not assume a probability on s, t, or x.

2.2 Zero Knowledge

To make the notion of zero knowledge precise, we need a few preliminary definitions. We consider
zero-knowledge proofs of languages L that have a witness relation RL, where RL is a set of pairs (x, y)
such that x ∈ L iff there exists a y such that (x, y) ∈ RL; let RL(x) = {y : (x, y) ∈ RL}. Note
that all languages in the complexity class NP have this property. Define V iewv[(P (s) ↔ V (t))(x)]
to be the random variable that, on input ρp, ρv, describes the verifier’s view in the execution (P (s) ↔
V (t))(x)(ρ1, ρ2), that is, the verifier’s initial auxiliary input t, the sequence of messages received and
read thus far by the verifier, and the sequence of coin flips used thus far.

The intuition behind zero knowledge is that the reason the verifier learns nothing from an interaction
is that he can simulate it. The simulation is carried out by a probabilistic Turing machine. It should
be possible to carry out the simulation no matter what algorithm the verifier uses (since we hope to
show that, no matter what algorithm the verifier uses, he gains no information beyond the fact that
x ∈ L), so we have a simulator SV ∗ for every algorithm V ∗ of the verifier. The simulator SV ∗ takes
the verifier’s initial state as an input and generates verifier views of the conversations. With perfect
zero knowledge, the distribution of the views created by SV ∗ given input t (which is all the verifier
sees) is identical to the actual distribution of the verifier’s views generated by (P (s)↔ V (t))(x). With
statistical zero knowledge, the two distributions are just required to be close. Finally, with computational
zero knowledge, no PPT (probabilistic polynomial time) algorithm can distinguish the distributions. We
capture the notion of “distinguishing” here by using a PPT distinguisher D. The distinguisher gets
as input verifier views generated by SV ∗ and by the actual conversation, and possibly some auxiliary
input as well (see below), and must output either 1 or 0, depending on whether it believes the view
came from SV ∗ or the actual conversation. Notice that the input to the simulator (t) is accessible by the
verifier, so the verifier could, given his initial state and the common input, run the simulator instead of
interacting with the prover. The distinguisher tries to identify whether the verifier talked to the prover

3

or ran the simulator on his own. If no distinguisher is able to tell the difference, then the verifier might
as well not have interacted with the prover but run the simulator instead; we say that the interaction was
“zero-knowledge” in this case because the verifier saw nothing during the interaction that he could not
simulate.

We allow the distinguisher to have additional information in the form of auxiliary inputs (in addition
to the view it is trying to distinguish). This allows the distinguisher to have information that the verifier
never sees, such as information about the prover’s state, since such information could be helpful in
identifying views from the interaction and telling them apart from those produced by the verifier alone.
Allowing the distinguisher to get such auxiliary inputs strengthens the zero knowledge requirement in
that, no matter what additional information the distinguisher might have, he cannot tell apart views of
the interaction from simulated ones.

Definition 2 An interactive proof system (P, V) for L is said to be computational zero knowledge if,
for every PPT verifier protocol V ∗, there is a probabilistic Turing machine SV ∗ that takes as input the
common input and verifier’s auxiliary information contained in t, runs in expected time polynomial in
|xt|, and outputs a view for the verifier such that for every PPT (probabilistic polynomial time) Turing
machine D that takes as input a view of the verifier and an auxiliary input z ∈ {0, 1}∗, there exists a
negligible function ε such that for all x ∈ L, s ∈ RL(x), t ∈ {0, 1}∗, z ∈ {0, 1}∗,

|PrU [D(SV ∗(t), z) = 1]− PrU [D(V iewv[(P (s)↔ V ∗(t))(x)], z) = 1]| ≤ ε(|x|).

2.3 The Runs and Systems Framework

Our analysis of interactive proof systems is carried out in runs and systems framework [Fagin, Halpern,
Moses, and Vardi 1995]. The systems we consider consist of a (possibly infinite) set of communicating
agents. Agents share a global clock that starts at time 0 and proceeds in discrete increments of one.
Computation in the system proceeds in rounds, round m lasting from time m − 1 to time m. During a
round, each agent first performs some (possibly probabilistic) local computation, then sends messages
to other agents, and then receives all messages sent to him during that round. Each agents starts in
some initial local state; its local state then changes over time. The agent’s local state at time m ≥ 0
consists of the time on the global clock, the agent’s initial information (if any), the history of messages
the agent has received from other agents and read, and the history of coin flips used. A global state
is a tuple of local states, one for each agent and one for the nature, which keeps track of information
about the system not known to any of the agents. We think of each agent as following a protocol that
specifies what the agent should do in every local state. An infinite execution of such a protocol (an
infinite sequence of global states) is called a run. We define a system to be a set of such runs, often the
set of all possible runs of a particular protocol. Given a run r and a time m, we refer to (r,m) as a
point, and we say that (r,m) is a point of the systemR if r ∈ R. We denote the global state at the point
(r,m) (that is, the global state at time m in r) by r(m), and the local state of agent a in r(m) by ra(m).
Let Ka(r,m) = {(r′,m′) : ra(m) = r′a(m

′)}; Ka(r,m) can be thought of as the set of points that a
considers possible at (r,m), because he has the same local state at all of them. Since the agent’s local
state at time m consists of the time on the global clock, any point that a considers possible at (r,m) is
also at time m, so Ka(r,m) = {(r′,m) : ra(m) = r′a(m)}.

In interactive proof systems, we assume that there are two agents—a prover p and a verifier v. Both
agents have a common input (typically a string x ∈ {0, 1}∗); we denote by rc(0) the common input in

4

run r. We also assume that the prover and verifier agents have initial local states, rp(0) = s ∈ {0, 1}∗
and rv(0) = t ∈ {0, 1}∗, respectively; both of which contain rc(0), and include a description of the
protocol that the agent is following.Additionally, we assume that nature’s state at all times m includes
a tuple (ρrp, ρ

r
v, ρ

r), where ρrp and ρrv are the prover’s and verifier’s random tapes, respectively, in run
r, and ρr is an additional tape whose role is explained in Section 3. An interactive protocol (P, V)
generates a system. The runs of the system correspond to possible executions of (P, V). Following
HMT, we denote by P × V the system consisting of all possible executions of (P, V) and by P × Vpp
the system consisting of the union of the systems P × V ∗ for all probabilistic, polynomial-time (PPT)
protocols V ∗1. Ppp × V is defined analogously. More generally, we let P × V denote the system
consisting of the union of the systems P × V for all prover protocols P ∈ P and verifier protocols
V ∈ V . Since we need to reason about probability, we augment a system to get a probabilistic system,
by adding a function PRa for each agent that associates with each point (r,m) a probability PRa(r,m)
on points for agent a, whose support is contained in Ka(r,m). In many cases of interest, we can think
of PRa(r,m) as arising from conditioning an initial probability on runs on the agent’s current local
state, to give a probability on points. There are subtleties to doing this though. We often do not have
a probability on the set of all executions of a protocol. For example, as we observed in the case of
interactive proofs, we do not want to assume a probability on the auxiliary inputs or the common input
contained in s and t. The only source of probability is the random coin flips.

