
Concurrent Zero Knowledge, Revisited

Rafael Pass∗ Wei-Lung Dustin Tseng∗ Muthuramakrishnan Venkitasubramaniam∗

January 2, 2013

Abstract

We provide a more general and, in our eyes, simpler variant of Prabhakaran, Rosen and
Sahai’s (FOCS ’02) analysis of the concurrent zero-knowledge simulation technique of Kilian
and Petrank (STOC ’01).

Keywords: zero-knowledge, concurrency, oblivious simulation.

∗Cornell University, E-Mail: {rafael, wdtseng, vmuthu}@cs.cornell.edu. Pass was supported in part by a
Alfred P. Sloan Fellowship, Microsoft New Faculty Fellowship, NSF CAREER Award CCF-0746990, AFOSR YIP
Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2-0211.The views and conclusions con-
tained in this document are those of the authors and should not be inter- preted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US government.

1

1 Introduction

Following the seminal works of [DDN00, FS90] from the early 90’s, concurrent security of crypto-
graphic protocols has been an active area of research. Yet, it is still not well-understood when and
where concurrent security can be achieved. One potential reason for this might be the complexity
of traditional analyses. In this work we focus on generalizing and (in our eyes) simplifying analyses
of concurrent security in one of the most basic settings, namely that of zero-knowledge proofs.

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that allow one player
(called the Prover) to convince another player (called the Verifier) of the validity of a mathematical
statement x ∈ L, while providing zero additional knowledge to the Verifier. Beyond being fascinating
in their own right, ZK proofs have numerous cryptographic applications and are one of the most
fundamental cryptographic building blocks. As such, techniques developed in the context of ZK
often extend to more general types of interactions.

The notion of concurrent zero knowledge, first introduced and achieved in the paper by Dwork,
Naor and Sahai [DNS04], considers the execution of zero-knowledge proofs in an asynchronous
and concurrent setting. More precisely, we consider a single adversary mounting a coordinated
attack by acting as a verifier in many concurrent executions (called sessions). Concurrent ZK proofs
are significantly harder to construct and analyze. Since the original protocols by Dwork, Naor
and Sahai (which relied on so called “timing assumptions”), various other concurrent ZK protocols
have been obtained based on different set-up assumptions (e.g., [DS98] [Dam00] [CGGM00]). In
the standard model without set-up assumptions (the focus of our work), Canetti, Kilian, Petrank
and Rosen [CKPR01] (building on earlier works by [KPR98] [Ros00]) show that concurrent ZK
proofs for non-trivial languages, with so called “black-box” simulators, require at least Ω̃(log n)
number of communication rounds. On the other hand, Richardson and Kilian [RK99] constructed
the first concurrent ZK argument in the standard model without any extra set-up assumptions.
Their protocol, which uses a black-box simulator, requires O(nε) number of rounds. (See also the
work of Canetti, Goldreich, Goldwasser and Micali [CGGM00] for a somewhat different and more
detailed analysis of this protocol.) Kilian and Petrank [KP01] then introduced a new oblivious zero-
knowledge simulator. Using this simulation technique they obtained a simpler and cleaner analysis,
and additionally improved the round complexity to Õ(log2 n). Finally, the work of Prabhakaran,
Rosen and Sahai [PRS02] further simplifies and improves the analysis of the oblivious simulator,
obtaining an essentially optimal round complexity of Õ(log n).

Despite these simplifications and improvements, the analysis of concurrent zero-knowledge pro-
tocols remains quite complex. Furthermore, the different analyses are tailored to different types of
protocols. In particular, the most refined analysis from [PRS02] considers committed-verifier pro-
tocols, where the verifier commits to its messages in advance; more specifically, as far as we know,
the analysis has only been applied to generalizations of the Goldreich-Kahan ZK protocol [GK96].
For instance, no generalizations of the Feige-Shamir ZK protocol [FS90] have been analyzed using
it; apart from theoretical interests, the Feige-Shamir ZK protocol is noteworthy due to its efficient
instantiations via “sigma protocols” [CDS94].

In this work, we focus on simplifying and generalizing current analysis techniques for concurrent
ZK. More precisely, we provide a variant of Prabhakaran, Rosen and Sahai’s (PRS) analysis [PRS02]
of the Kilian-Petrank (KP) zero-knowledge simulator [KP01]. Our contribution is twofold:

• In our eyes, this analysis is simpler and more flexible than the original PRS analysis. In
particular, the analysis also directly applies to more efficient variants of the KP-simulator,

1

resulting in concurrent ZK protocols with “tight” [GMW91, Gol01], and even “precise” [MP06]
simulations (i.e., simulations where the running-time of the simulator is close to the running-
time of the malicious verifier, in an execution-by-execution manner). Such results were already
established in [PPS+08], but required a more elaborate analysis (building upon [PRS02]).

• Our analysis applies to a broad range of protocols, and in particular to “Feige-Shamir”-type
protocols. As a consequence, we establish a simple ω(log n)-round concurrent zero-knowledge
argument of knowledge for NP based on one-way functions. The same protocol construction
also yields a poly(n)-round concurrent statistical ZK argument of knowledge for NP, based on
one-way functions (concurrent statistical ZK arguments were first constructed in [GMOS07]
using a more complex protocol). Furthermore, in a subsequent work, Lin et. al. [LPTV10]
rely on our analysis to construct concurrent non-malleable zero-knowledge proofs for NP; our
analysis is helpful in this context since their protocol is not of the committed-verifier type.

Previous techniques. Kilian and Petrank’s (KP) ingenious simulation technique relies on a
static—and oblivious—rewinding schedule; namely, the simulator rewinds the adversarial verifier
after some fixed number of messages, independent of the content of the messages and the interleaving
schedule of the sessions. The crux of their analysis is to show that using this rewinding schedule,
every session is “successfully rewound” at least once with high probability; in a successful rewind,
the simulator can extract a “trapdoor” that will allow it to complete the simulation. To bound the
failure probability, they rely on a subtle computation of conditional probabilities.

The elegant work of Prabhakaran, Rosen and Sahai (PRS) [PRS02, Ros03, PS02], on the other
hand, directly analyze the probability space of the simulator, i.e., count the random tapes of the
simulator; this makes the analysis both simpler and sharper. The idea is to show that each “bad”
random tape (that produces a failed simulation) can be mapped into super-polynomially many
distinct “good” tapes. This is done by identifying random tape segments, called rewinding intervals,
that can be “swapped” among each other in order to turn a bad tape into a good one1. The crux of
their proof is then to count how many such “swappings” actually generate new and distinct random
tapes. However, complications arise since swappings performed on different rewinding intervals
may overlap and even remove other possible rewinding intervals. A bit more precisely, the PRS
analysis focuses only on “disjoint” rewinding intervals, but performs a computation based on the
“multiplicity” on those intervals. A count with multiplicity is needed because the number of disjoint
rewind intervals in general could not be guaranteed to be sufficiently large, at least in the case of
ω(log n) round protocols. (As we shall see, in our analysis, we are able to swap also non-disjoint
rewinding intervals; as a result, we can avoid the count with multiplicities.)

