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Chapter 1

Introduction

Recently, much interest has been paid to questions concerning the application of algorithms
in game theoretic settings as given, for example, by large and heterogenous networks in
which autonomous systems compete for available resources. In these settings one is faced
with the problem that different parts of the input might be given by different subsystems,
each acting according to their personal interest rather than some common social objective. It
then becomes desirable to have protocols that allow algorithms to compute output of a cer-
tain social quality and at the same time motivate the selfish participants to cooperate. While
the roots of mechanism design are found in theoretical economics and results date back to as
early as the 1960’s [17], it has only recently become a field of interest for computer scientists.
From the point of view of economics, focus has been laid on the design of protocols for var-
ious types of auctions that would ensure good expected revenue for the seller by motivating
the participating bidders to truthfully report their interests. As computer scientists become
involved, this focus shifts to questions of computational complexity. Since the number of
goods and bidders in electronic auctions for resource allocation can become very large, it is
clear that the resulting allocation of goods must be computed efficiently. Algorithmic mech-
anism design is concerned with the question whether — and how — these different objectives
can be combined [11].

The following paragraphs give a short outline of the main parts of this work. They point out
the main results and techniques and briefly discuss how they relate to previous work. For
precise definitions of any mechanism design specific notions that are used in this discussion
please refer to the respective chapters.

Chapter 2 introduces the field of algorithmic mechanism design formally and gives an
overview of some of the most important previous results. We describe the VCG mecha-
nism [17, 4, 6] and point out that its payment scheme cannot be combined with approximate
algorithms. We then introduce some general notation that captures any utilitarian mechanism
design (optimization) problem and adopt the characterization of truthful approximate mech-
anisms due to Lehmann et al. [9] and Mu’alem and Nisan [10] for this type of problems and
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known single—-minded agents. Especially, we point out the fact that the design of truthful ap-
proximate mechanisms in the single-minded case is essentially equivalent to the construction
of monotone approximation algorithms for the underlying optimization problem. Finally, we
briefly mention the problem of measuring the quality of a mechanism’s payment behavior
and point out why comparing to the payments of a VCG mechanism appears reasonable and
has become a well established technique.

Chapter 3 derives a bound on the difference between the payments of an exact VCG mecha-
nism and the payments of any approximate mechanism for the same utilitarian minimization
problem that depends only on the approximation ratio. We make use of the fact that the
exact algorithm used in the VCG mechanism is a monotone algorithm and, thus, we can
compare agents’ critical values on a one—to—one basis. Except for a few remaining technical
difficulties, this is essentially the main step towards a comparison of the total payments that
mechanisms make to possibly different sets of selected agents. Applying some further argu-
mentation due to Talwar [15] we obtain a bound that turns out to be quite similar to the only
previous result of this kind presented by Calinescu [3]. In fact it can be seen as a worst case
variant of this previous bound — a line of argumentation that will be picked up again later on.

Chapter 4 deals with reverse multi—unit auctions, in which a single auctioneer wants to buy
a number of identical goods from a set of potential suppliers. The underlying NP-hard opti-
mization problem is a minimization variant of the Knapsack Problem and has been studied,
e.g., by Kothari et al. [8]. It is a representative example for the minimization problems
among the class of utilitarian optimization problems we are faced with. We present three
different approximation algorithms for this problem and prove that they are monotone and,
thus, suitable for the design of truthful mechanisms. First, we adopt the simple greedy
strategy presented by Mu’alem and Nisan [10] for forward multi—-unit auctions to obtain a
2—approximation, which represents the best previously known result for this type of auc-
tions. We then add an enumeration technique due to Sahni [13] in order to get a PTAS and
show that this technique is monotonicity preserving. We point out that both algorithms have
strongly polynomial running time and can be applied to the more general scenario of un-
known single—-minded agents, as well. Following this we present a monotone FPTAS with
weakly polynomial running time which is limited to known single-minded agents. While the
well known approach of scaling the input appropriately before applying an exact pseudo-
polynomial algorithm fails to be monotone, since some rounding has to be done based on the
input, this problem can be avoided by applying another enumerative method. We specify our
algorithm as enumerating over an infinite set of possible ways to round the scaled input. To
obtain a polynomial time implementation we then limit the number of possibilities that can
actually lead to good solutions.

For the greedy 2—approximation and the PTAS we present examples that show that the bound
presented in Chapter 3 is tight in an asymptotic sense. This qualifies reverse multi-unit
auctions as a possible near worst case example in terms of overpayment among all utilitarian
mechanism design minimization problems. Applying the bound to the FPTAS, we see that
the resulting mechanism truly approximates the VCG mechanism with respect to both cost
and payment, since it shows that we can make the difference in payment any polynomially
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small fraction of the VCG payment by choosing the (polynomial) approximation ratio with
respect to the cost accordingly. To further motivate this type of approximation, we prove that
the computation of VCG payments for reverse multi—unit auctions is itself NP-hard.

Chapter 5 deals with other utilitarian problems considered in the context of mechanism de-
sign. We first show that the algorithms presented for reverse multi—unit auctions in Chap-
ter 4 can easily be adopted for the forward variant. In the context of maximization problems
we point out that the enumerative method from Chapter 4 can be used to obtain monotone
FPTASs for a whole class of utilitarian problems, if an appropriate pseudo—polynomial algo-
rithm exists. We show that this is the case for forward multi—unit auctions, Job Scheduling
with Deadlines and the Constrained Shortest Path Problem. We obtain the first monotone
FPTASs for all these problems. Finally, we show that a modified version of the results from
Chapter 3 also applies to maximization problems and point out the main differences.



Chapter 2

Algorithmic Mechanism Design

The field of algorithmic mechanism design is concerned with the application of various al-
gorithms in scenarios where input is presented by autonomous individuals, called agents. In
this model of social interaction, agents are considered to be driven by some sort of private in-
terest, i.e., having quite individual preferences as far as the algorithm’s output is concerned.
As to ensure that all agents can be satisfied by the algorithm, we allow that, besides present-
ing some output, additional payments are handed out. We term this combination of algorithm
and additional payments a mechanism. Since mechanism design is closely related to many
aspects of classical game theory, its roots also lie in the study of economics. From the view
of computer science, interest focuses on questions of computational complexity that arise in
this context.

As an example, look at the following scenario. The Internet connects an enormous number
of resources (e.g. CPU-time, storage space etc.), making them accessible from anywhere
around the world. Imagine that we are going to design some new operating system, which
takes advantage of this fact. Of course, any distributed operating system faces the problem
of allocating available resources in an efficient manner among the jobs that need to be pro-
cessed (and, especially, choosing a subset of all available resources that will be sufficient to
process all jobs), but wouldn’t it be nice if this could be done among all the computers run-
ning our system, maybe even on the Internet as a whole, making lack of resources a problem
of the past? Obviously, we are faced with a major challenge here, but for the moment let us
just look at the following aspect: Clearly, we will have to deal with the fact, that different re-
sources on the Internet are owned by different people or companies (let us call them agents).
All these agents might have more or less interest in making their resources available to our
operating system. Since, nevertheless, they all have stated their general will to participate
in our resource sharing by buying our operating system, their interest in making a certain
resource available is expressed by the price at which it is offered. (Little interest in mak-
ing a noisy needle printer accessible to the public results in a correspondingly high price.)
Hence, there is a simple protocol for the interaction between agents and the mechanism.
Agents specify prices for the resources they own, the mechanism decides which resources
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will be used and how much each agent will be paid. (Note, that for every resource we must
pay at least the specified price, but are free to pay any larger amount.) Depending on the
mechanism’s selection, each agent then decides whether to be satisfied by the result or not.

The major interest of the field is in the design of so—called truthful mechanisms, i.e., mech-
anisms that are robust against manipulation by individual agents. In our example above, it
Is each agent’s interest to maximize the profit made from sharing her resources. To achieve
this, depending on the mechanism that is used, it might not necessarily be the best strategy
to specify for each resource its true price. Rather, it could be helpful to declare a higher
price and maybe be paid more, accordingly. Hence, we are faced with the possibility that
agents have an incentive to lie about the true price of their resources in order to increase their
personal profit. We say that a mechanism is truthful, if no agent can gain anything by lying,
I.e., presenting false input to the mechanism.

Further examples of the application of algorithmic mechanisms are given by various routing
problems (where, e.g., connection lines are owned by agents) or different types of auctions.

In the next section, mechanisms and the notion of truthfulness are defined formally.

2.1 Model

We present the formal definition of mechanisms and truthfulness as introduced by Nisan and
Ronen [11]. We consider a set of n agents. Agent ¢ has given as her private input ¢t € T,
termed her type. Everything else in the scenario is public knowledge. Input to the mechanism
IS given as a type vector t = (t,...,t,). An output specification maps each type vector ¢
to a set of feasible outputs O(¢t) C O. Usually, we consider mechanisms for optimization
problems. In these cases, the output specification ensures that a given objective function is
optimized.

Depending on her type, agent i values the output presented by the mechanism. Formally,
preferences are given as a real valued valuation function v : 7" x O — R. We consider this
valuation to be done in some common currency. In addition to producing an output, a mech-
anism may hand out payments, which are also measured in this currency, to the participating
agents. If the mechanism’s output is o and agent 7 is handed out an additional payment of p;,
then we say that u; = p; + v(t}, 0) is agent 4’s utility. Agents are interested in maximizing
their personal utility. The definition above is generally referred to as ”quasi-linear”. We will
limit ourselves to this type of utility.

Definition 1. ([11]) A mechanism design problem is defined by an output specification and a
set of agents’ valuation functions. If the output specification is given by an objective function
g(t,0) and a set of feasible outputs O(¢) and we require an output o that optimizes g(¢, o),
we speak of a mechanism design optimization problem.