Halpern and Tuttle [1993] suggested a formalization of this intuition. Suppose that we partition
the runs of R into cells, with a probability on each cell. For example, in the case of interactive proof
systems, we could partition the runs into setsRs,t, according to the inputs s and t. The random coin flips
of the prover and verifier protocols and the random string in nature’s state then give us a well-defined
probability on the runs in Rs,t. We can then define PRa(r,m) by conditioning in the following sense:
Given a set S of points, let R(S) = {r : (r,m) ∈ S for some m}. Let R(r) be the cell of the partition
of R that includes r, and let PrR(r) be the probability on the cell. If A is an arbitrary set of points,
define PRa(r,m)(A) = PrR(r)(R(A∩Ka(r,m)) | R(Ka(r,m))∩R(r)). (We assume for simplicity
that all the relevant sets are measurable and that PrR(r)(R(Ka(r,m)) ∩ R(r)) 6= 0.) Note that for
synchronous systems (such as those we deal with), since Ka(r,m) is a set of time m points, the support
of PRa(r,m) is a subset of time m points (i.e., PRa(r,m)(A) = 0 unless A includes some time m
points, since otherwise A ∩Ka(r,m) = ∅). Intuitively, we associate a set of points with the set of runs
going through it, and then define the probability PRa(r,m), which is a’s distribution on points at the
point (r,m), by conditioning the probability on runs defined on r’s cell on the runs going through the
set Ka(r,m) (i.e. the runs a considers possible given his information at point (r,m)). A probabilistic
system is standard if it is generated from probabilities on runs in this way.

In systems where the runs are generated by randomized algorithms, the cells are typically taken so
as to factor out all the “nonprobabilistic” or “nondeterministic” choices. In particular, we do this for the
system P × V , so that we partition the runs into cellsRs,t, according to the inputs s and t, as suggested
above, and take the probability on the runs in the cell to be determined solely by the random inputs of the
prover and verifier ρv and ρp and the random string ρ contained in nature’s state. Thus, we can identify
the probability on Rs,t with the uniform distribution PrU3 . The probabilities on the system P × V are
defined by the probabilities on each individual system P × V for P ∈ P and V ∈ V; that is, we now
partition the runs of the system into cells according to the prover and verifier inputs s, t and the common

1Note that we distinguish p and v, the “prover” and the “verifier” agents respectively, from the protocols that they are
running. In the system P × V , the verifier is always running the same protocol V in all runs. In the system P × Vpp, the
verifier may be running different protocols in different runs.

5

input x, so there now is a separate cell for each combination of s and t, and the probability PrP×V(r)

can be identified with the uniform distribution PrU3 .

2.4 Reasoning About Systems

To reason about systems, we assume that we have a collection of primitive facts such as “the value of
the variable x is a prime number” (where x is the common input in the run), or “x ∈ L”, where L
is some set of strings. Each primitive fact ϕ is identified with a set π(ϕ) of points, interpreted as the
set of points at which ϕ holds. A point (r,m) in a system R satisfies ϕ, denoted (R, r,m) |= ϕ, if
(r,m) ∈ π(ϕ). We extend this collection of primitive facts to a logical language by closing under the
usual boolean connectives, the linear temporal logic operator ♦, operators at time m∗ for each time
m∗, the epistemic operators Ka, one for each agent a, and probability operators of the form for prλa
each agent a and real number λ. The definitions of all these operators is standard:

• (R, r,m) |= ♦ϕ iff (R, r,m′) |= ϕ for some m′ ≥ m.

• (R, r,m) |= Kaϕ iff (R, r′,m′) |= ϕ for all (r′,m′) ∈ Ka(r,m). (Intuitively, agent a knows ϕ
if ϕ is true at all the worlds that agent a considers possible.)

• (R, r,m) |= at time m∗ ϕ iff (R, r,m∗) |= ϕ.

• (R, r,m) |= prλa(ϕ) iff PRa(r,m)([[ϕ]]) ≥ λ, where [[ϕ]] = {(r′,m) : (R, r′,m) |= ϕ}.

We writeR |= ϕ if (R, r,m) |= ϕ for all points (r,m) inR.

3 Characterizing Zero Knowledge Using Relation Hiding

We identify “knowing something about the initial state of the system” with “being able to generate a
witness for some relation on the initial state”.

For example, if the language L from which the common input x is taken is the set of all Hamiltonian
graphs, then we can define a relationR such thatR(s, t, y) holds iff xs = xt = x and y is a Hamiltonian
cycle in graph x. Recall that a Hamiltonian cycle in a graph is a path that goes through every vertex
exactly once, and starts and ends at the same vertex; a Hamiltonian graph is a graph with a Hamiltonian
cycle. We can think of a Hamiltonian cycle y as a witness to a graph x being Hamiltonian. We allow the
relation R to depend on s and t in addition to x because this allows us to describe the possibility of the
verifier learning (via the interaction) facts about the prover’s initial state (which he does not have access
to). This allows us to account for provers with auxiliary information on their work tapes. For example,
R(s, t, y) could be defined to hold iff the prover has Hamiltonian path y on its work tape (in its initial
state s).

We are therefore interested in relations R on S × T × {0, 1}∗, where S is the set of prover ini-
tial states and T is the set of verifier initial states. We want a formal way to capture verifier’s abil-
ity to generate such witnesses for R. We do this by using an algorithm M that takes as input the
verifier’s local state t and is supposed to return a y such that R(s, t, y) holds. The algorithm M es-
sentially “decodes” the local state into a potential witness for R. More generally, we want to allow

6

the decoding procedure M to depend on the protocol V ∗ of the verifier. We do this by using a func-
tion M : TM → TM; intuitively M(V ∗) is the decoding procedure for the verifier protocol V ∗.
To reason about this in the language, we add a primitive proposition Mv,R to the language, where
(R, r,m) |= Mv,R if R(rp(0), rv(0),M(V ∗)(rv(m))(ρr)) holds, and V ∗ is the verifier protocol in run
r and ρr is the extra random tape that is part of nature’s local state in run r; this makes the output of
M(V ∗) in run r deterministic (although M is a probabilistic TM). For any constant λ, let GM,m∗,λ

v R,
read “the verifier can generate a y satisfyingR using M with probability λ at timem∗” be an abbreviation
of prλv (at time m

∗ Mv,R). We can generalize this to a formula GM,m∗,λ
v R which considers functions

λ whose meaning may depend on components of the state, such as the verifier’s protocol and the length
of the common input; we leave the straightforward semantic details to the reader. GM,m∗,λ

p R, read “the
prover can generate a y satisfying R using M with probability λ at time m∗”, is defined analogously.
Finally, we add the primitive proposition s ∈ RL(x) to the language, and define (R, r,m) |= s ∈ RL(x)
if rc(0) ∈ L and rp(0) ∈ RL(rc(0)).