Additionally, to enable this counting argument, the PRS analysis bounds the failure probability
of a “hybrid” simulator (which has access to the witnesses of input statements). To show that the
real simulator is indistinguishable from the hybrid simulator, committed-verifier protocols are used;
this is required to ensure that when changing the hybrid simulator (which uses the actual witness)
to the real simulator (which doesn’t know the actual witness), indistinguishability holds despite the
rewinds performed by the simulator. Intuitively, the committed-verifier property ensures that the
rewinds are “harmless”.

1Here we use the terminologies from Rosen’s thesis [Ros03].

2

Our techniques. We show how to directly analyze the failure probability of the actual simulator
(as opposed to a hybrid one), while (in our eyes) simplifying the counting argument. Our key
step is to identify a stronger notion of rewinding intervals, which we call composable blocks. Just
like rewinding intervals, properties of composable blocks guarantee that a “swap” will generate a
new good random tape; moreover, these same properties are closed under composition—namely the
swapping of one such block leaves other composable blocks intact, even if these composable blocks
are not disjoint. By this new composition property, it is enough to identify K composable blocks to
conclude that the simulation fails with probability less than 2−K .

In essence, our proof will consist of two simple steps: First, we establish local properties of a
composable block (namely that a swap generates one new good random tape, and that swappings
are composable); then, we count the number of composable blocks on a bad random tape; as we
shall see, each round in the protocol gives rise to a new composable block. As such, our analysis
conveys a strong intuition of how “each additional round of the protocol halves the simulator’s failing
probability”. However, we emphasize that our techniques do not improve the “quantity” of the count
(e.g., does not improve upon the round-complexity of the PRS protocol).

To employ this new notion of composable blocks, we consider and analyze a “lazy” variant of
the KP simulator. Intuitively, the lazy KP simulator is identical to the KP simulator but only
makes use of information gathered in its rewinds after some delay. The lazy KP simulator can only
fail more often than the original KP simulator (and thus our analysis indirectly also applies to the
KP simulator); yet, considering this “weaker” simulator enables our way of directly analyzing the
failure probability of the simulation. In a sense, much like making a stronger inductive hypothesis
can simplify the inductive step, our stronger notion of composable blocks and our weaker lazy KP
simulator enable and simplify the analysis. (We note that the PRS analysis also seems to apply to
the lazy KP simulator, although this was not made use of in [PRS02].)

After directly bounding the failure probability of the real simulator, we provide a simple hybrid
argument to show that the output of the simulator is indistinguishable from the view of the veri-
fier. The base case of this hybrid argument considers only a “straight-line” (i.e., a non-rewinding)
execution, and as such the analysis directly applies also to committed-verifier protocols.

Overview. We define concurrent ZK and give some preliminaries in Section 2. We construct and
analyze computational and statistical concurrent black-box ZK arguments of knowledge in Section
3 (our main theorems). For completeness, we also provide a brief overview of the PRS analysis in
Appendix A.

2 Preliminaries

We assume familiarity with indistinguishability and interactive proofs. [n] denotes the set {1, . . . , n}.

2.1 Black-box Concurrent Zero-Knowledge

Let (P, V) be an interactive proof for a language L. An m-session concurrent adversarial verifier V ∗

is a probabilistic polynomial time machine that, on common input x and auxiliary input z, interacts
with m(|x|) independent copies of P concurrently (called sessions). There are no restrictions on
how V ∗ schedules the messages among the different sessions, and V ∗ may choose to abort some
sessions but not others. Let ViewP

V ∗(x, z) be the random variable that denotes the view of V ∗(x, z)

3

in an interaction with P (this includes the random coins of V ∗ and the messages received by V ∗).
A black-box simulator S is a probabilistic polynomial-time machine that is given black-box access
to V ∗ (written as SV ∗). Roughly speaking, we require that for every instance x ∈ L, and every
auxiliary input z, SV ∗(x,z)(x) can generate the view of V ∗(x, z) in an interaction with P . Since
we provide V ∗ with an auxiliary input, we can without loss of generality restrict our attention to
deterministic V ∗ (as V ∗ can always receive its random coins as auxiliary advice).

Definition 1 (Black-Box Concurrent Zero-Knowledge [DNS04]). Let (P, V) be an interactive pro-
tocol for a language L. Π is black-box concurrent zero-knowledge if for all polynomials m, there
exists a black-box simulator Sm such that for every common input x and auxiliary input z, and
every deterministic m-session concurrent adversary V ∗, SV

∗(x,z)
m (x) runs in time polynomial in |x|.

Furthermore, the ensembles {ViewP
V ∗(x, z)}x∈L,z∈{0,1}∗ and {SV

∗(x,z)
m (x)}x∈L,z∈{0,1}∗ are computa-

tionally indistinguishable (as a function of |x|).

2.2 Other Primitives

Witness-indistinguishable (WI) Proofs [FS90]. Roughly speaking, an interactive proof is
witness indistinguishable if the verifier’s view is “independent” of the witness used by the prover for
proving the statement.

Definition 2 (Witness-indistinguishability). Let (P, V) be an interactive proof system for a lan-
guage L ∈ NP with witness relation RL. We say that (P, V) is witness-indistinguishable for RL
if for every probabilistic polynomial-time adversarial V ∗ and for every two sequences of witnesses
{w1

x}x∈L and {w2
x}x∈L satisfying w1

x, w
2
x ∈ RL(x), the following two probability ensembles are com-

putationally indistinguishable as a function of n:

{View
P (w1

x)
V ∗ (x, z)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗ ≈ {View

P (w2
x)

V ∗ (x, z)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

Proofs and arguments of knowledge (POK, AOK) [FS90, BG92]. An interactive proof
(resp. argument) is a proof (resp. argument) of knowledge if the prover convinces the verifier that
it possesses, or can feasibly compute, a witness for the statement proved.

Definition 3 (Proofs and arguments of knowledge [BG92]). An interactive protocol Π = 〈P, V 〉 is a
proof of knowledge (resp. argument of knowledge) of language L with respect to witness relation RL
if Π is indeed an interactive proof (resp. argument) for L. Additionally, there exists a polynomial q,
a negligible function ν, and a probabilistic oracle machine E, such that for every interactive machine
P ∗ (resp. for every polynomially-sized machine P ∗) and every x ∈ L, the following holds:

If Pr[〈P ∗, V 〉 (x) = 1] > ν(|x|), then on input x and oracle access to P ∗(x), machine E
outputs a string from the RL(x) within an expected number of steps bounded by

q(|x|)
Pr[〈P ∗, V 〉 (x) = 1]− ν(|x|)

The machine E is called the knowledge extractor.

4

Special-Sound (SS) Proofs [CDS94]. Special-sound proofs are proofs of knowledge with a very
rigid and useful structure.

Definition 4 (Special soundness). A 4-round interactive proof (P, V) for language L ∈ NP with
witness relation RL is special sound with respect to RL if (P, V) is public-coin (i.e., verifier messages
are segments of its random tape), and on input x, all verifier messages have length g(|x|) ≥ |x|.