Just as algorithms are formally defined for classical optimization problems, we can now
introduce mechanisms based on this problem definition.
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Definition 2. ([11]) A mechanism m = (o, p) consists of an output function o : 7" — O
(specifying an algorithm) and an n—tuple of payments (p1, ..., pn).

1. For each agent 7, the mechanism defines a set of possible types 7; C T'. Each agent ¢
can report any type t; € T; to the mechanism.

2. Depending on the reported types ¢ = (t1,...,t,), the mechanism produces an output
o=o(t) € O(t).

3. Depending on the reported types, the mechanism hands out a payment p; = p;(t) to
each agent s.

We now have a formal description of the interaction between a mechanism and the partici-
pating agents. The mechanism produces its output o based on the reported types ¢,. Agents
aim to maximize their personal utility v, = p; + v(t}, 0), which is based on their true types
tr. As was already mentioned before, this might give agents an incentive to lie about their
types in order to increase their utility. We are interested in mechanisms ensuring that this
does not happen, i.e., mechanisms in which the participating agents’ utility is maximized if
they report their true types.

Notation: Given a vector ¢t = (t1,...,t,), we will denote (¢1,...,¢;_1,ti41,...,1,) DY t_;.
(t;,t_;) refers to the vector t = (¢4, ...,t,).

Definition 3. ([11]) Let agent i have true type ¢;. A mechanismm = (o, p) is called truthful,
if for all reported types ¢_, and any ¢; # t:

pi(ti t=y) +u(tl, o(t: t=;)) > pi(ti,t—;) +v(t], o(ti, t—:))

Hence, agent ¢ cannot increase her utility by untruthfully reporting some type ¢; instead of
her true type ¢;.

In the definition of truthfulness above, we require that agents’ utility cannot be increased by
reporting any false type to the mechanism. We say that truth-telling is a dominant strategy.
If we require that agents’ utility strictly decreases when a false type is reported, truth-telling
becomes the only dominant strategy. In these cases, we speak of strongly truthful mecha-
nisms. We will, however, work with the weaker notion of truthfulness as defined above and
assume that agents have no incentive to lie about their types as long as no real gain in terms
of utility can be expected.

We have defined truthful mechanisms by their property of making truth—telling a dominant
strategy for all participating agents. The next section addresses the question of how to con-
struct truthful mechanisms in a very general setting.
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2.2 Utilitarian Problems and the VCG Mechanism

One of the most important positive results in mechanism design is certainly what is usually
referred to as the generalized Vickrey—Clark—-Groves (VCG) Mechanism [4, 6, 17]. We will
first describe the scenario in which the VCG mechanism can be applied, then define the
mechanism itself formally and finally show that the requirement of truthfulness as defined in
the former section is met.

As already mentioned, we are interested in mechanisms for optimization problems. Hence,
we are given an objective function g(¢, o) depending on the reported types ¢ and the presented
output o. The mechanism’s output must be chosen to optimize g.

To describe the VCG mechanism formally, we need to decide whether we are facing a mini-
mization or maximization problem. There seems to be a tradition of describing general VCG
mechanisms only for the case of maximization. We will, of course, follow this tradition,
which is most likely a consequence of the standard definition of agents’ utility as found in
the former section. Remember, that we stated that agents’ incentive is to maximize their
personal utility and that agents’ valuations contribute to utility as a positive summand. From
the following definition it becomes clear, why it is convenient to assume a maximization
problem.

To be able to apply the VCG mechanism, we require the objective function to be simply the
sum of all agents’ valuations.

Definition 4. ([11]) A (maximization) mechanism design problem is called utilitarian if its
objective function g satisfies g(¢,0) = >, v(t;, 0).

Given a utilitarian problem, we can now define the VCG mechanism. Obviously, the mech-
anism has no alternative to choosing its output to maximize the objective function. Hence,
the main question is how to choose the payments handed out to the agents.

Definition 5. Let ¢ be the vector of declared types and v valuation function. We say that
m = (o, p) is a VCG mechanism if:

1. o(t) € argmax,(D>_, v(t;,0))

2. pi(t) = Zj;zéiv(tj? o(t)) — Zj;éiv(tj7 o(t-i))

What is the intuition behind this quite technical definition? Let us, for example, assume that
agents’ valuations are payments that the agents are willing to make to the mechanism for be-
ing included in the solution. (This is the well known setting of several types of auctions.) By
participating in the mechanism, agent ¢ can only increase the value of the presented optimal
solution, often referred to as social welfare. (This is due to the fact that the mechanism is
free to ignore agents that do not contribute to the improvement of the solution.) The idea of
the VCG mechanism’s payment scheme is to give this increase in social welfare as a bonus
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to the agent who caused it. Hence, if agent ¢ causes the social welfare to increase by ¢, her
payment to the mechanism will be v(¢;,0) — ¢ instead of v(¢;,0). In this example o(t_;)
denotes the mechanism’s output, if agent i does not participate and, thus, cannot be included
in the solution. Note, that in terms of this example the payment defined above has a negative
sign and, thus, an agent’s utility corresponds to the bonus given by the mechanism.

We observe that the VCG mechanism for an optimization problem does not have to be un-
ambiguous, since for some problem instances the optimal solution might not be well defined.
Additionally, we have some freedom in defining o(t_;). In fact, o(t_;) can be chosen to be
any feasible output, as long as it does not depend on v;. For our purposes, we abstract away
from this problem and let “the VCG mechanism” refer to the mechanism obtained by fixing
any exact deterministic algorithm for the optimization problem and some output o(¢_;) for
the payment scheme. In Chapter 3 we define a more special version of the VCG mechanism.

Remark 1. It is important to note that in the VCG mechanism, the payment for agent i is
defined independently of agent i’s reported type, thus p; = p;(t_;). As we will see later, this
Is a necessary qualifier for any truthful mechanism.

It now remains to be shown that the VCG mechanism is truthful. The proof is included here,
because it is usually done in slightly different settings, resulting in the fact that proofs don’t
match the notation used here. Besides this, the proof points nicely towards the key problem
that is addressed in the next section.

Theorem 1. ([11]) The VCG mechanism is truthful.

Proof: Consider declarations ¢t = (¢4, ...,t,), where ¢; is agent i’s true type. Now let agent
i untruthfully declare some type t; # ¢;. Let ¢’ denote the vector ¢ with ¢, instead of ¢;. We

note that
Z U(tj7 O<t>> > Z U(tjv O(t/>>’
j j
since o(t) € argmax,(D_;v(t;,0)). Now let u;(¢;) denote agent i’s utility when declaring
type ;. Then

wi(t;) = pi(t) + v(t;, o(t))

= D utyot) = Y v(tjo(t))

j j#i

= ) oty 0(t) =Y v(t;,o(t,)), since t) =t; for j # i
j j#i

> Y o(ty,o(t) = Y w(t),o(t",)), as noted above
j i

= pi(t") +v(ti, ot))

= ui(ty).

Hence, agent i cannot increase her utility by declaring any ¢/ # ¢;. This proves the claim. [
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2.3 Approximation Algorithms and Monotonicity

We return to our introductory example from the beginning of the chapter, where the selec-
tion of a subset of available resources that are connected through the Internet by a common
distributed operating system was presented as a possible application of algorithmic mech-
anisms. Since even quite limited cases of the underlying optimization problem are known
to be NP-hard (e.g. Set Cover), we cannot hope to be able to find exact solutions to our
problem in a large scale scenario as the Internet. So what does this mean for our operating
system?

Instead of giving up the complete project, we could certainly consider applying some ap-
proximation algorithm to the problem. Computing only an approximately efficient resource
selection would primarily lead to a number of resources not working to full capacity, a draw-
back that we would probably be able to cope with. So approximation algorithms seem to be
an acceptable compromise for our system. But what about the second important quality of
our mechanism: truthfulness? What would be the result if we didn’t require the mechanism
to be truthful, or maybe only required it to be approximately truthful? The effect would be
an increase of the payments made to agents for the use of their resources. A bound for this
increase has been presented by Kothari, Parkes and Suri [8], who show that the overpayment
to an individual agent can become quite large. In our function as operating system develop-
ers, however, we are of course very much obliged not to cause any unnecessary cost for our
customers. Hence, our interest is in embedding approximation algorithms in mechanisms
that are still strictly truthful.

An initial idea could now be to add the VCG payment scheme to an approximation algo-
rithm to obtain truthfulness. If we take a look at the proof of truthfulness for the VCG
mechanism, however, we note that the application of an exact algorithm to the optimization
problem is a necessary assumption in the proof. Hence, the VCG payment scheme cannot
be used in combination with approximation algorithms. But the truth looks even worse.
Lehmann, O’Callaghan and Shoham [9] showed that there are optimization problems and
approximation algorithms, such that there exists no payment scheme at all that leads to a
truthful mechanism.

In the remainder of this section, we will show how truthful approximate mechanisms can
be constructed for a limited type of participating agents and what sort of approximation
algorithms can be used for this. The cited results are due to Mu’alem and Nisan and were
presented in [10] in the setting of (single—item) multi—-unit auctions. Proofs are included as
to match the slightly more general notation used here.

We start by giving a formal definition of an algorithm’s approximation ratio and some related
notation.

Definition 6. Let IT be an optimization problem, Dy; the set of instances of IT and A an
approximation algorithm for II. For I € Dy let A(I) denote A’s solution, Opt(I) the
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optimal solution on instance I, w(A(I)) and w(Opt(I)) the respective objective function
values. We define:

Ra(]) = w(A(I))/w(Opt(1)), ifIIis minimization problem
all) = { w(Opt(1))/w(A(I)), ifIIis maximization problem

We say that A has approximation ratio

R, :=sup{Ra(I)|I € Dn}.

Convention: In contrast to the previous section, we will from now on assume minimization
problems when considering optimization.