We now show how to use the formulaGM,m∗,λ
v R to capture the intuitions underlying zero-knowledge

proofs. Intuitively, we want to say that if the verifier can generate a y satisfying a relation R after the
interaction, he could also do so before the interaction (i.e., without interacting with the prover at all).
However, this is not quite true; a verifier can learn a y satisfying R during the course of an interaction,
but only in a negligibly small fraction of the possible conversations. We want to capture the fact that
the probability of the verifier being able to generate the witness correctly at a final point in the system is
only negligibly different from the probability he can do so at the corresponding initial point (in a perfect
zero knowledge system, the probabilities are exactly the same). Note that when the Turing machine M
used by the verifier in a particular run r generates a y, the verifier may not know whether y in fact is
a witness; that is, the verifier may not know whether R(s, t, y) in fact holds. Nevertheless, we want it
to be the case that if the verifier can use some algorithm M that generates a witness y with a certain
probability after interacting with the prover, then the verifier can generate a witness y with the same
probability without the interaction. This lets us account for leaks in knowledge from the interaction that
the verifier may not be aware of. For example, a computationally bounded verifier may have a Hamilto-
nian cycle y in graph x as part of his local state, but no way of knowing that y is in fact a Hamiltonian
cycle. We want to say that the verifier knows how to generate a Hamiltonian cycle if this is the case
(even if he does not know that he can do so), since there is a way for the verifier to extract a Hamiltonian
cycle from his local state.

We now define relation hiding, which says that if the verifier initially knows that he can, at some
future time during the interaction with the prover, generate a witness for some relation R on the initial
state with some probability, then he knows that he can generate a witness for R at time 0, that is,
before the interaction, with almost the same probability. We allow the generating machines used by
the verifier (both after and before the interaction) to run in expected polynomial time in the common
input and verifier view. Allowing them to only run in (strict) polynomial time, would certainly also
be a reasonable choice, but this would result in a notion that is stronger than the traditional notion of
zero-knowledge.2 Let EPPT be the set of all expected probabilistic polynomial time algorithms (i.e.,
algorithms for which there exists a polynomial p such that the expected running time on input x is at
most p(|x|)).

Definition 3 The systemR is relation hiding for L if, for every polynomial-time relation R on S × T ×
2In fact, it would result in a notion called strict polynomial-time zero knowledge [Goldreich 2001].

7

{0, 1}∗ and function M : TM→ EPPT , there exist functions M′ : TM→ EPPT , ε : TM×N→
[0, 1] such that for every Turing machine V ∗, ε(V ∗, ·) is a negligible function, and for every 0 ≤ λ ≤ 1
and time m∗,

R |= at time 0 (s ∈ RL(x) ∧GM,m∗,λ
v R⇒ GM′,0,λ−ε

v R).

In the definition above, given a protocol V ∗ for the verifier, the Turing machines M(V ∗) and
M′(V ∗) take as input a verifier state t and run in expected time polynomial in |xt|. Note that RL
in the definition of relation hiding is still the standard witness relation for L, and is therefore a binary
relation (whereas the general relations R we consider for relation hiding have arity 3). We allow the
meaning of ε to depend on the verifier’s protocol V ∗ since, intuitively, different verifier protocols may
result in different amounts of knowledge being leaked. If we had not allowed ε to depend on the verifier
protocol V ∗, we would need a single negligible function that bounded the “leakage” of information for
all verifiers in Vpp. We cannot prove that such a function exists with the traditional definition of zero
knowledge. Similarly, we must allow M′ to depend on the verifier’s protocol, even if M does not. In-
tuitively, M′ must be able to do at time 0 what M can do at time m∗, so it must know something about
what happened between times 0 andm∗. The verifier’s protocol serves to provide this information, since
for each verifier protocol V ∗, the definition of zero knowledge ensures the existence of a simulator SV ∗
that can be used to mimic the interaction before time m∗. The relation-hiding property captures the
requirement that if the verifier can eventually generate an arbitrary R, he can do so almost as well (i.e.
with negligibly lower probability of correctness) initially. We now use this property to characterize zero
knowledge.

Theorem 1 The interactive proof system (P, V) for L is computational zero knowledge iff the system
P × Vpp is relation hiding for L.

Theorem 1 says that if (P, V) is a computational zero-knowledge proof system, then for any PPT
verifier and relation R, if the verifier can eventually generate a witness for R, he can do so almost as
well initially. Note that in this characterization of zero knowledge, the prover does not need to know the
verifier’s protocol to know that the statement holds. An intuition for the proof of Theorem 1 follows:
the details (as well as all other proofs) can be found in Appendix A.

For the “if” direction, suppose that (P, V) is a computational zero knowledge system. If V ∗ is
the verifier protocol in run r ∈ P × Vpp, then there is a simulator machine SV ∗ that produces verifier
views that no distinguisher D can distinguish from views during possible interactions with the prover,
no matter what auxiliary input D has. We show that if the verifier has an algorithm M(V ∗) that takes
as input his view at a final point of the interaction and generates a y satisfying the relation R, then he
can generate such a y before the interaction by running the simulating machine SV ∗ at the initial point
to get a final view, and then running M(V ∗) on this view to generate y. We can therefore construct the
function M′ using M and SV ∗ .

For the “only if” direction, given an arbitrary protocol V ∗, we construct a relation R such that
the verifier has an algorithm for generating witnesses for R after the interaction. Since P × Vpp is
relation hiding for L, the verifier has an algorithm for generating witnesses for R at initial points of
the interaction. We then use this generating machine to implement a simulator SV ∗ that fools any
distinguisher.

8

Our epistemic characterization of zero knowledge is in the spirit of HMT’s notion of generation
security, but there are some significant differences. For one thing, generation security is only a necessary
condition for zero knowledge; we give a formula that is both necessary and sufficient. Thus, intuitively,
our formula must be more stringent than that of HMT. One way in which our condition is more stringent
is that HMT consider only witnesses for a string being in L, so that they consider binary relations on
{0, 1}∗ × {0, 1}∗. By way of contrast, we consider relations on S × T × {0, 1}∗. Perhaps even more
important, generation security requires only that if the probability of generating a witness is at least
2/3 at the end of the protocol, then it is at least 2/3 at the beginning; we require that the probability of
generating a witness initially be close to the probability at time m∗, whatever that probability is.