Moreover, there exists a deterministic polynomial-time extraction procedure X such that on
input x, with all but negligible probability in |x| over the choice of a uniform ρ ∈ {0, 1}g(|x|), for all
α, β, β′, γ, γ′ such that β 6= β′, and (ρ, α, β, γ) and (ρ, α, β′, γ′) are both accepting transcripts of
(P, V) on input x, X(x, (ρ, α, β, γ), (ρ, α, β′, γ′)) outputs a witness w ∈ RL(x).

2.3 Known Protocols

In our construction of concurrent zero-knowledge arguments we use:

• 4-round computational WI and SS proofs based on one-way functions. This can be instantiated
with a parallel repetition of the Blum Hamiltonicity protocol [Blu86] with 2-round statistically
binding commitments constructed from one-way functions ([Nao91, HILL99]).

• 4-round computational WI-AOK or poly(n)-round statistical WI-AOK based on one-way func-
tions. Again, this can be instantiated with the Blum Hamiltonicity protocol with the help of
2-round statistically binding commitments ([Nao91, HILL99], this actually gives a POK) or
statistically hiding commitments ([HNO+09]) from one-way functions.

3 Black-Box Concurrent Zero-Knowledge Arguments of Knowledge

In this section we re-prove the following theorem.

Theorem 1. Assume the existence of one-way functions. Then every language in NP has a ω(log n)-
round concurrent black-box ZK argument of knowledge, and a poly(n)-round concurrent black-box
statistical-ZK argument of knowledge.

3.1 The Protocol

Our concurrent ZK protocol ConcZKArg (also used in [PV08]) is a slight variant of the precise ZK
protocol of [MP06], which in turn is a generalization of the Feige-Shamir protocol [FS90]. The
protocol for language L proceeds in three stages, given a security parameter n, a common input
statement x ∈ {0, 1}n, and a “round-parameter” k ∈ ω(log n):

Stage Init: The verifier picks two random strings r1, r2 ∈ {0, 1}n and sends their images c1 = f(r1),
c2 = f(r2) through a one-way function f to the prover. The verifier then provides, in parallel,
k instances of a 4-round computationally-WI and SS proof of knowledge of the NP statement
“c1 or c2 is in the image set of f ” (a witness here would be a pre-image of c1 or c2). The first
two (out of four) messages of each SS-POK are exchanged in this stage. The end of Stage Init
is called the start of the protocol.

5

Protocol ConcZKArg:

Common Input: an instance x of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).

Stage Init:

V uniformly chooses r1, r2 ∈ {0, 1}n.
V → P : c1 = f(r1), c2 = f(r2) for a one-way function f .

V ↔ P : Exchange in parallel (interactively) the first two messages ~α1, . . . , ~αk of k copies of
4-round computational-WI and SS proofs on common input (c1, c2) with respect to the
witness relation:

Rf (c1, c2) = {r : f(r) = c1 or f(r) = c2}

Note that V acts as the prover in these SS-POK’s.

We say the protocol has reached start (of Stage 1) if all messages in Stage Init are exchanged.

Stage 1: For j = 1 to k do the following (called a slot)

P → V : The second last message βj of the jth SS-POK.

V → P : The last message γj of the jth SS-POK.

We say the protocol has reached end (of Stage 1) if all k SS-POK are accepted.

Stage 2:

P ↔ V : a 4-round computational-WI (or poly(n)-round statistical WI) argument of knowledge
from P to V on common input (c1, c2, x) with respect to the witness relation:

Rf∨L(c1, c2, x) = {(r, w) : r ∈ Rf (c1, c2) or w ∈ RL(x)}

Figure 1: Concurrent ZK argument of knowledge for NP with round parameter k.

Stage 1: k message exchanges occur in Stage 1. In the jth iteration, the prover sends βj ∈ {0, 1}n, a
random second last message of the jth SS-POK, and the verifier replies with the last message γj
of the SS-POK. These k iterations are called slots. A slot is convincing if the verifier produces
an accepting proof. If there is ever an unconvincing slot, the prover aborts the whole session.
The end of Stage 1 (after k convincing slots) is called the end of the protocol.

Stage 2: The prover provides a 4-round computational-WI (resp. poly(n)-round statistical-WI)
argument of knowledge of the statement “x ∈ L, or one of c1 or c2 is in the image set of f ”.

Completeness and soundness/proof of knowledge follows directly from the proof of Feige and
Shamir [FS90]; in fact, the protocol is an instantiation of theirs. Intuitively, to cheat in the protocol
a prover must “know” an inverse to c1 or c2 (since Stage 2 is an argument of knowledge), which
requires inverting the one-way function f . A formal description of protocol ConcZKArg is shown in
Figure 1.

6

3.2 The “Lazy KP” ZK simulator

We show that whenever k is super logarithmic (i.e. k = ω(log n)), our protocol is concurrent ZK.
This requires us to construct a simulator Sim = SimV ∗(x,z)(x) that given input instance x ∈ L
and black-box access to V ∗(x, z), outputs a view that is indistinguishable from the real view of
V ∗(x, z). On a very high-level, the simulation follows that of Richardson and Kilian [RK99]. The
simulator simulates Stage Init and Stage 1 of the protocol by following the honest prover strategy,
and attempts to rewind one of the slots (i.e. the last two messages of the special-sound proofs
provided by V ∗). If the simulator obtains two matching convincing slots, i.e., the slots are from the
same round of the protocol and share the same initial transcript, the special-soundness property
allows the simulator to compute a fake witness r such that f(r) = c1 or c2. This fake witness can
then be used to simulate Stage 2 of the protocol. Towards this goal, we let Sim be an oblivious
black-box simulator similar to [KP01].

Description of Sim. Let n be the security parameter, m be a bound on the number of concurrent
sessions invoked by V ∗ and T be the total number of messages exchanged, bounded by O(mk),
a polynomial in n. Keep in mind that during black-box simulation, we assume without loss of
generality that V ∗ is deterministic; therefore the view of V ∗ is just the transcript of its interaction
with the honest prover.

In order to extract a fake witness from V ∗, Sim follows an oblivious rewinding schedule based
only on the number of messages exchanged so far, just like in [KP01] and [PRS02]. During the
oblivious simulation, Sim keeps a repository of all messages generated by V ∗ among all rewinds;
whenever Sim encounters Stage 2 of the protocol, Sim looks for matching convincing slots in this
repository to compute the required fake witness. More precisely, Sim uses the recursive procedure
lazy-rewind described below.

At a high level, lazy-rewind(t,V, T) → (V ′, T ′) attempts to recursively simulate V ∗(x, z) for t
messages starting from a partial view V of V ∗, with the help of of a repository of messages generated
by V ∗ during rewinds, T (formally just a set of all simulator query and verifier message pairs). If
lazy-rewind is successful, it outputs a longer view V ′ of V ∗ (that contains exactly t more verifier
messages than V), and an updated repository T ′ including verifier messages that lazy-rewind gathered
from various rewinds (and most likely contains more verifier messages than what is recorded in V ′).
Sim simply outputs the view produced by lazy-rewind(T,V = ∅, T = ∅), i.e., lazy-rewind starting
from the empty view and an empty repository.