We will first define a limited type of agent, for which we then characterize truthful approx-
imate mechanisms. As a first step we want to consider agents that are usually referred to
as being single-minded. In most cases this means that agents’ valuations only differentiate
between being part of the mechanism’s solution or not. In our operating system example, we
could imagine that each agent owns exactly one resource. Now some agent’s resource might
be chosen as a part of the allocation or it might not — there is, however, no “in between”.
Formally, each agent’s valuation function partitions the set of possible outcomes into two
disjoint sets.

Definition 7. ([9]) Consider agent ¢ with type ¢;. We say that agent 7 is single-minded, if
t; = (O ,v;), 0 = O U Oy disjoint and

v, ifoeOf
olti,0) = { 0, ifoeO;.

If o € O, we say that agent 7 is selected. By S(o0) we denote the set of selected agents in
output o.

For our intention single—-minded bidders are still too complex to deal with. Look at our
operating system once again. An agent’s preferred output O " might include the information,
what sort of resource the agent owns. Since agents’ types are private knowledge, an agent
might lie to our mechanism not only about the price of her resource, but about the resource’s
type, as well. To eliminate this uncertainty we introduce a further limitation by defining the
so—called known single-minded agent.

Definition 8. We say that a single-minded agent 7 is known, if her preferred output O} is
known to the mechanism.

Notation: For simplicity of notation, we drop the notions of ”type” and “valuation function”
when considering known single-minded agents. Instead, each agent ¢ has a single positive
value v; as her private input. The values that are reported to the mechanism are denoted by
v = (vq,...,v,). We will assume that v}, v; > 0. Hence, v; describes the minimum price
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to be paid to agent 7 if she is chosen for the solution. As was already mentioned earlier, we
now need to adapt our definition of utility to this setting. Since the mechanism’s payments
can now be seen as a compensation for the cost caused by the mechanism’s output, utility is
now defined as follows.

Definition 9. Let m = (A, p) be a mechanism for known single-minded agents. Agent i’s
utility is defined as
= { p; — v}, if agenti is selected
o ps, else.

We will now characterize algorithms that can be embedded in truthful mechanisms for known
single-minded agents. We consider mechanisms m = (A, p), where A is some (approxima-
tion) algorithm for the underlying optimization problem.

Definition 10. Algorithm A is monotone if for any agent : and declarations v_;:

o(vi,v_;) € O = o(vl,v_;) € OF forall v} < v;.

This definition appears quite natural. If v, is a winning declaration for agent 7, then we require
that this is also true for any smaller declaration v; < v;. The following is a straight-forward
observation.

Lemma 1. ([10]) Let A be a monotone algorithm. Then for any v_; there exists a single
critical value 0 = 0(A,v_;) € (R{ U co), such that o(v;,v_;) € O for all v; < 6 and
o(vi,v_;) € O; for all v; > 0.

Proof: First consider the case that no critical value 6/ exists. Then there must be declarations
v} < v?, such that o(v},v_;) € O; and o(v?,v_;) € O;. This contradicts A’s monotonicity
and, thus, cannot be the case. If, on the other hand, ] # 6? are distinct critical values, we let
¢ = (0} + 67)/2 and observe that o(p,v_;) € O N O; = 0, i.e., ¢ is winning and loosing
declaration simultaneously. This contradiction finishes the proof. O

For agent i, the critical value 67 is the supremum value that she can declare and still be
selected. It is important to note that 62 does not depend on the value declared by agent .
Critical values turn out to be the key to the construction of a truthful mechanism around
algorithm A.

Definition 11. The critical value payment scheme p“ associated with the monotone algo-
rithm A is defined by p/* = 64 if agent i is selected and p#* = 0 otherwise.

It now remains to be shown that adding the associated critical value payment scheme to a
monotone approximation algorithm will indeed result in the desired truthful approximate
mechanism.
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Lemma 2. ([10]) Let A be a monotone algorithm and p, the associated critical value
payment scheme. Then m = (A, p#) is a truthful mechanism for known single-minded
agents.

Proof: Fix declarations v_; and consider agent :’s utilities «}, u, as results of declaring v} or
v; # v}, respectively.

1. o(v},v_y), o(vi,v_;) € OF . Then pA(vy,v_;) = p(vi,v_;) and, thus, u} = u;.
2. o(v,v_y), o(v;,v_) € O . Thenu} = p (v}, v_;) = 0 = p(vs,v_;) = u;.

3. o(vf,v_;) € Of, o(vi,v_;) € O; . Obviously v} < 6 < v; and, hence,

77

A * A, * * *
up=0<07 —vf =p;(vf,v-) —v] = ;.

4. o(vi,v_;) € OF, o(v;,v_;) € OF . Obviously v; < 62 < v} and, hence,

A * _ nA * %
u; = pj (v, v—;) —vf =07 —vf <0=u;.

We note that u; < u! in each case. It follows that truthfully declaring v; is a dominant strat-
egy for agent . O

Lemma 2 shows that we have indeed found a way to construct truthful mechanisms for a lim-
ited type of agents. It turns out, however, that this characterization even captures essentially
all truthful mechanisms. A mechanism m = (A, p) is called normalized, if agents that are
not selected pay 0, i.e., p, = 0 foro € O;".

Lemma 3. ([10]) Let m = (A, p) be a truthful normalized mechanism for known single—
minded agents. Then A is monotone and p is the associated critical value payment scheme.

Proof: Assume that A is not monotone. Then there are declarations v; < v, such that
o(v;,v_;) € O; and o(v},v_;) € O;f. Now assume that v; = v}. If agent i is selected, the
payment p; made to agent 7 is no less than the declared value v;. (Otherwise the agent could
increase her utility by untruthfully declaring co.) For the resulting utilities «. and «}, we
have:

u; = pi(vl,v_) — v > v, —vf >0=u}
This contradicts A’s truthfulness.

We have already seen that p; > v; for any v; that results in agent i being selected. Thus,
p; > 0. Now assume that p; > 0:* and consider the case of 02 < v} < p;. Untruthfully
declaring 64 — ¢ obviously results in positive utility, while truthfully declaring v; causes
utility to be 0. This, again, contradicts A’s truthfulness. It follows that p; = 62. O

Theorem 2. ([10]) A normalized mechanism m = (A, p) for known single-minded agents
is truthful if and only if A is monotone and p is the associated critical value payment scheme.
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2.4 Frugality Considerations

Once more, let us return to our operating system example for known single-minded agents
and have a closer look at the optimization goal. We are dealing with the combinatorial prob-
lem of choosing a subset S C {1,...,n} of agents to supply us with a set of required re-
sources, S satisfying S € argming ), v;. Remember, that the v;’s are the prices declared
by the agents. Thus, we are minimizing the sum of agents’ declarations (usually referred to
as cost to society) and not the sum of payments actually made to the agents, which (as we
have seen in the previous section) can be writtenas » . ¢ 6;.

It is easy to substantiate the claim that for practical purposes, minimization of this second
objective appears more reasonable, since it is obviously good to minimize the actual pay-
ment that has to be made, while it is not necessarily clear why we should be interested in
something like cost to society. (When considering auctions, such an interest might result
from government acting as auctioneer, but the question of a government’s role in operat-
ing system design has not yet been finally answered by the courts.) There are, however, no
known ways of constructing mechanisms for payment optimization in the generality of our
scenario. But can we say anything about the payments made by a mechanism that minimizes
(or approximately minimizes) cost to society?

When we speak of an algorithm that approximates cost to society, we measure the algo-
rithm’s approximation ratio by comparing the value of the computed output to the value of
an optimal solution. We now need to decide how we are going to measure the payments
made by an approximate mechanism. Since there is always an optimal objective function
value that can be reached with respect to the underlying (minimization) problem, one could
obviously try to define the “optimal payment” for a given problem instance analogously.
This immediately leads to the following question. Given a set of declarations (v7, ..., v}),
what is the smallest payment that can be achieved by any truthful mechanism? The answer
is given by the following observation.

Observation 1. Assume declarations (v, ..., v}). If the set S* of agents with
c(S") = Z v}
ies*

minimizes the cost to society (and there is sufficient competition), then there is a truthful
mechanism that makes a total payment of exactly ¢(S™*).

How does such a mechanism look like? Consider the following mechanism m = (A, p?),
where p* is the critical value payment scheme and A is defined in a way that guarantees just
the critical values we need for our argumentation.

In Observation 1 we require “sufficient competition”. As becomes clear from the following
definition of A, this means the existence of at least two disjoint feasible solutions, which is
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required for the else—part of the algorithm. It is important to note that values v}, ..., v} are
used in the definition, i.e., the algorithm’s definition is based on a fixed problem instance.

Algorithm 1: A

Input: Declarations (vy, ..., v,).
1. Ifv; <wofforalli € S* thenset S = S*.

2. Else choose the best possible solution that does not select agents from
S*. Formally, let S C {1,...,n}\S* have minimal cost.

Output: Subset of agents S.

We observe that the critical value for any agent i € S* and an arbitrary vector of declarations

can be written as _
pA _ v, ifv; <viVje S \{i}
© 10, else.

Applying this to declaration vector (v7,...,v}) immediately implies the total payment
claimed in Observation 1.

Clearly, there is no way to further improve the payment of ¢(S*) in this situation, since
each agent must be paid no less than her declared value. Thus, we see that on every set of
declarations, optimal cost to society and smallest possible payment are identical. But s it fair
to compare other mechanisms’ payments to this optimum? The obvious answer is no. The
above mechanism shows outstanding performance in terms of payment on a small number of
declaration vectors, but one can easily construct other examples in which payment and cost
to society become arbitrarily bad.