We can essentially represent generation security in our language as follows:

For every polynomial-time relation R on {0, 1}∗ × {0, 1}∗ and function M : TM →
EPPT , there exist functions M′ : TM→ EPPT and δ : TM×N→ [0, 1] such that for
every Turing machine V ∗, δ(V ∗, ·) is a negligible function, and

P × V ∗ |= at time 0(s ∈ RL(x) =⇒ pr1−δp (GM,m∗,2/3
v R =⇒ GM′,0,2/3

v R)).

4 Characterizing Variants of Zero Knowledge

We can use the ideas of relation hiding to characterize variants of zero knowledge. In this section, we
show how to characterize two well-known variants: concurrent zero knowledge and proofs of knowl-
edge.

4.1 Concurrent Zero Knowledge

So far, we have considered only single executions of an interactive proof system. However, zero-
knowledge proofs are often used in the midst of other protocols. Moreover, when this is done, several
zero-knowledge proofs may be going on concurrently. An adversary may be able to pass messages
between various invocations of zero-knowledge proofs to gain information. Dwork, Naor, and Sahai
[2004] presented a definition of concurrent zero knowledge that tries to capture the intuition that no in-
formation is leaked even in the presence of several concurrent invocations of a zero-knowledge protocol.
They consider a probabilistic polynomial-time verifier that can talk to many independent provers (all us-
ing the same protocol) concurrently. The verifier can interleave messages to and from different provers
as desired. We say that an extended verifier protocol is a protocol for the verifier where the verifier can
interact with arbitrarily many provers concurrently, rather than just one prover. (Since we are interested
in verifiers that run in polynomial time, for each extended verifier protocol V there is a polynomial qV
such that the verifier can interact with only qV (|x|) provers on input x. This means that the verifier’s
view also contains messages to and from at most qV (|x|) provers.) Denote by (P̃ (s) ↔ V (t))(x) the
random variable that takes an infinite tuple of infinite random strings ((ρpi)i∈N, ρv) as input and outputs
an execution where all the provers are running protocol P with auxiliary input s on common input x
and the verifier is running the extended verifier protocol V with auxiliary input t and common input x,
prover i has the infinite string ρi on its random tape, and the verifier has ρv on its random tape.

With this background, we can define a concurrent definition of zero knowledge in exactly the same
way as zero knowledge (Definition 2), except that we now consider extended verifier protocols; we omit
the details here.

9

We can model a concurrent zero-knowledge system in the runs and systems framework as follows.
We now consider systems with an infinite number of agents: a verifier v and an infinite number of
provers p1, p2, All agents have common input rc(0) in run r. As before, the provers and the verifier
have initial local states. We will be interested in systems where all the provers have the same initial
state and use the same protocol. Moreover, this will be a protocol where a prover talks only to the
verifier, so the provers do not talk to each other. This captures the fact that the verifier can now talk to
multiple provers running the same protocol, but the provers themselves cannot interact with each other
(they are independent). Again, the initial local states of the provers and the verifier all contain rc(0).
Additionally, we assume that nature’s state at all times m includes a tuple (ρrp1 , . . . , ρ

r
v, ρ

r, P ∗, V ∗),
where ρrpi

is prover pi’s random tape and ρrv is the verifier’s random tape in run r, ρr is an additional
tape as before, P ∗ is the protocol used by all the provers, and V ∗ is the verifier’s protocol. Note that
the provers’ random tapes are all independent to ensure that their actions are not correlated. Given a set
P of prover protocols and V of verifier protocols, let P̃ × V denote the system with runs of this form,
where the provers’ protocol is in P and the verifier’s protocol in V . If P = {P}, we write P̃ × V . We
define the probability on P̃ × V as before, partitioning the runs into cells according to the protocol used
and the inputs. Thus, we can identify the probability onRs,t with the uniform distribution PrU∞ .

Theorem 2 The interactive proof system (P, V) for L is computational concurrent zero knowledge iff
the system P̃ × Vpp is relation hiding for L.

The proof is almost identical to that of Theorem 1. The formal details are in Appendix A.

4.2 Proofs of Knowledge

Loosely speaking, an interactive proof is a proof of knowledge if the prover not only convinces the
verifier of the validity of some statement, but also that it possesses, or can “feasibly compute”, a witness
for the statement proved (intuitively, using the secret information in its initial state). For instance, rather
than merely convincing the verifier that a graph is Hamiltonian, the prover convinces the verifier that
he knows a Hamiltonian cycle in the graph. We show how this notion can be formalized using our
logic. There are a number of ways of formalizing proofs of knowledge; see, for example, [Bellare and
Goldreich 1992; Feige, Fiat, and Shamir 1987; Feige and Shamir 1990; Tompa and Woll 1987]. We
give here a definition that is essentially that of Feige and Shamir [1990].

Definition 4 An interactive proof system (P, V) for a language L with witness relationRL is a proof of
knowledge if, for every PPT prover protocol P ∗, there exists a negligible function ε and a probabilistic
Turing machine EP ∗ that takes as input the prover’s state s, runs in expected time polynomial in |xs|,
and outputs a candidate witness for xs, such that for all s, t ∈ {0, 1}∗,

PrU [{Acceptsv[(P (s)↔ V (t))(x)]}]− PrU [{EP ∗(s) ∈ RL(x)}] ≤ ε(|x|).

Intuitively, this says that for every prover P ∗, if P ∗ succeeds in convincing the verifier V that x is in L,
then there is a “knowledge extractor” machine EP ∗ that can extract a witness for x from the prover’s
auxiliary information. We can think of the extractor as demonstrating that the prover really does know
a witness to show that x ∈ L, given its auxiliary information in s. We now formalize this definition of
proofs of knowledge using our logic. Let accepts denote the primitive proposition that holds iff the
verifier enters an accept state at the end of the interaction.

10

Definition 5 The system R is witness convincing for the language L with witness relation RL if there
exist functions M : TM → EPPT , ε : TM × N → [0, 1] such that, for every Turing machine P ∗,
ε(P ∗, ·) is a negligible function, and, for all 0 ≤ λ ≤ 1,

R |= at time 0 prλp(♦accepts)⇒ GM,0,λ−ε
p R+

L ,

where (s, t, y) ∈ R+
L iff x = xs = xt, y ∈ RL(x).

This definition says that there exists a function M such that M(P ∗) takses a prover state s, runs in time
polynomial in |xs|, and can generate a y such that (s, t, x, y) ∈ R+

L whenever P ∗ makes the verifier
accept in the system R. This machine can be viewed as a knowledge extractor for P ∗, motivating the
following theorem.