Description of lazy-rewind(t, s, h). At the base case of the recursion (t = 1), lazy-rewind receives
a message from V ∗ and produces a prover response. lazy-rewind behaves identically to an honest
prover to generate Stage Init and Stage 1 messages. Whenever a session reaches end, lazy-rewind will
attempt to compute a fake witness r for the session (f(r) = c1 or c2) by searching T for matching
convincing slots. If this is successful, the fake witness r is used to generate prover messages in Stage
2 of this session (i.e. the WI-POK). Otherwise, lazy-rewind outputs ⊥, which in turn causes Sim
to output ⊥ as well.2 In the end, lazy-rewind outputs the updated view V ′ of V ∗ (the input view
appended with the newly exchanged pair of messages), and the updated repository T ′ (the input
repository inserted with the newly exchanged pair of messages).

2We distinguish between legitimate failures, i.e., Sim may abort just like a prover should V ∗ fail to follow the
protocol, and simulation failures, i.e., Sim outputs ⊥ if it fails to compute a fake witness r.

7

messages exchanged with V ∗

siblings
V V1 V3

output thread

0 t/2 t

Figure 2: A pictorial representation of the rewinding schedule of lazy-rewind. The boxes represent
blocks, and the lines represent threads. If this is the top level call (i.e., lazy-rewind(T, ∅, ∅)), then the
thicker thread is the output thread, whose view is the output of Sim.

When t > 1, lazy-rewind(t,V, T) proceeds roughly as follows: It first recursively simulates V ∗ for
t/2 messages twice starting from the partial view V. Then, continuing from one of those sim-
ulations, lazy-rewind recursively simulates V ∗ for another t/2 messages, twice. More formally,
lazy-rewind(t,V, T) calls itself four times as follows:

1. (V1, T1)← lazy-rewind(t/2,V, T).

2. (V2, T2)← lazy-rewind(t/2,V, T). Merge T1 and T2 into a larger repository of messages T ′.

3. (V3, T3)← lazy-rewind(t/2,V1, T ′).

4. (V4, T4)← lazy-rewind(t/2,V1, T ′). Merge T3 and T4 into a larger repository of messages T ′′.

5. Output (V3, T ′′).

Because the first two recursive calls to lazy-rewind (respectively the last two calls) have identical
inputs (they differ only because they use different segments of Sim’s random tape), they are called
sibling calls. See Figure 2 for an illustration of the rewinding schedule, and Figure 3 for a pseudo-
code description.

Let us describe some terminology that is useful for the analysis Sim and lazy-rewind. Because
Sim follows an oblivious rewinding schedule, it always makes a fixed set of calls to lazy-rewind at
fixed moments in the simulation, and it always “connects” these calls of lazy-rewind in a fixed way
to generate partial views of V ∗. Intuitively, a thread is one of these fixed connections.

Definition 5 (Threads). A thread is a sequence of 0’s and 1’s; from the beginning of the simulation,
this sequence specifies, whenever a pair of sibling calls are encountered, whether to follow the first or
second sibling call of lazy-rewind, respectively. (A sequence may terminate prematurely to specify a
“partial” thread.) The thread 00 · · · 0 (of sufficient length) is the thread that follows the first sibling
calls to the end of the simulation, and is called the output thread because the view of V ∗ generated
on this thread is the output of Sim.

Given an execution of Sim (on an input x ∈ L and a random tape), a block intuitively refers
to the “location” (in the static rewinding schedule) of a call to lazy-rewind, as well as the actual
simulation performed by the call.

8

lazy-rewind(t,V, T):

1. Base Case: t = 1. Exchange one pair of messages with V ∗.

(a) If the next scheduled message is from an aborted session where V ∗ has deviated from the
protocol (e.g., there has been an unconvincing slot), return (V‖abort, T) (i.e. do nothing).

(b) If the next scheduled message is a Stage Init or Stage 1 prover message for session i,
compute a message p following the honest prover strategy. Let v be the response of V ∗; if
v deviates from the protocol (e.g., v is an unconvincing last message of a SS-POK) abort
session i.

(c) If the next scheduled message is a Stage 2 prover message for session i, use the computed
fake witness to compute the prover messages p for the WI− AOK, and let v be the verifier
response. Note that a fake witness must have already been computed to reach this point
in the simulation; see next bullet.

(d) After exchanging a pair of messages p and v, if we reach the end of a session, attempt to
compute a fake witness of the session using the special-soundness property and previous
messages stored in the repository T (in particular are looking for matching convincing slots
for session i). If lazy-rewind fails to compute a fake witness, output ⊥.

(e) Output (V‖p‖v, T ∪ {V‖p‖v}), i.e., extend the input partial view with the message pair
(p, v) and enlarge the input repository with the new message generated by V ∗.

2. Recursive step

Simulate the first t/2 messages twice

(a) (V1, T1)← lazy-rewind(t/2,V, T)

(b) (V2, T2)← lazy-rewind(t/2,V, T)

Simulate the second t/2 messages twice

(c) (V3, T3)← lazy-rewind(t/2,V, T1 ∪ T2)

(d) (V4, T4)← lazy-rewind(t/2,V, T1 ∪ T2)

(e) output (V3, h3 ∪ h4)

Figure 3: The recursive procedure used by Sim—the “lazy” KP simulator.

9

Definition 6 (Blocks). Given an execution of Sim, a block B is a pair B = (Bloc, Bcontent), where
Bloc specifies the location of a call of lazy-rewind and Bcontent specifies the inputs and randomness
of the same call. Formally Bloc is a partial thread (that leads to and includes the lazy-rewind call),
and Bcontent is just the inputs and random tape used by the lazy-rewind call, i.e., (t,V, T , r). We
say a block C is contained in block B if the recursive call of lazy-rewind corresponding to block C
is nested inside the recursive call of lazy-rewind corresponding to block B.

Due to the recursive nature of lazy-rewind, every block would contain four “smaller” blocks;
of these four blocks, we call the first pair (respectively the second pair) sibling blocks, as they
correspond to sibling calls of lazy-rewind. Finally, we say a block contains a thread if the thread
“passes through” the block.

Definition 7 (Threads in a Block). Given an execution of Sim, we say a block B contains a thread
h if Bloc is a prefix of h.

Since lazy-rewind does not update the message repository T between sibling recursive calls (sib-
ling blocks) we call it lazy. This departs from previous works such as [KP01, PRS02], and is cruicial
for our analysis. We have also changed how blocks are threaded together from [KP01, PRS02]. In
lazy-rewind, the second pair of recursive calls are continued from the first recursive call of the first
pair (i.e. continued from view V1). This is similar to the precise simulation of [MP06] and [PPS+08].
This choice is inconsequential for our analysis, but will be useful later when we discuss precision in
Section 3.6); [KP01] and [PRS02], in contrast, continue the recursive calls from the view V2. See
Figure 2 for an illustration of blocks, threads and siblings in an execution of lazy-rewind.

3.3 Proof Overview

In order to prove the correctness of the simulation, we need to show that for every adversarial verifier
V ∗, the simulator runs in polynomial time and the output distribution is “correct”. The running time
of Sim can be bound just as in [KP01, PRS02]. Sim spends a maximum of poly(n) time on responding
to each verifier message. It follows from the recursive structure of the simulator that the number
of messages exchanged is doubled for each level of the recursion; since we have a recursive depth of
log2 T , the running time of the simulator is bounded by poly(n) ·T ·2log2 T = poly(n) ·T 2 = poly(n).