How do we then judge the payment made by some (approximate) mechanism? The estab-
lished way of measuring a mechanism’s payment behavior (or frugality, as to include the
case of agents being charged instead of paid, as well) is to compare it to the payments made
by the VCG mechanism. This seems reasonable, since (although there are no such results
for the general scenario we are interested in) it has been shown [2, 1] that VCG is optimal
in terms of frugality in certain economical settings (assuming, for example, some possibil-
ity of resale between agents). Chapter 3 deals with the payment behavior of approximate
mechanisms for utilitarian problems.



Chapter 3

Payment of Approximate Utilitarian
Mechanisms

We have seen that mechanisms for optimization problems consist of two parts. An algorithm
produces output that optimizes some given objective function depending on agents’ declara-
tions. A payment scheme defines additional payments intended to ensure agents’ interest to
cooperate with the mechanism. Utilitarian optimization problems were distinguished by the
fact that their objective function is simply the sum of agents’ declarations. Mechanisms for
this sort of optimization problem are also termed utilitarian. For utilitarian mechanisms and
known single—minded agents we have seen how payments that will ensure truthfulness can
be derived directly from the algorithm that produces the output by applying the associated
critical value payment scheme.

This chapter deals with approximate mechanisms and the relation between the approximation
ratio of the algorithm in use and the resulting payments. We will prove that overpayment
decreases as the approximation ratio with respect to the objective function is improved. More
formally, we will compare the payments made by a truthful approximate mechanism for
some utilitarian problem to the payments made by the corresponding VCG mechanism on
identical input.

The current chapter will again be focused on minimization problems only. This is due to the
fact that, on one hand, this is a necessary requirement for one of the conclusion we are going
to make and, on the other hand, it immediately relates to the problem of reverse multi—unit
auctions that we are going to consider later on. Nevertheless, similar results also apply to
maximization problems and are briefly discussed in Section 5.4.

We consider a utilitarian (minimization) problem defined by the output specification that is
given by feasible solutions O (and the usual utilitarian objective) and mechanisms m, =
(A, p?) and mo,: = (Opt, p°P*). We assume that Opt is an exact algorithm for the problem,
while A is an approximation algorithm with approximation ratio (1 + ¢).

17
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Notation: Let A(v) and Opt(v) denote the output computed by A and Opt, respectively,
on declaration vector v, S(A(v)) and S(Opt(v)) the sets of selected agents, ¢(A(v)) and
¢(Opt(v)) the corresponding objective function values (or cost). By Opt(v | i) we refer to an
optimal solution under the condition that agent < must be selected. Formally:

Opt(v|i) € argmin,c o+ Z v;
Jj€S(o)
Analogously, Opt(v|—i) denotes an optimal solution under the condition that agent  cannot
be selected:
Opt(v|—i) € argmin,¢ - Z v;
j€S(o)

3.1 A normalized VCG mechanism

Let us have a look at the VCG mechanism mo,; = (Opt, p°?"). In Section 2.2 VCG pay-
ments were defined for maximization problems and the most general type of agents. Re-
member, that in our current model agent 4’s type is reduced to her preferred output O;" and a
single corresponding valuation v;. The definition of VCG payments from Section 2.2 is:

PP (0) =Y u(ty, Opt(vi)) = Y o(t;, Opt(v))
i j#i
Note, that the two sums appear in inverted order compared to the original definition. This is
due to the fact that we are now considering minimization problems. The left hand side of the
equation is adapted as to represent the fact that only the v;’s are declared by the agents and the
observation, that agent i’s payment does not depend on v,. As has already been mentioned
in Section 2.2, there is a certain degree of freedom about the definition of Opt(v_;), since
we have only required Opt(v_;) to be any output produced independently from agent i’s
declaration v;. We now close this gap and define Opt(v_;) := Opt(v | —i).

Lemma 4. Let mo, = (Opt, p°P*) be VCG mechanism for a utilitarian problem and known
single-minded agents with payment scheme p©?! defined as above. Then:

2P () :{ (C)f(?pt(vhi)) — (c(Opt(v)) — vi), LfléeG S(Opt(v))

Proof: By definition, we have that:

piopt(vfi) = Z U<tj7 Opt(?} ’ _'Z)) - Zv<tj7 Opt(“))

J#i J#i
S YL T v
J€S(0pt(v| —i)),j#i JES(Opt(v)),i#i

= ¢(Optlv|=i)) = Y

JES(Opt(v)),j#i
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Assume that ¢ € S(Opt(v)). Then:

Z vj = Z vj —v; = c(Opt(v)) —v;

JES(Opt(v)),j#i Jj€S(Opt(v))

This proves the first part of the claim. On the other hand, if i ¢ S(Opt(v)):

Yo w= ) v =cOpt(v]| i)

J€S(0pt(v)),j#i JES(Opt(v]—i))

This gives the second part. O

We note that this VCG mechanism is normalized. (Agents that are not selected pay 0.)
We then have that the VCG mechanism mo,; = (Opt, p®P!) as defined above is truthful and
normalized. From Theorem 2 it follows that Opt is monotone and p©?* the associated critical
value payment scheme. The following observation is a direct consequence of Lemma 4.

Observation 2. The VCG mechanism is monotone with critical values

07" = c(Opt(v] =) = (c(Opt(v|i)) — v). (3.1)

Somehow, it is intuitively clear that any exact algorithm must be monotone. Consider dec-
larations v, such that agent 7 is not selected for the optimal solution. Now start to decrease
the cost v; declared by agent i. Obviously, the cost of the optimal solution Opt(v | i) that
is forced to select i decreases as well. At some point, this solution must become globally
optimal. From this point on, agent 7 is selected for the solution. Hence, HiOpt is the infimum
value that agent 7 must declare, such that she is a part of the globally optimal solution.

3.2 Comparing critical values

In the next step we will now fix some agent 7 and declarations v_,. We compare agent i’s
critical value 6/ in algorithm A to her optimal critical value °** and show a bound on the
distance between those two. This bound will then be used to compare the total payment
handed out by the mechanisms.

Lemma 5. Let Opt be an optimal algorithm for some utilitarian problem and let A be mono-
tone approximation algorithm for the same problem with approximation ratio (1 + ). Then
the following inequality holds for all declarations v_;:

gort 1%5 - e(Opt(v]—=i)) < O < 077 + < - c(Opt(v | i)
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Proof: We start by showing the upper bound. Assume that there are declarations v_; for
which the inequality does not hold. Then there is a declaration v;, such that

097" + - c(Opt(v|—i)) < v; < 62,
Since v; < 62, agent i must be selected by A. We conclude that

c(A(v))

Vv

c(Opt(v]1)),sincei € S(A(v))
v; + (c(Opt(v]i)) — v;)

> 097" + (c(Opt(v]i)) — v;) + e - ¢(Opt(v | —i)), by assumption
= (1+¢)-c(Opt(v|—i)), by (3.1)
> (1+¢€)-c(Opt(v)).

This contradicts A’s approximation ratio. Hence, 6 < 89" + ¢ - ¢(Opt(v | —i)).

We now show the lower bound. Once again, assume that the inequality does not hold for
declarations v_; and consider v; with

07 < v; < 007 — 1%5 e(Opt(w | —i)).

Since v; < QZ.O“, agent ¢ is selected for the optimal solution. Thus, we have:

c(Opt(v)) = c(Opt(v]i)), sincei € S(Opt(v))
= v+ (c(Opt(v]i)) — vi)
< 0% 4 (c(Opt(v] 7)) —v;) — 1%5 - e(Opt(v | —i)), by assumption

_ c(Opt(v|—1)), by (3.1)

= <(Opt(v] =) 1

1 ‘
= - clOpt(v] 1)

We note that v; > 64 and, hence:

c(A(v)) > c(Opt(v]|—i)), sincei ¢ S(A(v))
> (1+4¢€)-c¢(Opt(v)), by the inequality above

Once again, this contradicts algorithm A’s approximation ratio and it immediately follows

that 077" — == - ¢(Opt(v| —i)) < 6. This completes the proof. O

Figure 3.1 displays the central idea of the proof of Lemma 5. If agent ¢ declares a value of
exactly v; = eiOpt, then there exist at least two optimal solutions that minimize cost to society,
one that selects agent 7 and one that does not. This is our starting point. Now consider what
happens if we start to increase v;. The value of any solution that selects i behaves like a
positive linear function in v; and increases accordingly. At some point of time even the value
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c(Opt (-, v—;li))

(1+¢e) c(Opt(-,v_y))

c(Opt(v|—i)) c(Opt(-,v_;))

(1 +¢) - (c(Opt(v]i)) — v;) 1

c(Opt(v]i)) — v +

(0] .
007" — 152 - c(Opt(v|-i))  9OP 007" 4 & . c(Opt(v]—i))

Figure 3.1: Range for the critical values #;* of a monotone approximation algorithm A.

of the best solution selecting  will become larger than (1 + ¢) times the value of an optimal
solution not selecting . At this point an algorithm A with approximation ratio (1 + ) has no
choice but to present a solution that does not select 7, as well. Thus, we have found an upper
bound on agent i’s critical value in A. Just the same happens if we start to decrease v;. The
value of any solution selecting ¢ decreases linearly until it becomes smaller than (1 + &)1
times the value of any solution not selecting 4. This is the point when A must begin to select
i as well to guarantee its approximation ratio. This gives the lower bound.

3.3 Comparing total payment

Using Lemma 5, we will now derive a bound on the total payment made by mechanism
m 4. We have seen that the payments of both 1m 4 and m,, are simply the sum of the critical
values of all agents that are selected in each output. We have also shown how a single agent’s
critical values in the two mechanisms are related. Thus, the last problem we are still faced
with is the fact that the sets of selected agents must, of course, not be identical for both
mechanisms. Accordingly, the main challenge for the remainder of this section will be to
describe the relation between the payments made to agents that are selected by only one of
the mechanisms. Again, Lemma 5 will be helpful in accomplishing this task.
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Notation: For mechanism m 4’s output A(v) and aset 7" C S(A(v)), let
Z v; and p? Z o
€T i€T

denote the cost to society of the partial selection 7" and the payment made by m 4 to agents
in T', respectively.