Theorem 3 The interactive proof system (P, V) for L is a proof of knowledge iff the system Ppp×V is
witness convincing for L.

To see why this should be true, note that if (P, V) is a proof of knowledge and if the verifier accepts
on input x when interacting with P ∗, then there exists a knowledge extractor machine EP ∗ that can
generate a witness y ∈ RL(x), and can therefore generate a y such that (s, t, x, y) ∈ R+

L . For the
converse, as we said above, the machine M(P ∗) that exists by the definition of witness convincing can
be viewed as a knowledge extractor for P ∗. Again, the details are in Appendix A.

The difference between Definition 4 and the definition of FS is that, in the FS definition, rather than
allowing a different machine EP ∗ for every prover protocol P ∗, FS require that there be a single knowl-
edge extractor machine E that has oracle access to the prover’s protocol. To capture this difference, we
vary the definition of witness convincing to require that M(P∗) for any P ∗ return the same machine M
that has oracle access to P ∗ (and has expected runtime polynomial in |x|, not counting the computation
of P ∗).

The FFS definition is an earlier variant of the FS definition with a slightly different requirement
on the success probability of the knowledge extractor; in essence, they require only that if the success
probability of P ∗ is non-negligible, then the knowledge extractor E also succeeds with non-negligible
probability. The TW definition considers yet a different requirement on success probability; in essence,
that the probability that P ∗ succeeds and the extractor fails is negligible. Finally, the difference between
the BG and FS definitions is that in the BG definition, the knowledge extractor has access to P ∗(x, s) and
x but does not directly get access to the auxiliary input s (whereas in the FS definition the knowledge
extractor gets access to P ∗, x and s). We can easily modify the witness convincing requirement to
capture these differences. The straightforward details are left to the reader.

5 Conclusions and Future Work

HMT formalized the notion of knowledge security and showed that a zero-knowledge proof system for
x ∈ L satisfies it: the prover is guaranteed that, with high probability, if the verifier will practically
know (as defined in [Moses 1988]) a fact ϕ at the end of the proof, he practically knows x ∈ L⇒ ϕ at
the start. They also formalized the notion of knowing how to generate a y satisfying any relationR(x, y)
that is BPP-testable by the verifier, and showed that zero-knowledge proofs also satisfy the analogous

11

property of generation security (with respect to these relations). Their work left open the question of
whether either of these notions of security characterizes zero knowledge.

We have provided a different definition of what it means for a polynomial-time agent to know how to
generate a string y satisfying a relation R. Using this definition we provide a logical statement—called
relation hiding—that fully characterizes when an interaction is zero knowledge. We additionally show
that variants of this statement (using the same notion of knowing how to generate) characterize variants
of zero knowledge, including concurrent zero knowledge and proofs of knowledge.

Our notion of relation hiding considers the verifier’s knowledge at the beginning of a run (i.e. at time
0); it says that, at time 0, the verifier cannot know that he will be able to generate a witness for a relation
with higher probability in the future than he currently can. We would like to make the stronger claim that
the verifier will never know that he can generate a witness satisfying the relation better than he knows
he can at the beginning (or, more accurately, will almost certainly never know this, since there is always
a negligible probability that he will learn something). To do this, we need to talk about the verifier’s
knowledge and belief at all points in the system. Consider, for example, a verifier trying to factor a large
number. We would like to allow for the fact that the verifier will, with some small probability, get the
correct answer just by guessing. However, we want to be able to say that if, after interacting with the
prover, the verifier believes that he can guess the factors with non-negligible probability then, except
with very small probability, he already believed that he could guess the factors with almost the same
probability before the interaction. This does not hold if we consider only objective probabilities on the
verifier’s possible worlds (that is, probabilities generated by the random coin tosses). At the end of a
run, the verifier can either generate a witness or not. Nevertheless, he may have subjective uncertainty
about whether he can generate a witness.

Subjective beliefs can be arbitrary. Enforcing the requirements above seems to require some ax-
ioms about how a computationally-bounded verifier’s beliefs evolve. We are currently considering what
might be appropriate axioms, using Rantala’s “impossible possible-worlds approach” [Rantala 1982] to
capture the verifier’s uncertainty due to computational limitations. For example, if the verifier cannot
compute whether a number n is prime, he may consider possible a world where n is prime and one
where it is not (although one of these worlds is logically impossible). Proving analogues of our theorem
in this setting seems like an interesting challenge, which will lead to a deeper understanding of variants
of zero knowledge.

Acknowledgements

The first and third authors are supported in part by NSF grants ITR-0325453, IIS-0534064, and IIS-
0812045, and by AFOSR grants FA9550-08-1-0438 and FA9550-05-1-0055. The second author is
supported in part by NSF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-0197, BSF
Grant 2006317 and I3P grant 2006CS-001-0000001-02.

A Proofs

A.1 Computational Zero Knowledge

Theorem 1: The interactive proof system (P, V) for L is computational zero knowledge iff the system
P × Vpp is relation hiding for L.

12

Proof. For the “only if” direction, suppose that (P, V) is a computational zero knowledge system and
that (P ×Vpp, r, 0) |= GM,m∗,λ

v R for a polynomial-time relation R and functions M : TM→ EPPT
and λ : TM × N → [0, 1]. We want to show that there exist functions M′ : TM → EPPT and
ε : TM × N → [0, 1] such that (P × Vpp, r, 0) |= GM′,0,λ−ε

v R. The intuition behind the proof is as
follows. If (P, V) is zero knowledge, and V ∗ is the verifier protocol in run r, then there is a simulator
machine SV ∗ that produces verifier views that no distinguisher D can distinguish from views during
possible interactions with the prover, no matter what auxiliary input D has. We show that if the verifier
has an algorithm M(V ∗) that takes as input his view at a final point of the interaction and generates a y
satisfying the relation R, then he can generate such a y before the interaction by running the simulating
machine SV ∗ at the initial point to get a final view, and then running M(V ∗) on this view to generate y.
We can therefore construct the function M′ using M and SV ∗ .

In more detail, we want to show (P ×Vpp) |= at time 0 (s ∈ RL(x)∧GM,m∗,λ
v R⇒ GM′,0,λ−ε

v R).
Thus, we must show that for all runs r, we have (P × Vpp, r, 0) |= (s ∈ RL(x) ∧ GM,m∗,λ

v R ⇒
GM′,0,λ−ε
v R). So suppose that rc(0) ∈ L, rp(0) ∈ RL(rc(0)), and ({P}× Vpp, r, 0) |= GM,m∗,λ

v R. By
definition, this means that (P × Vpp, r, 0) |= prλv (at time m

∗ Mv,R).
Suppose that the verifier runs V ∗ in r. Since (P × Vpp, r, 0) |= prλv (at time m

∗ Mv,R), we have

PRv(r, 0)({(r′, 0) : (P×V ∗, r′, 0) |= at time m∗ Mv,R}, r′v(0) = rv(0), r′p(0) = rp(0)}) ≥ λ(V ∗, |rc(0)|).