Intuitively, the correctness of the output view follows from the fact that Sim chooses Stage Init
and Stage 1 messages honestly, and that the protocol used in Stage 2 is witness indistinguishable
(this requires a proof later since Sim performs rewinds). Therefore, as long as Sim gets stuck (outputs
⊥) with negligible probability, taken over the random tapes of Sim (the random tape of V ∗ is fixed
during black box simulation), the output distribution is correct. Towards this goal we will show
that the probability of getting stuck at any point in the simulation is negligible.

Recall that Sim can only get stuck on a particular thread when the simulation reaches the end
of some session and could not extract the fake witness. Following the approach of [PRS02], we show
that the probability of getting stuck on any session and any thread is negligible. Since there are
only polynomially many sessions and threads, the main theorem follows by the union bound.

Fix any thread h and session i; from now on we refer to it as the “main” thread and the “main”
session, and call all other threads and sessions “auxiliary”. We say a random tape of Sim is bad if
Sim gets stuck at the end of main session i on the main thread thread h; all other random tapes are
called good (including those that got stuck on an auxiliary session or thread). The high-level idea,
just like in [PRS02], is to show that for every bad random tape, there exists super-polynomially

10

many good random tapes. Furthermore, the good tapes corresponding to any two bad tapes are
disjoint. Hence the probability of a tape being bad is negligible. From here on, start and end
refer to those on the main session and thread unless otherwise noted.

Here is how we generate good random tapes from bad ones. Recall that on a bad tape, the
simulator reaches end without extracting a “fake witness”. Hence, all slots on the main thread are
convincing (or else we would never reach end), but no corresponding convincing slots are on an
auxiliary thread prior to end (since otherwise Sim would have extracted a witness). Intuitively,
to generate a good tape from a bad one we just need to “swap” a convincing slot from the main
thread into an auxiliary thread. After the swapping, should the simulation reaches end of the main
session on the main thread, the newly formed convincing slot on the auxiliary thread, together with
the corresponding convincing slot on the main thread, will allow Sim to compute the fake witness.
Hence the simulation may continue on without getting stuck. So far we have not deviated from the
analysis of [PRS02].

To actually “swap” convincing slots, we modify the random tape of Sim. The basic operation
that we perform on the random tape is to exchange the randomness used by sibling blocks (i.e.,
the segments of the random tape used to simulate these blocks). Since sibling blocks are identical
modulo randomness, swapping the random tape between siblings swaps the simulation result in the
two blocks exactly. (In the rest of the paper, we use the convention that after swapping a block B
with its sibling B′, the “new block B” refers to the block in the old location of B′ with the same
content as the “old block B”, i.e., (B′loc, Bcontent).) Note that this “exact swap” property is made
possible by the lazy nature of Sim; the same property does not hold for the KP simulator where the
second sibling benefits from fake witnesses extracted during the execution of the first sibling.

Intuitively, we call a block on the main thread composable if it satisfies the following properties:

Goodness. Swapping a composable block with its sibling produces a good random tape.

Composability. The above swap leaves other composable blocks on the main thread composable.

Reversibility. Given the random tape obtained after swapping a composable block, there is a
procedure undo that reverses the swap. This ensures that the resulting good tape is unique.

Consider K composable blocks with an ordering such that each swap will leave the successive
composable blocks still composable. Then, we can generate 2K − 1 good random tapes by choosing
to swap each block or not in the ordering. By a simple counting argument, we will show that for any
bad tape, there are k− 2 log2 T composable blocks with an ordering, therefore generating 2k−2 log2 T

distinct good tapes. We then use the undo procedure to show that different bad tapes generate
different good tapes. Thus, if k ∈ ω(log2 T) = ω(log n), the probability of having a bad tape is
negligible.

3.4 The Actual Proof

Formally, Sim may output ⊥ for two reasons. Firstly, it may reach end without encountering two
matching convincing slots after the start of the session; we call this a rewinding failure. Secondly,
Sim may not be able to compute a fake witness even though it has access to matching special-sound
transcripts; we call this a special-sound failure. Special-sound failures are easy to upper bound; see
Claim 8. As mentioned, the main part of the proof is bounding the probability of rewinding failures.

11

3.4.1 Composable Blocks

We first define the notion of composable blocks and show that they satisfy the three properties of
goodness, composability and reversibility. Let us fix a particular main session and main thread, and
formally define a random tape to be bad if Sim encounters a rewinding failure in the main session
on the main thread; otherwise a random tape is good. From here on start and end refers to those
of the main session and main thread, unless otherwise noted.

Definition 8 (Composable Block). Consider an execution of Sim with any random tape (not nec-
essarily bad). A block B, with sibling B′, is called a composable block (with respect to the main
thread and session), if it satisfies the following conditions:

Main block condition: B contains the main thread h, a convincing slot of the main session (not
necessarily on the main thread) and does not contain start (of the main session on the main
thread). The last condition is equivalent to saying that the prefix of B contains start.

Sibling condition: B′ does not contain any end (of the main session on the main thread).

Tracing condition: The simulation after start but before B contains only convincing slots on the
main thread h, and contains no convincing slots on the auxiliary threads.

As we will soon see, the Main block condition and the Sibling condition implies goodness and
composability, while the Tracing condition enables the undo procedure, which implies reversibility.
We also define an ordering relation > on composable blocks.

Definition 9. Let C and B be two blocks on a common thread. We write C > B iff

• C and B are disjoint, and C occurs before B (Case 1 in Figure 4), or

• C and B are not disjoint, and C is a larger block that contains B (Case 2 in Figure 4)

Note that given two blocks on the same thread, if they are not disjoint, then one must contain
another. Thus > is a total order on any set of blocks that share a common thread.

Finally, we define a deterministic undo function on random tapes in order to achieve reversibility:

• Given a random tape τ ′, execute lazy-rewind with the tape τ ′. Call a block that does not
contain the main thread special if it contains a convincing slot of the main session.

• Let D be the first special block after start; that is, any other special block E after start sat-
isfies D > E. Swap the parts of τ ′ used by D and its sibling, and output the new random
tape.

Claim 2. Let τ be a random tape (not necessarily bad). Let B be a composable block with sibling
B′ when lazy-rewind is executed with random tape τ , and let V be the common prefix of B and B′.
Furthermore, let τ ′ be the random tape obtained after swapping the blocks B and B′. Then:

1. [Goodness]: τ ′ is a good random tape.

2. [Composability]: Any composable block C on τ with C > B is still composable on τ ′.

3. [Reversibility]: undo(τ ′) = τ .

12

Proof. Recall that after the swapping, blocks B and B′ are exchanged in the simulation.

Goodness When lazy-rewind is executed with τ ′, B′ will now be on the main thread (see Figure 4).
Recall that B′ does not contain any end of the main session (sibling condition). Thus, if the
end of the main session ever occurs on the main thread, it will occur after both B and B′ are
executed. In that case, both the convincing slot in B (which is now in an auxiliary thread)
and the corresponding convincing slot on the main thread (which must be there before end
occurs) together forms a matching pair of convincing slots that occurs after start. Moreover,
this pair of convincing slots occur before end. Thus τ ′ is a good tape.