Theorem 3. Let mo,, and m 4 be the mechanisms defined above. Fix some arbitrary decla-
ration vector v and let Opt = Opt(v) and A = A(v) denote the computed outputs. Then the
following inequalities hold:

PH(S(A)) < (L+2) - p?(S(Opt)) + - (IS(A)] +1) - (Opt) (3.2)
pH(S(4)) > ( - 1%5) P (S(0pt) = T - IS(OpD] - c(Opt)  (33)

Proof: We start with the proof of (3.2). Let A;, A, be disjoint sets with S(A) = A; U A,
A; C S(Opt) and Ay N S(Opt) = 0. A; is the maximal set of agents selected by both m 4
and mo,:. We define R := S(Opt)\ A4, and, thus, have S(Opt) = A; U R. Obviously, we
have c¢(A) = ¢(A;) + ¢(A2) and ¢(Opt) = ¢(A;) + ¢(R). Algorithm A has approximation
ratio (1 + ). Hence:
c(A1) + c(As)
c(Ar1) + ¢(R)

Solving this inequality for ¢(R) gives:

<l+e¢

c(R) > (A1) +c(A2) —(1+¢)-c(A) —e-c(R)

= ¢(A2) —e-(c(A1) +¢(R))
= ¢(Ag) —e-c(Opt)

We now compare the payments made to agents « € A; and agents i ¢ A; separately. For the
payment made by m 4 to agents in A; we observe:

P = Yot

1€ Aq

< ) 607" +e- ) o(Opt(v| i), by Lemmas

€A i€EA
! ! <c(Opt)+90pt

< (L4e)- Y 07" +c-|Ay] - c(Opt)
€A1

= (14¢)-p?(A) +e- 4] - c(Opt)

For the second part of our proof we look at the payment made by m¢,, to agents in R. First
consider some agent i € A,. Since agent i is not selected by Opt, it must clearly be the case
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that v; > #“”". We observe that Opt = Opt(v | —i) in this case. From Lemma 5 it follows
that 04 < #9"" + ¢ . ¢(Opt). We conclude:

v; > 097" > 04 — ¢ . ¢(Opt) (3.4)
Applying this, we get for the payment p?!(R):

pPP(R) > ¢(R) > ¢(Ay) — e - ¢(Opt), as noted above
= Z v; — e - ¢(Opt)
1€ Ag
> Z (02 — e - ¢(Opt)) — £ - ¢(Opt), by (3.4)
1€ Ag

= p"(As) —¢- (|42 + 1) - (Opt)
Putting together what we have so far, we obtain:
p(S(A)) = pH(A) +pH(As)

< (L+e) (077(Ar) +pP7(R)) + e - (JAu| + [Az] + 1) - (Opt)
(1+¢e) - p?(S(Opt)) + & - (IS(A)| +1) - ¢(Opt)

This completes our proof of (3.2).

The proof of (3.3) is analogous. We omit the details of this part of the proof and only point
out the main steps. As a direct consequence of Lemma 5 we note that

P00 2 (1= 50 ) o) = 1o - op)

For the second part, note, that obviously ¢(Ay) > ¢(R), since otherwise Opt would not be
optimal. For an agent : € R (which is not selected by A) we have:

19
0> 04 > 09" — . (Opt(v| —i
0 2 61 > 677 — 5 - c(Opt(v] i)
As before we can then conclude:

pH(Ay) > c(Ay) > ¢(R) = Zvi

1ER
£ .
> o7 — T4z > c(Opt(v| i)
, e
teR ik Sc(Opt)-‘rGiOpt
> (1= ) PR~ Rl c(Oph)
- 1+4+¢ 1+¢

Putting both results together completes the proof of (3.3). O
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Theorem 3 shows that any mechanism that approximates the (optimal) VCG mechanism in
terms of cost to society also approximates the payment handed out by VCG. The following
corollary uses the results from Theorem 3 to derive something similar to an approximation
ratio for these payments. We do not speak of an approximation ratio in the usual sense here,
because the approximate payments need not be strictly larger (or smaller) than the VCG
payments, but may deviate in both directions on different problem instances.

Corollary 1. Let mechanisms mo,, m4 be defined as above and let v be declaration vector
of length n. Then:

(1_ 1i€(n+2)) <

Proof: The bounds are direct consequences of (3.2) and (3.3), since it is clearly the case that
c(Opt(v)) < pPPH(S(Opt(v))). With |S(Opt)|, |S(A)| < n the claim follows. O

P (S(A@v)))
Opt

(SOp()y) = L Ten T 2)

An interesting observation is the fact that Corollary 1 makes a strong statement about a
certain class of approximation algorithms. If A is an FPTAS (fully polynomial time approxi-
mation scheme) in terms of cost to society, then A is an FPTAS in terms of payment, as well.
More formally, if we want a (1 + ¢)—approximation in terms of payment, i.e.,

P (S(A(v)))
poP(S(Opt(v)))

we use A to compute a (1 + ¢)—approximation to the optimal cost to society with ¢ being
small enough. To obtain approximation ratio (1 + §), we need that

(1+6)7' <

< (1+9),

(14e(n+2)) < (1+90)

and

(1 . lis(nm))/z (1+0)7"

>(1-e(n+2))

A simple calculation shows that choosing ¢, such that
el > (n+2)-(1+5)-07",

ensures that both requirements are met. Hence, we have that e =* = O(poly(n,§1))* and
can compute the desired (1 + §)—approximation in time O(poly(n,5~1)).

We want to give a short discussion on how (3.2) and (3.3) relate to other bounds that can
be found in literature. Talwar [15] analyzes the overpayment of the VCG mechanism on
a variety of utilitarian minimization problems. Given an instance of some minimization

By poly(z1, ..., r,) werefer to any polynomia inzy, . . ., z,, with constant degree k € N.
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problem II, let Opt’ denote a disjoint second best solution, i.e., S(Opt) N S(Opt’) = 0.
Payment is then bounded by some multiplicity r; - ¢(Opt’) of the cost of this second best
solution, where 7 is referred to as a problem’s frugality ratio. It turns out that ri; = O(n)
for any utilitarian optimization problem.

For the Set Cover Problem, assuming that each set is of size k, Talwar proves a frugality ratio
of k. Calinescu [3] analyzes the payment of truthful approximate mechanisms for the same
problem. For a mechanism that is based on a simple greedy approximation algorithm with
constant approximation ratio &, payment is bounded by

k-c(Opt') + (k—1)-c(Opt) = O(k - (c(Opt) + c(Opt"))).

From the results of Talwar we know, that there are problems such that »;; = n. Now assume
that we have an approximate mechanism with constant approximation ratio ¢ for such a
problem. Then (3.2) gives

c-(n-c(Opt"))+(c—1)-(n+1)-c(Opt) =O(n- (c(Opt) + c(Opt")))

as an upper bound on the payment. We note that (3.2) is in a sense of the same type as the
bound given by Calinescu, if we assume the underlying optimization problem to be a worst
case as far as its frugality ratio is concerned. Such an example will be presented in the next
chapter.

The lower bound (3.3) can simply be viewed as being symmetric to (3.2) and bounding
“underpayment”. Since, however, from an economical point of view it is usually of more
interest to show that a mechanism’s payment is not too large (as opposed to showing that
payment will not become too small), the quality of this bound is hard to measure due to the
lack of previous results. Nevertheless, we note that (3.3) is certainly of interest if we have an
FPTAS for the optimization problem, as we have already explained.

Finally, it shall be mentioned that the presented results also apply to the more general sce-
nario of unknown single—minded agents [9]. To see this, note, that the notion of truthfulness
as defined in Section 2.3 can be extended to capture any larger number of parameters per
agent (see, e.g., Section 4.5 or [9, 10]). There is, however, no simple and exhaustive charac-
terization of truthful mechanisms for such agents in the full generality of our model. Never-
theless, it can easily be shown that any optimal algorithm for the abstract type of problems
we consider must be monotone and, thus, critical values GiOpt exist. Given an approximate
truthful mechanism for this more general type of agents we then have to assume monotonic-
ity and the existence of critical values 62, since these do not follow from truthfulness alone

)

anymore. We note that this assumption is true for all the mechanisms we consider later on.



Chapter 4

Reverse Multi-Unit Auctions

In the previous chapter we have seen an upper bound on the overpayment of approximate
mechanisms for utilitarian problems. We will now have a closer look at approximate mech-
anisms for a fixed utilitarian optimization problem.

The optimization problem we are going to consider is referred to as reverse multi-unit auc-
tions. A single buyer needs to purchase a number of identical goods from a set of possible
suppliers (or bidders). Each bidder 7 declares the number of goods ¢; € N she can supply
and the price v; > 0 she charges for these. The buyer then selects a subset of bidders to
supply him with (at least) the required number of goods. We assume that the number of
goods owned by each bidder is known to the mechanism. Note, that bidders are then known
single—minded according to our definition.

Definition 12. A reverse multi-unit auction among n single-minded bidders is defined by

bidders’ declarations (g1, v1), . . ., (¢u, v,), @ number of items m and feasible solutions
O(q1; - qn) ={5 C {1,...,n}|2qi > m}.
€S

The output S must be chosen to minimize ¢(S) = Y, ¢ v;.