Recall that we can identify PRv(r, 0) with PrU3 , so

PrU ({r′ ∈ (P×V)(r) : (P×V ∗, r′, 0) |= at time m∗ Mv,R, r
′
v(0) = rv(0), r′p(0) = rp(0)}) ≥ λ(V ∗, |rc(0)|).

By definition of Mv,R,

PrU [{r′ ∈ (P × V)(r) : R(r′p(0), r′v(0), r′c(0),M(V ∗)(r′v(m
∗))) = 1}] ≥ λ(V ∗, |rc(0)|).

Construct a PPT distinguisher D as follows. D takes as input a verifier view viewv and, as auxiliary
input, the prover’s state t. D extracts from viewv the verifier’s initial state t since by perfect recall, the
initial verifier state is contained in any subsequent view and the common input x. Given a random string
ρ, D runs M(V ∗) on x, viewv, and ρ, where V ∗ is the verifier’s protocol (which is part of t), to get y,
and outputs R(s, t, y). So D with inputs viewv and s accepts iff R(s, t,M(V ∗)(viewv)(ρ)) = 1 for the
t and x contained in the verifier’s view. Thus, D with auxiliary input rp(0) accepts the verifier’s view
r(m∗) with probability at least λ(V ∗, |rc(0)|) (where the probability is taken over the random choices
of D).

Because (P, V) is a computational zero-knowledge proof system for L, if rc(0) ∈ L and rp(0) ∈
RL(rc(0)), then there is an expected PPT Turing machine SV ∗ and a negligible function ε(V ∗) such
that SV ∗ on input rv(0) outputs a verifier view such that every distinguisher, and in particular the distin-
guisher D constructed above, accepts this view with probability at least (λ− ε)(V ∗, |rc(0)|) (taken over
the random choices of D and SV ∗), no matter what auxiliary information we give it, and in particular
given auxiliary input rp(0). Thus, by the definition of D, we must have

PrU [{r′ ∈ (P × V)(r) : R(r′p(0), r′v(0), r′c(0),M(V ∗)(SV ∗(r′v(0)))) = 1] ≥ (λ− ε)(V ∗, |rc(0)|).

Define M′ : TM → EPPT by taking M′(V ∗)(t) = M(V ∗)(SV ∗(t)). Note that this definition
suppresses the random choices of M′(V ∗), SV ∗ and M(V ∗)—we assume that each of these machines

13

is given a random tape, and that the random tapes of SV ∗ and M(V ∗) are independent, so that their
outputs are not correlated. Since SV ∗ and M(V ∗) are both expected polynomial-time in |xt|, so is
M′(V ∗). Note also that

R(rp(0), rv(0),M′(V ∗)(rv(0))(ρr)) = 1

iff

R(rp(0), rv(0),M(V ∗)(SV ∗(rc(0), rv(0))(ρrv))(ρ
r)) = 1;

thus,

PrU [R(rp(0), rv(0),M′(V ∗)(rv(0))) = 1] ≥ (λ− ε)(V ∗, |rc(0)|).

So M′(V ∗) runs in expected time polynomial in |xt| and outputs a value such that

(P × Vpp, r, 0) |= prλ−εv (at time 0 M′
v,R).

This completes the proof of the “only if” direction.

For the “if” direction, we want to show that for every verifier protocol V ∗, there is an EPPT al-
gorithm SV ∗ such that for any PPT distinguisher D, there exists a negligible function ε such that
∀x ∈ L,∀s ∈ RL(x), t, z ∈ {0, 1}∗,

|PrU [{D(SV ∗(t), z) = 1}]− PrU [{D(V iewv[(P (s)↔ V ∗(t))(x)], z) = 1}]| ≤ ε(|x|).

The idea behind the proof is as follows. Given an arbitrary protocol V ∗, we construct a relation R such
that the verifier has an algorithm for generating witnesses for R after the interaction. Since P × Vpp
is relation hiding for L, the verifier has an algorithm for generating witnesses for R at initial points
of the interaction. We then use this generating machine to implement a simulator SV ∗ that fools any
distinguisher.

Recall that the set of possible verifier initial states is the set of all bitstrings {0, 1}∗. Given an
arbitrary PPT distinguisher D that takes a verifier state t and has runtime bounded by d(|xt|), let TD ⊆
{0, 1}∗ be the set of verifier states of the form t = t′; 1N ;′D′; z; ρD, where t′ ∈ {0, 1}∗, t′ contains the
string xt′ ∈ L, ′D′ ∈ {0, 1}∗ is a description of D in some canonical way, z ∈ {0, 1}∗, ρD ∈ {0, 1}∗,
and N ≥ d(|xt′ |). Define a relation R by taking R(s, t, y) = 1 iff t ∈ TD for some distinguisher D,
y is a verifier view and D accepts when given y, random string ρD, and auxiliary input z contained in
t (otherwise R(s, t, y) = 0). Note that R is computable in time polynomial in its inputs, since |t| is at
least the runtime of D.

Define M(V ∗) to be the trivial machine that on input (rv(m)) outputs the verifier’s view rv(m).
Suppose that there exists a function λ and a set A of runs such that for all r ∈ A, if m∗r is the final
round in run r, then (P × Vpp, r, 0) |= G

M,m∗r ,λ
v R. Since P × Vpp is relation hiding for L, there exists

a function M′ : TM → EPPT and a function ε : TM× N such that ε(V ∗) is negligible and for all
r ∈ A, (P×Vpp, r, 0) |= s ∈ RL(x)⇒ GM′,0,λ−ε

v R. Define SV ∗ by taking SV ∗(t)(ρ) = M′(V ∗)(t)(ρ).
Suppose, by way of contradiction, that for some distinguisher D there is a polynomial p such that

for infinitely many x ∈ L, s ∈ RL(x), and t ∈ {0, 1}∗, there is a z ∈ {0, 1}∗ such that there ex-
ist functions λz1 and λz2 (that may depend on z) such that PrU [{D(SV ∗(t), z) = 1}] = λz1(s, t),