Composability Given a composable block C > B with sibling C ′ on τ , we have two cases as shown
in Figure 4. In case 1, when C is disjoint from B, the swapping of B and B′ does not change
the simulation inside C, C ′, and between start and C. Respectively, this leaves the main
block condition, sibling condition, and tracing condition of C intact on τ ′. On the other hand,
in case 2 where C contains B, the swapping of B and B′ again leaves the simulation inside
C ′ and between start and C unchanged, keeping the sibling condition and tracing condition
intact. In addition, since C still contains B under τ ′, and B in turn contains a convincing
slot, the main block condition still holds as well (other parts of C may have changed). In both
cases, C continues to be a composable block on τ ′.

Case 1: C occurs before B

B′

B

start
VC

Case 2: C contains B

B′

B

start
V

C

Figure 4: Two possible block diagrams after the swapping procedure in Claim 2 (B and B′ is
swapped). The main thread is shown in a thick line, and a composable block C > B, drawn with
dashed lines, is shown in two possible configurations.

Reversibility Finally, we need to show that undo(τ ′) = τ . After the swap (executing with random
tape τ ′), block B no longer contains the main thread and contains a convincing slot; it is
therefore a special block. Next we show that any block C > B is not special. Either C occurs
strictly before B, or it contains B (in this case C also contains B′). In the first case, block
C is unchanged during the swap, and therefore is not special because it does not contain a
convincing slot (tracing condition). In the second case, since C contains B′ and therefore the
main thread, it is not special. Thus, undo will always locate B as the first special block and
perform the correct inverse swapping to recover τ .3

3 Note that we here rely on the “exact” swapping of sibling blocks (a consequence of the lazy property of Sim).
Suppose that sibling blocks are not symmetric and that the second sibling uses information obtained in the first
sibling to compute fake witnesses. Then, if the end of an auxiliary session occurs before the convincing slot in B′, it

13

The next claim demonstrates how to compose multiple composable blocks.

Claim 3. Let τ be a bad random tape, B = {B1, . . . , Bp} be a set of composable blocks for τ . Then,
we can generate a set of good random tapes, S(τ,B), by swapping the various composable blocks in
B, so that the following holds:

1. |S(τ,B)| ≥ 2p − 1.

2. For any bad tape τ ′ 6= τ and any set of composable blocks B′ for τ ′, S(τ,B) ∩ S(τ ′,B′) = ∅.

Proof. Since all composable blocks lie on the main thread, there is a total ordering of the blocks.
Without loss of generality, let B1 > B2 · · · > Bp. Consider any non-empty subsequence of 1, . . . , p,
say u1, . . . , uq. There are 2p − 1 such sequences. Let τu1···uq be the random tapes obtained from τ
by swapping the blocks Bui with its sibling, in the order of i = q, q − 1, . . . , 1.

From Claim 2, it follows that τu1···uq is a good random tape. We further note that given τu1···uq ,
we can recover the blocks Bu1 , . . . Buq by repeatedly applying undo until we reach a bad tape (it will
always be τ). Therefore given two different subsequences, u1, . . . , uq and v1, . . . , vq′ , we must have
τu1···uq 6= τv1···vq′ in order for undo to recover a different set of swapped blocks. Thus, we obtain
2p − 1 distinct good random tapes.

Similarly, take any α ∈ S(τ,B) and β ∈ S(τ ′,B′) (good tapes produced by swapping from τ and
τ ′, respectively). Applying undo repeatedly on α until the result is a bad tape will result in τ , while
applying the same procedure on β will give τ ′. If τ 6= τ ′, then we must have α 6= β.

Corollary 4. Suppose every bad random tape has p composable blocks. Then, the probability of a
random tape being bad is at most 1/2p

3.4.2 Number of Composable Blocks

We now proceed to count the number of composable blocks. First we introduce the notion ofminimal
containing blocks (this is identical to minimal rewinding intervals as defined by [PRS02]). For each
slot, its minimal containing block is the minimal block on the main thread that contains the slot.
Claims 5 and 6 below together show that there are at least k − 2 log T composable blocks when
we run Sim with a bad tape. Claim 5, which counts the number of minimal containing blocks, is
identical to [PRS02]; we include it here for completeness.

Claim 5. In an execution of Sim with a bad random tape, there are at least k minimal containing
blocks.

Proof. As observed earlier, on a bad tape there will be k convincing slots of the main session on
the main thread (in order to reach end). We merely need to show that for each slot, its respective
minimal containing blocks are distinct. Suppose that two slots share the same minimal containing
block of length t. Since slots on the same thread are disjoint, we reach a contradiction as one of the
slots must be properly contained in one of the two smaller blocks of size t/2.

Claim 6. Consider an execution of Sim with a bad random tape τ . If there are k′ minimal containing
block, then there are at least k′ − 2 log T composable blocks.

may now output ⊥ after the swapping (since it has lost the information collected in B after the swap). In this case,
block B would not exist when executing Sim with random tape τ ′, and undo would fail.

14

Proof. Let B be a minimal containing block that does not contain start or end. Since start (or
end) can only be in at most log T different blocks on the main thread (since that is the recursion
depth), we conclude that there are at least k′ − 2 log T such blocks.4 It remains to show that B is
a composable block. Let B′ be the sibling of B.

The main block condition of composable blocks follows directly, while the tracing condition on the
main thread actually holds for the whole simulation from start to end, since τ is a bad random
tape. Thus, we only need to show that the sibling condition is satisfied, i.e. B′ does not contain end.
Assume to the contrary that B′ does contain end. Since B and B′ are siblings with a common
starting point and B contains a slot of the main session, B′ must contain that same slot in a
convincing manner in order to reach end. On the other hand, B does not contain end. Thus B′

will be executed before the main thread reaches end (if at all), and this convincing slot will allow
Sim to compute the witness of the main session by the same argument in Claim 2. This contradicts
the fact that τ is a bad tape.

3.4.3 Concluding the Proof

We first show that Sim gets stuck with negligible probability, and then use it in Claim 9 to conclude
that the output distribution of SimV ∗ is computationally (resp. statistically) indistinguishable from
the real view of V ∗.

Claim 7. Sim encounters rewinding failures with negligible probability.

Proof. As mentioned before, since there are only polynomially many sessions and threads, it suffices
to show that the probability of the simulator getting stuck on any fixed thread and session is
negligible. The union bound then shows that Sim overall gets stuck with negligible probability

For any fixed thread and session, combining Claim 3, 5 and 6 shows that a random tape is bad
with probability at most

1

2k−2 log T

This is negligible in n since T is polynomial in n and k = ω(log n).

Claim 8. Sim encounters special-sound failures with negligible probability.

Proof. Suppose for the sake of contradiction that Sim encounters special-sound failures with non-
negligible probability. Consider an unbounded adversarial prover P ∗ that forwards the prover
messages of the prefix of the SS-POK (Stage Init), in a random session and random thread from an
execution of SimV ∗ , to an outside honest verifier VSS of the SS-POK (essentially we are forwarding
messages between V ∗, who acts as the prover of the SS-POK in Stage Init, to the outside honest
verifier VSS). Since an execution of SimV ∗ only has polynomially many instances of Stage Init,
P ∗ would contradict the special-soundness property with non-negligible probability (i.e., produce a
prefix of the SS-POK where is it possible for the witness-computing procedure to fail, even when
supplied with two different completions of the prefix).