Clearly, we could consider the above problem in a purely algorithmic setting as well. If we do
so, we are dealing with a problem that can be viewed as a reverse version of the well known
Knapsack Problem, which in turn corresponds to the more popular scenario of forward multi—
unit auctions in mechanism design (see Section 5.1). We will present truthful approximate
mechanisms for reverse multi—unit auctions. As we have seen in Section 2.3, we need to find
approximation algorithms for the optimization problem that are monotone. These are then
turned into truthful mechanisms by adding the associated critical value payment scheme. In
addition to proving that the presented mechanisms are truthful, we will again consider their
payment behavior. Formally, we will show that we can construct problem instances on which
the mechanisms’ overpayment is asymptotically equal to the upper bound we have seen in the

26
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previous chapter. In a sense, this qualifies reverse multi—unit auctions as a near worst—case
example among all utilitarian optimization problems in terms of overpayment. By presenting
a truthful FPTAS for reverse multi-unit auctions, we will then be able to apply the results
from Chapter 3 to obtain an FPTAS for the approximation of VCG payments. As to further
motivate this approximation result, we will then show that even the computation of VCG
payments for reverse multi—unit auctions turns out to be NP—equivalent. The final section
of this chapter shows how some of our mechanisms can also be applied to the more general
scenario of (unknown) single—-minded bidders.

Notation: In addition to c(S) := >, g v; let q(S) := > ..q ¢ refer to the total declared
number of items for any set S of bidders.

4.1 A greedy approach

We start by considering a greedy algorithm that has a constant approximation ratio of 2.
Algorithm R A is based on the same idea as the well known 2—approximation algorithm for
the Knapsack Problem.

4.1.1 Themechanism

Algorithm 2: RAq

Input: Number of items m and bids (q1,v1), - - ., (¢n, Un).

1. Choose 7 to order bids by increasing price per item

Vr)/@r(1) < 0 < Vn(n)/ O (n)
and define G := (), Best := 0, num := 0, val := 0, best := +00.
2. Repeat Steps3and4fori=1,...,n:

3. If num + ¢4y < m, thenadd 7(¢) to G. Formally G := G U {n(7)},
num := num + gy and val := val + vy ).

4. If num + ¢ri) > m, then compare to the best solution found so far. If
val + vg(;y < best, then Best := G U {r (i)} and best := val + v(;).

Output: Subset of bidders Best.

The proof of correctness is analogous to the proof given by Kothari et al. [8] for a more
general type of bidder.
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Theorem 4. Algorithm R A has approximation ratio 2 and running time O(n-logn), where
n is the number of participating bidders.

Proof: We define a slight modification of RA. Precisely, we change Step 4 by adding an
early termination condition for the case that we come upon a bidder that cannot be added to
G but offers a price that is small enough for our purposes.

1 .
2. ..
3. ..
4. If num + g5y > m, then consider the following cases:

(@) v > val. Ifval + vy < best, then Best := G U {7 (i)}
and best := val + vy ).

(b) vz <wal. Ifval +vr) < best, then Best := G U {7 (i)}.
Return Best and stop.

It is clear that the above modification can only lead to a worse approximation ratio than be-
fore, since a smaller number of feasible solutions is taken into account. Hence, it is sufficient
to consider the modified version of RAg.

We will look at bidders whose declarations are treated in Step 4a. Let S be the solution
returned by the modified version of RA.

Case 1: Assume that in Step 4a we consider bidder 5 who is also a part of the optimal
solution Opt with value ¢(Opt), hence v; < ¢(Opt). Let G’ and val’ denote the values of G
and val at the time when j is considered. Since we store G’ U {j} in Best, the algorithm
returns a solution .S with value at most val’ + v;. Furthermore, we know that val’ < v; and
conclude

c(S) <wal' +v; <2-v; <2-¢(Opt).

Case 2: All bidders treated in Step 4a are not part of the optimal solution Opt. Assume
that we modify the algorithm’s input by eliminating all bidders that are treated in Step 4a.
Obviously, this does not change the optimal solution’s value ¢(Opt). At the same time, the
value of the solution presented by RA can only increase. This is due to the fact that the
possible solutions that were previously considered in Step 4a do not exist anymore. The
remaining considered solutions are the same as before. Hence, it is sufficient to look at the
solution RA; computes on the modified input.

Let j be the first bidder that is not treated in Step 3 and val’ and best’ denote the values of val
and best at the time when j is considered. Since bids are treated in order of increasing price
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per item it must be the case that val’ < ¢(Opt). When considering j, RA¢ will terminate by
its early termination condition because best’ = +oo and return a solution S with

c(S) =wval' +v; < 2-val" < 2-c¢(Opt).
Hence, ¢(S) < 2 - ¢(Opt) in both cases. O

It remains to be shown that RA is a monotone algorithm.

Theorem 5. Algorithm RA is monotone.

Proof: Consider bidder j with winning declaration v;. Assume that j decreases her decla-
ration to v; < v;. We need to show that v is also winning. Let Best denote the solution
returned by RAc if j declares v; and best its value. We will show that, if j declares 7, the
following two claims hold:

Claim 1 During its computation RA; finds a feasible solution S that includes j and has cost
at most best.

Claim 2 RA finds no solutions without j that it does not find with j declaring v,.

It is then clear that v, is winning, because A returns the best solution that it finds during
its computation. If RAq, however, finds a better solution than S (as defined in Claim 1), it
has to be new. But then it must contain j as well, because of Claim 2.

RA¢ processes bids in order of increasing price per item. Let us assume that bidder j’s
position in the list of bids is p; when declaring v; and p’. when declaring v’. We say that
bidder ;j is considered in step p;, p}. Clearly, it must be p; < p;, since the price per item of
bidder j’s offer decreases. Forany ¢t € {1,...,n}, let G(t), G'(t), num(t), num’(t), val(t)
and val’(t) denote the content of RA’s variables after step ¢ with bidder j declaring v; or
v’ respectively.

We have already seen that decreasing her bid will let bidder ;7 move up the list of bids to
be processed. The main question is how j becomes part of RA’s solution before and after
her declaration changes. On one hand, it might be the case that j is added to G when being
processed by the algorithm. The best solution is then completed in some later step. On
the other hand, j might not be added to G. Then the best solution is found in the step in
which j is being processed. Due to this, we differentiate between the following cases that
are depicted in Figure 4.1.

Case 1: When declaring v;, bidder j is added to G.

In this case bidder j is still added to G when declaring v. To be precise, exactly the same
bidders as before are added to GG. This is formalized in the following claim.
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Claim: We have G(p,) = G'(p;).

Proof: Since j is added to G originally, we have that ¢; < m — num(p; — 1). Declaring v}
lets j move to position p; < p;. RAg’s first p; — 1 steps are independent of ;j’s declaration,
thus

num’(p; — 1) = num(p; — 1) < num(p; — 1).

Hence, j is again added to G.

Now consider a bidder £ on position p;, € {p/,...,p; — 1}. If k is not added to &G when j
declares v;, then g, > m — num(p, — 1). On the other hand, pj, = py, + 1 and num/(px) =
num(py) + q;, because j € G'(py). Hence, ¢, > m — num/(pj, — 1) and k will again not be
added to G.

If, on the other hand, £ is added to G when j declares v;, then it left enough space for j,
formally num(py — 1) + qx + g; < m. With j declaring v’, the situation becomes:

m —num/(py) =m — (num(py — 1) + ¢;) > @i
Hence, & is again added to GG and the claim follows. [J

Originally, the best solution is found in some step ¢t > p;. (Otherwise j could not be part of
it.) Since G(p;) = G'(p;), this solution is still found when j declares v}. This proves Claim
1. It remains to be shown that RA does not find any new solutions not including j. In steps
1,...,p; — 1 the considered solutions are the same as before. In all remaining steps, j has
already been added to GG and, thus, is part of every considered solution.

Case 2: When declaring v;, bidder j is not added to G.

In this situation, we cannot be sure how j is treated after decreasing her bid. We split this
case up accordingly.

Case 2.1: When declaring v%, bidder j is not added to G.

With j declaring v;, the best solution is found in step p;. (Note that this is the only considered
solution that contains j atall.) As in Case 1 the set of bidders added to G does not change and
we have G(p;) = G'(p;). Thus, if j declares v, no new solutions are found in steps ¢ with
t <piort>p;. Instepsp;+1 <t < p;, RAg considers the solutions that were previously
considered in steps p; <t < p; — 1. The only changed solution is the one containing j.
Since 5 has moved up the list, it now appears in a solution with value

val'(p;- —1)+ v;- = val(p;- —-1)+ v;- <wal(p; — 1) + vj.

The inequality is due to val(p; — 1) < wval(p; — 1) and v} < v;. Hence, we have found the
solution required for Claim 1.

Case 2.2: When declaring v/, bidder j is added to G

Let B denote the set of bidders on positions in {p/, ..., p; — 1} that are added to G when j
declares v;. In this situation the best solution is constructed in step p; as G(p;, —1)UBU{j}.
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When declaring v}, j is added to G before bidders from B are processed. Let k be the first
bidder in B (according to the list kept by RA) that is not added to G now, B’ the set
of bidders in B that stand before k. (Note, that bidder £ must exist. Otherwise, j had
been added to G when declaring v;.) Then, in step pj,, RA finds the possible solution
G(p; — 1)U {j} U B'U {k}. Since B'U {k} C B, this solution must have cost no higher
than the previously best solution and, thus, satisfies the requirement of Claim 1. Again, the
solutions found in steps ¢ < p/; are the same as before, solutions found in steps ¢ > p
necessarily contain ;. This gives Claim 2.

We still need to consider RA’s running time. Finding the ordering 7 in Step 1 takes time
O(n - logn). After this, the main loop is repeated n times. Steps 3 and 4 of the algorithm
can obviously be performed in constant time. This finishes the proof. O

We have seen that algorithm RAs is monotone and has approximation ratio 2. As shown
in Theorem 2, we can then define the truthful approximate mechanism mqg = (RAg, p%),
where p© denotes the associated critical value payment scheme, for reverse multi-unit auc-
tions among known single—-minded bidders.