14

PrU [{D(V iewv[(P (s) ↔ V ∗(t))(x)], z) = 1}] = λz2(s, t), and |λz1(s, t) − λz2(s, t)| > 1
p(|x|) . Con-

sider the set TD,SV ∗ ⊆ TD, where N is an upper bound on the running time of the verifier protocol
V ∗ and the simulator SV ∗ for input xt′ . The effect of this choice is that, given the verifier’s state,
the verifier and simulator cannot access the distinguisher description. Therefore, V iewv[(P (s) ↔
V ∗(t))(x)(ρp, ρv)] = V iewv[(P (s) ↔ V ∗(t′))(x)(ρp, ρv)] and SV ∗(t)(ρv) = SV ∗(t′)(ρv). If there
exists z ∈ {0, 1}∗ such that the distinguisher D, given auxiliary input z, succeeds in distinguishing the
distributions {V iewv[(P (s) ↔ V ∗(t′))(x)]} and {SV ∗(t′)}, then D can distinguish {V iewv[(P (s) ↔
V ∗(t))(x)]} and {SV ∗(t)} given z. By construction of TD,SV ∗ , for infinitely many x ∈ L, s ∈ RL(x)
and t ∈ TD,SV ∗ , there exist functions λz1 and λz2 such that PrU [{D(SV ∗(t), z) = 1}] = λz1(s, t),
PrU [{D(V iewv[(P (s)↔ V ∗(t))(x)], z) = 1}] = λz2(s, t), and |λz1(s, t)− λz2(s, t)| > 1

p(|x|) (the z ref-
erenced here is contained in t). Without loss of generality, we can assume that λz2(s, t)−λz1(s, t) > 1

p(|x|)
for infinitely many of the relevant x’s, s’s, and t’s. To see that this is without loss of generality,
note that if λz2(s, t) − λz1(s, t) > 1

p(|x|) for only a finite number of x’s, s’s, and t’s, then it must
be the case that λz1(s, t) − λz2(s, t) > 1

p(|x|) for infinitely many x’s, s’s, and t’s. In this case, we
can define a distinguisher D′ that outputs the opposite of what D outputs when given the same view
and auxiliary input. Then for infinitely many x ∈ L, s, and t, there exists z ∈ {0, 1}∗ such that
PrU [{D′(SV ∗(t), z) = 1}] = λ′z1 (s, t), PrU [{D′(V iewv[(P (s) ↔ V ∗(t))(x)], z) = 1}] = λ′z2 (s, t),
and λ′z2 (s, t) − λ′z1 (s, t) > 1

p(|x|) where λ′z1 = 1 − λz1 and λ′z2 = 1 − λz2. We can then proceed with the
rest of the proof using the distinguisher D′ instead of D.

LetA denote the set of tuples (x, s, t) (with x ∈ L, s ∈ RL(x), t ∈ TD,SV ∗ , xt = xs = x) for which
there exists z ∈ {0, 1}∗ and functions λz1, λ

z
2 such that

PrU [{D(SV ∗(t), z) = 1}] = λz1(s, t), PrU [{D(V iewv[(P (s) ↔ V ∗(t))(x)], z) = 1}] = λz2(s, t),
and λz2(s, t)− λz1(s, t) > 1

p(|x|) . In the system P ×Vpp, let A′ = {r ∈ P × V ∗ : (rc(0), rp(0), rv(0)) ∈
A}. So for all r ∈ A′, PrU [{D(SV ∗(rv(0)), z) = 1}] = λz1(rc(0), rp(0), rv(0)) (where z is contained
in rp(0)), PrU [{D(V iewv[(P (rp(0)) ↔ V ∗(rv(0)))(rc(0))], z) = 1}] = λz2(rc(0), rp(0), rv(0)), and
λz2(rc(0), rp(0), rv(0))− λz1(rc(0), rp(0), rv(0)) > 1

p(|rc(0)|) .

So for all r ∈ A′, if m∗r is the final round in run r, then by definition of R, M, and M′,

PrU [R(rp(0), rv(0),M(V ∗)(rv(m∗r)))] = λz2(rc(0), rp(0), rv(0)),

PrU [R(rp(0), rv(0),M′(V ∗)(rv(0)))] = λz1(rc(0), rp(0), rv(0)),

and
λz2(rc(0), rp(0), rv(0))− λz1(rc(0), rp(0), rv(0)) >

1
p(|rc(0)|)

.

So for any negligible function ε(V ∗),

PrU [R(rp(0), rv(0),M′(V ∗)(rv(0)))] < λz2(rc(0), rp(0), rv(0))− ε(V ∗)(|x|)

for all but finitely many x. By definition of prλa , for all r ∈ A′,

(P × Vpp, r, 0) |= prλ
z
2
v (at time m∗r)Mv,R

and
(P × Vpp, r, 0) 6|= prλ

z
2−ε
v (at time 0)M′

v,R

15

for any negligible function ε(V ∗). Also, by definition of A′, (P × Vpp, r, 0) |= s ∈ RL(x), so

(P × Vpp, r, 0) |= s ∈ RL(x) ∧G
M,m∗r ,λ

z
2

v R

and
(P × Vpp, r, 0) 6|= G

M′,0,λz
2−ε

v R

for any function ε : TM× N→ [0, 1] such that ε(V ∗) is negligible. This gives us a contradiction.

A.2 Concurrent Zero Knowledge

Theorem 2: The interactive proof system (P, V) for L is computational concurrent zero knowledge iff
the system P̃ × Vpp is relation hiding for L.

Proof. For the “if” direction, suppose that (P, V) is a computational concurrent zero knowledge system
and that (P̃×Vpp, r, 0) |= GM,m∗,λ

v R for some arbitrary polynomial-time relationR and some functions
M : TM → EPPT , λ : TM× N→ [0, 1]. We want to show that there exist functions M′ : TM →
EPPT , ε : TM× N→ [0, 1] such that (P̃ × Vpp, r, 0) |= GM′,0,λ−ε

v R.
Let V ∗ be the extended verifier protocol in run r ∈ P̃ × Vpp, let x be the common input, and

let qV ∗(|x|) be an upper bound on the runtime of V ∗ on common input x. Recall that the verifier’s
local state at time m ≥ 0 consists of the time on the global clock, his initial information rv(0) (which
contains the common input rc(0)), the history of messages he has received from other agents and read,
and the history of coin flips he has used. Since the verifier’s running time is bounded by qV ∗(|rc(0)|),
no matter how many messages he receives in round m, he can read at most qV ∗(|rc(0)|) of them. So
his local state (and his view) at any time m ≥ 0 can contain at most qV ∗(|rc(0)|) messages, coming
from at most qV ∗(|rc(0)|) provers (indexed without loss of generality by 1, 2, . . . , qV ∗(|rc(0)|)). So for
every run r in P̃ × Vpp, the verifier interacts with a subset of p1, p2, . . . , pqV ∗ (|rc(0)|). By the definition
of concurrent zero knowledge, there is a simulator machine SV ∗ such that SV ∗ produces verifier views
that are indistinguishable by any distinguisher (with any auxiliary input) from views during possible
interactions of V ∗ with up to qV ∗(|x|) instances of P on common input |x|. The proof that P̃ × Vpp is
relation hiding now proceeds exactly as in Theorem 1.