The actual “forwarding” procedure of P ∗ has a subtlety due to the rewinding nature of Sim. In
the middle of forwarding the prefix of a SS-POK from V ∗ to VSS , Sim may decide to rewind V ∗

partially to an earlier point in the SS-POK proof. In a naive forwarding scheme, this would require
4This is the same counting argument used in [PRS02] to count minimal rewinding intervals without start or end.

15

VSS to be rewound as well to generate fresh verifier messages (which cannot be done). Fortunately,
since the prefix of our SS protocol has only 2 messages (non-interactive), such a rewinding cannot
occur.

Claim 9. If the argument of knowledge in Stage 2 is WI (resp. statistical WI), then the ensem-
bles {ViewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and {Sim(x, z)}x∈L,z∈{0,1}∗ are computationally (resp. statistically)
indistinguishable (as a function of |x|).

Proof. We consider polynomially many intermediate hybrids Simi, 0 ≤ i ≤ m + 1, that receive
the real witnesses to the statements x1, . . . , xm. Simi proceeds as Sim until the ith Stage 2 proof
on the output thread, after which Simi continues in a straight-line simulation with V ∗ using the
real witnesses for Stage 2 proofs. (We note that a similar type of “cut-off” simulator was used in
[BPS06].) Simi will output ⊥, however, should Sim encounter a rewinding or special-sound failure
during the ith proof. Clearly, Sim0 generates ViewP

V ∗(x, z) and Simm+1 generates Sim(x, z). Thus,
it is enough to show that for all i, the output of Simi and Simi+1, are computationally (resp.
statistically) indistinguishable.

We introduce yet another hybrid Sim′i that proceeds as Simi except that it utilizes the extracted
fake witness for the ith proof. Sim′i and Simi+1 differ only in that Simi+1 has more chances to
output ⊥. But by Claim 7 and 8, both actually outputs ⊥ with negligible probability, and therefore
they are statistically close. On the other hand, Simi and Sim′i differ only in the ith proof, which
both simulators run in a straight-line fashion, without rewinds. Therefore they are computationally
(resp. statistically) indistinguishable by the WI property of the Stage 2 proof. Thus, the output of
Simi and Simi+1 are indeed computationally (resp. statistically) indistinguishable.

Claim 9 completes the proof of Theorem 1.

Remark. Since we have shown that our lazy simulator is a concurrent zero-knowledge simulator,
it follows directly that the KP simulator is also a concurrent zero-knowledge simulator: because the
KP simulator receives more information than the lazy simulator at any point during the simulation
(i.e. a bigger history repository h), the probability that the KP simulator outputs ⊥ is no more than
the probability that the lazy simulator outputs ⊥. Thus, the same argument presented in Claim 9
can be applied also to the KP simulator.

3.5 Improving the Running Time of the Simulator

A faster simulator gives tighter “knowledge security” [GMW91, Gol01]. In this section, we bound
the running time Sim by bounding the number of queries the Sim makes to V ∗. Recall that T is the
maximum number of queries needed in a straight-line execution of V ∗. This means the recursive
depth of lazy-rewind(T, ·, ·) invoked by Sim is at most log2 T . Since lazy-rewind doubles the number
of queries per recursive depth, Sim makes at most T2log2 T = T 2 queries.

We can reduce the number of queries by following the approach of [PPS+08]. Currently, when
lazy-rewind is asked to simulate t messages (a block of size t), it divides the t messages into two
halves and recursively calls itself on each half (creating blocks of size t/2). One approach would
be for lazy-rewind to divide each block into smaller sub-blocks, thus reducing the recursive depth.
For example, an illustration of dividing a block into 3 equal parts is shown in Figure 5 (this means
lazy-rewind(t, ·, ·) would make 6 recursive calls of the form lazy-rewind(t/3, ·, ·)). Suppose we divide

16

each block into g equal sized sub-blocks; we call g the splitting factor. Then it immediately follows
that the recursive depth of lazy-rewind(T, ·, ·) becomes logg T , and the number of queries made by
Sim is reduced to at most T2logg T .

Figure 5: A pictorial representation of a rewinding schedule with splitting factor 3.

Now that the Sim is making less queries overall, can it still successfully generate a view of V ∗?
It is easy to see that the combinatorial properties of composable blocks do not change with this
generalized rewinding scheme. Therefore, we only need to count the number of composable blocks
in this new rewinding schedule to bound Sim’s failure probability. As in Section 3.4.2, we start by
counting the number of minimal containing blocks. The following two claims mirror Claim 5 and 6:

Claim 10. In an execution of Sim with splitting factor g on a bad random tape, there are at least
k/(g − 1) minimal containing blocks.

Proof. Recall that in an execution with a bad tape, there are k convincing slots of the main session
on the main thread (in order to reach end). Since each slot has its respective minimal containing
block, and any block can be the minimal containing block for at most g − 1 slots (by the pigeon
hole principle), there are at least k/(g − 1) minimal containing blocks.

Claim 11. Consider an execution of Sim with splitting factor g on bad random tape τ . If there are
k′ minimal containing block, then there are at least k′ − 2 logg T composable blocks.

Proof. As shown in Claim 6, it still holds that any minimal containing block that does not contain
start or end is a composable block. Since start (or end) can only be in at most logg T different
blocks on the main thread (since that is the recursion depth), we conclude that there are at least
k′ − 2 logg T composable blocks.

Following the claims in Section 3.4.3, we conclude that Sim with splitting factor g is still a valid
zero-knowledge simulator as long as

1

2k/(g−1)−logg T

is negligible in the security parameter n; this holds whenever k/g ∈ ω(log n). In particular, for
any ε > 0, if we set g = 21/ε and k = ω(log n), then protocol ConcZKArg remains secure and
ω(log n)-rounds, and Sim makes at most T 1+ε queries to V ∗ where T is the maximum number of
queries needed in a straight-line interaction with V ∗.

3.6 Achieving a Precise Simulation

Precise zero-knowledge, introduced by Micali and Pass [MP06], considers an “execution-by-execution”
notion of knowledge-tightness; it requires that the view of any adversarial verifier V ∗ be simulated
in time closely related to the actual running time (as opposed to the worst-case running time) spent

17

by V ∗ in the view generated. More formally, a zero-knowledge simulator has precision p(t) if for all
views V of V ∗ generated by the simulator, if V ∗ takes time t in the view V, then the simulator must
have generated the view in time p(t). See [MP06] for more detailed discussions and definitions.

Pandey et. al. [PPS+08] recently extended precise ZK to the concurrent setting. The crux of
[PPS+08] is a slightly modified KP simulator:

1. The KP simulator is modified to obliviously rewind based on time, i.e., the number of Turing
machine steps taken by V ∗, instead of the number of messages sent by V ∗.

2. The KP simulator is modified to output the view of V ∗ on the “first” thread that it simulates
(i.e., outputs the view in the first sibling block instead of the second).