4.1.2 Payment Considerations

We will now discuss the payments made by our mechanism. According to the notation used
in Section 3.3, RA’s approximation ratio is characterized by ¢ = 1. From Corollary 1 we

conclude that
p®(RAG(g,v))
poP(Opt(q,v))
for any bids (q1,v1), ..., (¢, v,). Butis this bound tight? Let us consider the following

example of bidders’ declarations and look at the resulting payments of VCG and our approx-
imate mechanism.

< (n+3)

Example 1. Letm = n — 1, 6 > 0 and consider bids

(1,1),...,(L,1),(n—1,n—1490).

J

TV
n—1

How does the optimal (VCG) mechanism behave on this input? We note that the optimal
solution is obtained by choosing the first n — 1 identical bids from the list, resulting in total
cost n — 1. Selecting only the last bidder in the list leads to a disjoint second best solution
with cost n — 1 + 6. For any bidder £ that is among the first n» — 1 in the list we observe that

07 = c(Opt(v|=k)) — (c(Opt(v|k)) — vi)
= n—=140)—(n=-1)—-1)=144¢

describes her critical value in algorithm Opt (see Observation 2).
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For the total payment handed out by the VCG mechanism we conclude:
p?"(Opt(q,v)) = (n —1) - (1 +9)

We now turn to our approximate mechanism mg. We first note that the list of bids is already
ordered by increasing price per item. It is easy to see that RAs will return the optimal
solution on this input. The first n — 2 bidders will be added to G when they are processed
by the algorithm. Bidder n — 1, who completes the optimal solution, will then be considered
in Step 4 of RA. But what about its total payment? Again, let k£ be one of the first n — 1
bidders in the list. What happens if bidder & increases her bid to some value ¢? At some
point of time, £ moves down the list of bids, resulting in the following arrangement:

(L1, (1L1).(n—1,n—1+0),(1,0)

/

~~

n—2

In this situation RAq will add the first n — 2 bidders to its set G and then consider the
solutions obtained by adding one of the last two bidders. Obviously, adding the last bidder
will result in smaller total cost as long as ¢ < n — 1 + 6. Hence, we can write bidder £’s
critical value 65 in algorithm RA as

0F =n —1456.

Since the critical values of all n—1 selected bidders are obviously identical, the total payment
handed out by m then is

p°(RAG(q,v)) = (n—1) - (n — 1 49).
We can now compare the two payments:

Pi(RAG(g,v)  (n—1)-(n—1+9)
PP (Opt(q,v)) (n—1)-(1+9)
n—1+0

Hence, we see that our bound on the payment approximation is “almost” tight in this exam-
ple. We especially note that our example shows tightness in an asymptotic sense. We indeed
loose a factor of ©(n) compared to RAs’s approximation ratio in terms of cost to society.
The following theorem states this result.

Theorem 6. For reverse multi—unit auctions among known single—-minded bidders, it exist a
truthful approximate mechanism m = (A, p*), A having constant approximation ratio, and
bidders’ declarations (¢, v), such that

p”*(A(g,v))
pOrt(Opt(q,v))

= O(n).
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Figure 4.1: Cases from the proof of Theorem 5. Each box represents a bidder in the ordered
list of bids kept by R A, price per item increasing from left to right. Boxes that are marked
with a cross stand for bidders that are added to G when processed by the algorithm. In
each case, the first line displays the situation with bidder j declaring v,;. Encircled boxes
correspond to the returned solution Best. The second line displays the changes appearing
when v} is declared. Encircled boxes correspond to solution .S defined in Claim 1 of the
proof. Arrows between the two lines show how bids are moved when bidder j changes her
declaration.

4.2 Adding enumeration: a PTAS

In this section we will present a polynomial time approximation scheme (PTAS) for the
Reverse Multi-Unit Auction Problem. The algorithm, which was first presented for the
Knapsack Problem by Sahni [13] in 1975, is based on the well known technique of partial
enumeration. A parameter £ is introduced to control the approximation ratio. Given k£ € N,
the algorithm enumerates over all possible sets of at most & bidders. If the chosen subset
of bidders cannot supply the required number of items, additional bidders are selected ac-
cording to the greedy approach of algorithm RA. from Section 4.1. In contrast to some
quite similar techniques used in the design of approximation algorithms (e.g., considering
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some number of sufficiently large objects separately from the rest) it turns out that partial
enumeration is monotonicity preserving and, thus, suitable for truthful mechanism design.

4.2.1 Themechanism

Algorithm 3: RApras

Input: Number of items m, bids (¢, v1), ..., (¢, v,) and parameter k.

1. Consider all subsets of bidders with cardinality at most k. Formally,
let Best := (), best := +oo and repeat the following steps for all sets
SC{l,....n}[S]| <k

2. Use algorithm R A to complete the partial solution. Formally, let
q(S) = qu- and ¢(5) = Zvi.
€S €S

If mg < m, then run RAs on the input given by number of items
m — q(S) and bids {(g;,v;)|: ¢ S} and let S” := S U S, where Sg is
the solution computed by RA¢. I1f ¢(S) > m, then S := S.

3. Compare S’ to the best solution found so far. If ¢(S’) < best, then

Best := S" and best := ¢(5").

Output: Subset of bidders Best.

Theorem 7. For any given parameter k£ € N, algorithm RApr4s has approximation ratio
1+ #1 and running time O(k - n**1), where n is the number of participating bidders.

Proof: We start by proving the approximation ratio. Consider a given set of bids
(¢1,v1), .., (qn,v,) and optimal solution Opt C {1,...,n}. If |Opt| < k, then S = Opt
in Step 1 at some point of time and RApras returns an optimal solution. Hence, let
|Opt| =1 > kand Opt = X UY, where X contains the k bidders with highest valua-
tions in Opt, thus, | X | =k and v; > v, forall i € X, j € Opt\X.

At some point of time, we will have that S = X in Step 1. Since Y # (), algorithm RA
is then applied to the set of remaining bidders R = {1,...,n}\ X to complete the solution.
RAg processes all bidders from R in order of increasing price per item, trying to add them
to its set G. Let 7 € Y be the first bidder from Y that is not added to G and GG’ denote set G
at the time when j is considered.
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Claim: We have ¢(G’) < ¢(Y).

Proof: LetG'NY =Y, Y =Y, U Ysand G’ = Y; U T. It’s obviously sufficient to show
that ¢(7") < ¢(Y3).

All bidders from T have already been added to GG by the time j is considered. Since RAq
orders the bidders by increasing price per item, we have that v;/q; < v;/q; Vi € T. By
assumption, bidder j is the first bidder that is not added to G. Hence, the remaining bidders
from Y5 are processed at a later time and we conclude that v;/q¢; > v;/q; V¥ i € Y.

The number of items to be acquired by RA is m — mg. We note that
Z% <m—mS—ZqZ—and Z%‘ Zm_ms_z%-
€T 1€Y1 1€Y2 €Y7

The first inequality obviously holds for 7" at any point of time, the second inequality is due
to the fact that Opt must be a feasible solution. We conclude that

oT) = g < 2>
i j

i€eT ieT
V; (5
< U asYal
9 i€Ys i€Ys %
= (Ya).

This proves the claim. [J

RA considers G’ U {j} as a possible solution. Thus, it returns a solution with cost at
most ¢(G”) + v;. The resulting solution S’ found by RAprag then has total cost of at most
c(X) + ¢(G") + v;. Since X contains the £ bidders with highest valuations from Opt and
J € Opt\ X, it must be the case that v; < ¢(Opt)/(k + 1). It follows that
(X)+e(G)+v; < oX)+eY)+w;
< ¢(Opt) 4+ c¢(Opt)/(k+ 1)

1
= 1+—-- t
< T 1) <(Opt)
is an upper bound on the cost of the solution computed by RA pr45. This gives the approxi-
mation ratio.
Now consider RAp745°S running time. The main loop is repeated for

k

k
> (1) <o < bt
i=1

=1

sets of size at most k. Each run of RA can be performed in linear time, if bids are ordered
in advance. Thus, the running time is bounded by O(k - n**1). O
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Figure 4.2: Cost to society of a monotone bitonic algorithm.

As in the previous section it now remains to be shown that RApras IS monotone. We
have seen, however, that proving monotonicity has been a somewhat lengthy and technical
task even for the much simpler approximation algorithm RAs. While there has been no
way to avoid going through a direct proof in the former section, we can now make use of
RAprag’s characteristic structure to obtain a simpler proof of monotonicity. Mu’alem and
Nisan [10] have developed a toolkit for the construction of truthful approximate mechanisms
for forward multi—-unit auctions among known single—minded bidders. Their results, which
can be applied to reverse auctions as well, include a nice way of concluding RApras’s
monotonicity from its structure and observations we have already made. We start by defining
a special class of monotone algorithms, called bitonic.

Definition 13. ([10]) Let A be a monotone approximation algorithm for reverse multi—unit
auctions. We say that A is bitonic if for every bidder j and declarations v_;, one of the
following conditions holds:

1. The total cost to society c4(v;, v_;) of the solution computed by A is a non-decreasing
function of v; for v; < 62 and a non-increasing function of v; for v; > 6:'.

2. The total cost to society c4(v;, v_;) of the solution computed by A is a non—decreasing
function of v; for v; < 6 and a non-increasing function of v; for v; > 6:'.

The two (almost identical) conditions in the above definition are required, because from the
definition of critical values we do not know whether 0;‘ is the largest value at which j is
selected or the smallest value at which this is not the case. As a consequence, it is not clear
in which way the intervals that c 4 is defined on should be chosen.