For the “only if” direction, we want to show that for every verifier protocol V ∗, there is an EPPT
algorithm SV ∗ such that for any PPT distinguisher D with any auxiliary input, there exists a negligible
function ε such that ∀x ∈ L,∀s ∈ RL(x), t, z ∈ {0, 1}∗,

|PrU [{D(SV ∗(t), z) = 1}]− PrU [{D(V iewv[(P̃ (s)↔ V ∗(t))(x)], z) = 1}]| ≤ ε(|x|).

This proof proceeds exactly as in Theorem 1, so we omit further details here.

A.3 Proofs of Knowledge

Theorem 3: The interactive proof system (P, V) is a proof of knowledge knowledge iff the system
Ppp × V is witness convincing for L.

Proof. For the “if” direction of the proof, suppose that (P, V) is an interactive proof system for L that
is a proof of knowledge. It is sufficient to show that the system P ∗ × V is witness convincing for L

16

for every prover protocol P ∗. By the definition of proofs of knowledge, for every prover protocol P ∗,
there is a negligible function εP ∗ and a probabilistic Turing machineEP ∗ that takes as input the prover’s
state s, runs in expected time polynomial in |xs|, and outputs a candidate witness for xs such that for all
x, s, t ∈ {0, 1}∗,

PrU [{Acceptsv[(P ∗(s)↔ V (t))(x)]}]− PrU [{EP ∗(s) ∈ RL(x)}] ≤ εP ∗(|x|).

Thus,

PrU [{Acceptsv[(P ∗(s)↔ V (t))(x)]}]− PrU [{(s, t, EP ∗(s)) ∈ R+
L}] ≤ εP ∗(|x|), (1)

where the first probability PrU is taken over the random choices made by the prover and verifier proto-
cols, while the second is taken over the random choices of EP ∗ .

Define M : TM→ EPPT and ε : TM×N→ [0, 1] by taking M(P ∗) = EP ∗ and ε(P ∗, ·) = εP ∗ .
Suppose that there exists some 0 ≤ λ ≤ 1 and some run r such that (P ∗×{V }, r, 0) |= prλp(♦accepts).
Recall that Pr(P ∗×V)(r) can be identified with the uniform distribution PrU3 over triples of random
strings. So PrU [{Acceptsv[(P ∗(rp(0))↔ V (rv(0)))(rc(0))]}] ≥ λ. By (1), we have

PrU [{(rp(0), rv(0), EP ∗(rp(0))) ∈ R+
L}] ≥ λ− ε(P

∗, |rc(0)|).

Moreover, we have (P ∗×V, r, 0) |= Kp(prλ−εp (at time 0 Mp,R)), and so (P ∗×V, r, 0) |= GM,0,λ−ε
p R.

This completes the “if” direction of the proof.
For the “only if” direction, let (P, V) be an interactive proof system for L such that the system

Ppp × V is witness convincing for L. Thus, there exist functions M : TM → EPPT and ε :
TM × N → [0, 1] such that for every PPT P ∗ ∈ Ppp, ε(P ∗, ·) is a negligible function, and for every
0 ≤ λ ≤ 1,

Ppp × V |= at time 0 prλp(♦accepts)⇒ GM,0,λ−ε
p R+

L . (2)

Let EP ∗ = M(P ∗) for every P ∗ ∈ Ppp. Given a prover protocol P ∗, define λP ∗ so that for all
x, s, t ∈ {0, 1}∗, PrU [{Acceptsv[(P ∗(s)↔ V (t))(x)]}] = λP ∗(s, t). Since the probability distribution
PrPpp×V (r) on Ppp × {V }(r) can be identified with PrU3 , it follows that

(Ppp × {V }, r, 0) |= prλp(♦accepts)

for all r ∈ P ∗ × V . By (2), for all r ∈ P ∗ × V , we have

(Ppp × {V }, r, 0) |= GM,0,λ−ε
p R+

L ;

that is, (Ppp × V, r, 0) |= Kp(prλ−εp (at time 0 Mp,R+
L
)). We can view (s, t,M(P ∗)(s)) ∈ R+

L as a
random variable; the probability that it is 1 is just the probability that M(P ∗)(s) returns a y such that
(x, y) ∈ RL, taken over the random choices of M(P ∗). Since M(P ∗) = EP ∗ , we have that, for all
x, s, t ∈ {0, 1}∗,

PrU [{(s, t,M(P ∗)(s)) ∈ R+
L}] ≥ λP ∗(s, t)− ε(P

∗, |x|).

That is,

PrU [{Acceptsv[(P ∗(s)↔ V (t))(x)]}]− PrU [{EP ∗(s) ∈ RL(x)}] ≤ ε(P ∗, |x|)

for all x, s, t ∈ {0, 1}∗. It follows that (P, V) is a proof of knowledge.

17

References

Bellare, M. and O. Goldreich (1992). A modular approach to the design and analysis of authentication
and key exchange protocols. In Proc. CRYPTO ’92, pp. 390–420.

Dwork, C., M. Naor, and A. Sahai (2004). Concurrent zero-knowledge. Journal of the ACM 51(6),
851–898.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995). Reasoning About Knowledge. Cambridge,
Mass.: MIT Press. A slightly revised paperback version was published in 2003.

Feige, U., A. Fiat, and A. Shamir (1987). Zero knowledge proofs of identity. In Proc. 19th ACM
Symposium on Theory of Computing, pp. 210–217.

Feige, U. and A. Shamir (1990). Witness indistinguishability and witness hiding protocols. In
Proc. 31st IEEE Symposium on Foundations of Computer Science, pp. 416–426.

Goldreich, O. (2001). Foundations of Cryptography, Vol. 1. Cambridge University Press.

Goldwasser, S., S. Micali, and C. Rackoff (1989). The knowledge complexity of interactive proof
systems. SIAM Journal on Computing 18(1), 186–208.

Halpern, J. Y., Y. Moses, and M. R. Tuttle (1988). A knowledge-based analysis of zero knowledge.
In Proc. 20th ACM Symposium on Theory of Computing, pp. 132–147.

Halpern, J. Y. and M. R. Tuttle (1993). Knowledge, probability, and adversaries. Journal of the
ACM 40(4), 917–962.

Moses, Y. (1988). Resource-bounded knowledge. In Proc. Second Conference on Theoretical Aspects
of Reasoning about Knowledge, pp. 261–276.

Rantala, V. (1982). Impossible worlds semantics and logical omniscience. Acta Philosophica Fen-
nica 35, 18–24.

Tompa, M. and H. Woll (1987). Random self-reducibility and zero knowledge interactive proofs of
possession of information. In Proc. 28th IEEE Symposium on Foundations of Computer Science.

18