In fact, the second modification could not be directly analyzed with the techniques of [PPS+08]
(based on the PRS analysis). Instead, [PPS+08] ask that sibling blocks be simulated in parallel
(instead of one after another); this requires subtle modifications to the PRS analysis, and the
addition of a doubling trick to guess the running time of V ∗ so that the simulator knows how many
recursive levels to simulated in parallel.

Looking at the lazy KP simulator, it already outputs the view of V ∗ on the “first” simulation
thread. Therefore, to make the lazy KP simulator precise, we only need to modify it to rewind based
on time. In other words, simply let lazy-rewind(t, ·, ·) simulate V ∗ for t Turing machine steps instead
of t messages. The observations in Section 3.5 then allow us to obtain (and expand to arguments
of knowledge) the main theorems of [PPS+08], namely:5

Theorem 12. For any integer functions k and g satisfying k(n)/g(n) ∈ ω(log n), there exists a
O(k(n))-round concurrent zero-knowledge argument of knowledge for all of NP, based on one-way
functions, with precision p(t) ∈ O(t2logg t). In particular, for any ε > 0, there exists a ω(log n)-round
instantiation of the protocol with precision p(t) ∈ O(t1+ε).

4 Acknowledgements

We are very grateful to Manoj Prabhakaran, Alon Rosen and Amit Sahai for helpful discussions
and comments. We are also deeply grateful to Oded Goldreich for his great comments about the
presentation of our results.

References

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In CRYPTO ’92,
pages 390–420, 1992.

[Blu86] M. Blum. How to prove a theorem so no one else can claim it. Proc. of the International
Congress of Mathematicians, pages 1444–1451, 1986.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero
knowledge. In FOCS’06, pages 345–354, 2006.

5As in [MP06, PPS+08] we also need to appropriately pad the verifier messages to ensure that the simulator has
enough time to generate its messages; see [MP06, PPS+08] for more details.

18

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO ’94, pages 174–187, 1994.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In STOC ’00, pages 235–244, 2000.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires ω̃(log n) rounds. In STOC ’01, pages 570–579, 2001.

[Dam00] Ivan Damgård. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT ’00, pages 418–430, 2000.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[DS98] Cynthia Dwork and Amit Sahai. Concurrent zero-knowledge: Reducing the need for
timing constraints. In CRYPTO ’98, pages 177–190, 1998.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
STOC ’90, pages 416–426, 1990.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[GMOS07] Vipul Goyal, Ryan Moriarty, Rafail Ostrovsky, and Amit Sahai. Concurrent statistical
zero-knowledge arguments for NP from one way functions. In ASIACRYPT ’07, pages
444–459, 2007.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991.

[Gol01] Oded Goldreich. Foundations of Cryptography — Basic Tools. Cambridge University
Press, 2001.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28:12–24, 1999.

[HNO+09] Iftach Haitner, Minh-Huyen Nguyen, Shien Jin Ong, Omer Reingold, and Salil P. Vad-
han. Statistically hiding commitments and statistical zero-knowledge arguments from
any one-way function. SIAM Journal of Computing, 39(3):1153–1218, 2009.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In STOC ’01, pages 560–569, 2001.

19

[KPR98] Joe Kilian, Erez Petrank, and Charles Rackoff. Lower bounds for zero knowledge on
the internet. In FOCS ’98, pages 484–492, 1998.

[LPTV10] Huijia Lin, Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkita-
subramaniam. Concurrent non-malleable zero knowledge proofs. In CRYPTO, pages
429–446, 2010.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In STOC ’06, pages 306–315,
2006.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

[PPS+08] Omkant Pandey, Rafael Pass, Amit Sahai, Wei-Lung Dustin Tseng, and Muthuramakr-
ishnan Venkitasubramaniam. Precise concurrent zero knowledge. In EUROCRYPT ’08,
pages 397–414, 2008.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS ’02, pages 366–375, 2002.

[PS02] Manoj Prabhakaran and Amit Sahai. Concurrent zero knowledge proofs with loga-
rithmic round complexity. Cryptology ePrint Archive, Report 2002/055, 2002. http:
//eprint.iacr.org/2002/055.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-round concur-
rent zero-knowledge. In TCC ’08, pages 553–570, 2008.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Eurocrypt ’99, pages 415–432, 1999.

[Ros00] Alon Rosen. A note on the round-complexity of concurrent zero-knowledge. In CRYPTO
’00, pages 451–468, 2000.

[Ros03] Alon Rosen. The round-complexity of black-box concurrent zero-knowledge. PhD thesis,
Weizmann Institute of Science, 2003.

20

A The PRS Analysis [PRS02]

On counting arguments. The PRS approach of mapping bad random tapes to good random
tapes is different from the approach taken in this paper. In this section, we provide a brief overview
of the PRS analysis.

Given a bad random tape, the PRS analysis deals with minimal rewinding intervals, defined to
be minimal blocks that contain a slot, without containing start or end.6 Since minimal rewinding
intervals are not “composable” when they overlap, the PRS analysis focuses on a (maximal) set of
disjoint minimal rewinding intervals. To make up for lost intervals due to overlapping, the PRS
analysis swaps each minimal rewinding interval not only with its sibling (as we do), but also with
its “cousins”. See Figure 6 for an illustration of cousins blocks. Note that a block may have many
cousins (but only one sibling). Moreover, swapping a block with its cousins may require an exchange
of random tape segments outside the two blocks, and therefore produce changes in the simulation
outside of the cousins

B′′′

B′′

B′

B

C

s

cousins

Figure 6: A pictorial representation of the original KP rewind schedule, extended from Figure 5 of
[PRS02]. We show how a rewinding interval B is related to its sibling (B′), its parent (C), and its
cousins (B′, B′′, B′′′). To swap block B with its cousin B′′, one needs to exchange the randomness
used on the two highlighted thread.

Next, the analysis needs to determine for each rewinding interval, how many cousins swaps will
result in a new distinct random tape; this step is complicated because a large portion of the random
tape maybe shuffled to perform a cousin swap, destroying other potential rewinding intervals. Each
rewinding interval is thus assigned a weight corresponding to the number of available cousins.
Finally, an analysis is used to lower-bound the sum of weights over the chosen (maximal) subset
of disjoint rewinding intervals. (Recall that, in contrast, our analysis is local—we are only required
to show that a single swap of a block with its sibling results in one new random tape.)

6Here we adopt some of our terminologies to explain the PRS analysis.

21

On the “hybrid simulator”. To enable the above counting argument, the PRS analysis bounds
the failure probability of a “hybrid rewinding simulator”, which uses the witness of the input state-
ment to produce a simulated view of V ∗. More specifically, the hybrid simulator proceeds like
the actual simulator to extract “fake witnesses”—and fails whenever extraction does not work—but
uses the real witness to complete the Stage 2 proof. Next, the PRS analysis shows that the hy-
brid simulator is indistinguishable from the real simulator. This relies on the Stage 2 proof being
committed-verifier, so that the adversarial verifier cannot extract the witness used in the Stage 2
proof (and thus distinguish the two simulators), even though there are many rewinds. In contrast,
we do not use a hybrid argument regarding two rewinding simulators (see Claim 9), and so our
analysis directly applies also to committed-verifier protocols.

22