The key concept of the toolkit we are going to use is given by so—called operators. Operators
are used to combine simple monotone approximation algorithms into more complex ones.
We will now present the most natural of these operators and discuss how it is related to
bitonicity. Given two algorithms A; and A,, we define the M I N—operator as follows.
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Why are we interested in bitonic algorithms? Operators that are to be used in the construc-
tion of truthful mechanisms must ensure that monotonicity is preserved, since we combine
monotone algorithms and expect that the result is monotone again. For the M I N—operator
this is not always the case for general monotone algorithms. Theorem 8 shows that bitonicity
is exactly the technical qualifier that is needed to overcome this difficulty.

Operator MIN (A, As)

Input: Number of items m and bids (q1,v1), - - ., (¢n, Un).
1. Run algorithm A;. Let the returned solution be S;.
2. Run algorithm A,. Let the returned solution be S;.

3. If¢(S1) < ¢(S2) then S := Sy, else S := 5.

Output: Subset of bidders S.

Theorem 8. ([10]) Let A; and A, be monotone bitonic algorithms for reverse multi—unit
auctions. Then M IN(A;, Az) is monotone and bitonic.

By induction, it is clear that the M I N—-operator can be used to combine any finite number
of algorithms. It is, however, important that these algorithms are given in some fixed order,
since this ensures that Step 3 in the definition above can be viewed as some deterministic tie
breaking rule. For a finite ordered set S of algorithms, let A/ N(S) denote the application
of the M I N—operator to all algorithms in S in the given order.

Algorithm 4: RAg

Input: Number of items m and bids (q1,v1), - - ., (¢n, Un).

1. Select all bidders from S. Formally, define R := {1,...,n}\S and
Mg =M=, c
2. Use RAq to complete the solution. If mpr > 0, then run RAs with

number of items mp and bids R, let S; denote the returned solution
and define S := S U S¢. Else define S" := S.

Output: Subset of bidders .S’.

We will now use the presented results for the proof of RApras’S monotonicity. Fix some
S C{1,...,n} and consider the simple algorithm RAg defined above.
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Lemma6. Forany S C {1,...,n} algorithm RAg is monotone and bitonic.

Proof: We show monotonicity first. Consider bidder j with winning declaration v;. If j € S,
any declaration is winning and RAg is monotone with critical value 03-9 = +oc for bidder j.

Now assume that j ¢ S. Since v; is nevertheless winning, it must be the case that mz > 0
and j is selected by RAq. From Theorem 5 we already know that RA is monotone. This
completes the first part of the proof.

What remains to be shown is bitonicity. Let cg(v;,v_;) denote the cost to society of the
solution computed by RAg and consider the two cases described above. If j € S, then the
returned solution does not depend on v;. Formally, 9]5 = 400 and

CS(Uja U—j) = (C(RAS(CL U)) - Uj) +Uj

N S

constant

is an increasing linear function of v; on [0, co).

If j ¢ S we must look at algorithm RA. In the proof of Theorem 5 we have already shown
that cg(v;,v_;) is a non—decreasing function of v; for v; < #5. More precisely, Claim 1
stated that decreasing a winning declaration v; leads to non-increasing cost to society.

We now only have to take care of the second (and much easier) part of the proof. Assume
that v; > 6% is loosing. We need to show that increasing the declaration to v} > v; leads to
non-increasing cost to society. If bidder j declares v; and R A, finds the best solution before
J is processed (in the ordered list of bidders), then increasing v, cannot lead to increasing cost
to society, because the part of the list up to bidder j’s original position remains unchanged
and, thus, the previously best solution will still be found.

Hence, we can concentrate on the case that, if j declares v;, the best solution is found after ;
has been processed. Since j is not selected, this implies that ; is not added to . (Otherwise
she were a part of any further solution.) Just as in Case 2.1 in the proof of Theorem 5,
we note that j is still not added to G when declaring v’. It follows that the set G remains
unchanged at all times and, thus, the previously best solution is still found by RAs. For an
illustration see Figure 4.3.

This completes the proof of bitonicity. O

Putting together these results we can now show that RApras IS monotone. Obviously,
RApras can be viewed as an application of the M I N-operator to a set of algorithms of
the same type as RAg.

Theorem 9. Algorithm RApr4s IS monotone and bitonic.

Proof: For any fixed £ € N let
S =1{SIS C {1,....n}.|S| < k}
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Figure 4.3: Considered case in the proof of bitonicity in Lemma 6. Notation as in Figure 4.1.

be the ordered set of subsets of {1, ..., n} with cardinality at most £. The ordering can be
chosen arbitrarily, it only needs to be fixed for each k, such that a deterministic tie breaking
rule is defined for the M I N—operator’s application. It is then clear that

RAPTAS = MIN({A5|S € Sk})

The claim then follows directly from Lemma 6 and Theorem 8. O

It is clear that we can obtain a truthful approximate mechanism mpras = (RAprag, p©'74%)
by adding the associated critical value payment scheme to RA p7 5.

4.2.2 Payment Considerations

Once again we want to have a closer look at the payments handed out by our mechanism.
From Theorem 3 we know that

1
pPTAS(RAPTAS(qav)) < (1 -+ /{7——1-1) ,pOpt(Opt((LU))

1
tioy (IRAPras(g,v)| +1) - (Opt(g, v))
1
< (14 iy ORAmmas(e. 0l +2)) 527 (Optla, )
for any bids (q1,v1), ..., (gn,v,). We will show that we can again find problem instances,

such that the payment generated by RA pr 45 almost equals this bound.

Example 2. For an arbitrary number of items m with (k + 1) | m consider bids

A T k1) o\ ks k1 )\ k21 k1

(. J

~
k+1

for some ¢ > 0.
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Let us first consider the (optimal) VCG mechanism. We note that there are two disjoint
optimal solutions with cost m. We can either select only the first bidder in the list or her
k 4+ 1 identical successors. In both cases it is easy to see that a total payment of m will result.

But what about our approximate mechanism? Since k£ > 1, RApras Will at some point of
time choose the first bidder in the list as the only element of its set S. It follows that RA pras
returns the first of the two optimal solutions as its output. The mechanism’s total payment is
then simply the critical value 67745 of the first bidder in the list (which we will refer to as
bidder 1).

Before we determine the actual payment, we will have another look at the above bound. Due
to |RApras(q,v)| = 1 and p°?!(Opt(q,v)) = m, we can write that

3
PTAS(RA <(14+——] -m.
P (RApras(q,v)) < + 1 m

Now assume that bidder 1 starts to increase her bid to some (m, ¢), ¢ > m. RAprag iterates
over all sets of size at most k£ and uses RAs in each iteration to complete the solution.
Bidder 1 will drop from the returned solution, when for some set S, 1 ¢ S, a solution with
cost smaller than c is constructed by RA.

We refer to the last bidder in the above list of bids as bidder (k£ + 3). This bidder plays an
important role in determining the total payment.

Observation 3. Consider any iteration of algorithm RApr s for some set S. If 1 ¢ S, it
follows that (k + 3) € S or (k + 3) is selected by RA¢ when completing the solution.

To see this assume that 1 ¢ .S. From |S| < kit followsthat ..o ¢; < (1— RLH) -m. Bidder
(k+3) offers the lowest price per item of all participating bidders and, thus, is the first bidder
to be processed by RA¢. Since space of ;7 is still to be filled, bidder (£ + 3) is added to G
and necessarily becomes a part of the solution.

The only feasible solutions including bidder (k + 3) are obtained by adding either bidder 1
or the subsequent £ + 1 identical bidders. Each of these solutions has cost (1 + ﬁﬂ) -m—1.
From the argumentation above we conclude that

1
j% (RApras(q,v)) =10 + re1) ™

This shows that the given bids are indeed a near worst case example in terms of overpayment.
The following theorem formulates this result.

Theorem 10. For reverse multi—unit auctions among known single—minded bidders and for
any e > 0, it exist a truthful approximate mechanismm 4 = (A, p#), A having approximation
ratio (1 + ¢), and bidders’ declarations (¢, v), such that |S(A(q,v))| = 1 and

p*(A(q,v)) 1

pOP(Opt(q,v)) e~

where m is the total number of items to be acquired.
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4.3 More enumeration: an FPTAS

Finally, we will now present a fully polynomial time approximation scheme (FPTAS) for
the Reverse Multi-Unit Auction Problem. We start by transferring the well known FPTAS
for the Knapsack Problem to this scenario. For the Knapsack Problem an FPTAS can be
constructed by scaling the profits presented in the input in an appropriate way and then using
dynamic programming to find an exact solution on the modified instance. A few changes are
sufficient to obtain a corresponding approximation scheme for reverse auctions.

Algorithm R A, is an exact algorithm for reverse auctions that uses the technique of dy-
namic programming and has pseudo—polynomial running time.

Algorithm 5: RA,,,
Input: Number of items m and bids (q1,v1), ..., (Gn, Up)-
1. Forie {l,...,n},V :=max;v;andv € {0,...,nV} let
A(i,v) == max{q(9)|S C{1,...,i} A ¢(S)=v}

denote the largest number of items that has a declared cost of exactly v,
if only the first ¢ bidders are considered. Define A(i,v) = 0 if v cannot
be reached. Especially, let A(1,v1) = ¢1, A(1,v) = 0 for all v # v,
and A(i,v) = 0 forall v < 0.

2. Fori=2,...,nandv =0,...,nV compute

A(,v) = max{A( — 1,v), A(i — 1,v — v;) + ¢ }.

3. Let S be the set of bidders that results in min{v|A(n,v) > m}.

Output: Subset of bidders S.

Correctness of RAg,, can easily be shown by induction. We are interested in the subset of
bidders with the smallest sum of declarations that supplies us with at least m items. This
is just the set S as described in the algorithm’s last step. Note, that this set can be easily
found if some additional information is stored in the table used for dynamic programming.
Correctness of the equality used in Step 2 is intuitively clear. Considering bidder 4, the
total value v can be reached either selecting or not selecting bidder 4, there are obviously no
further choices. To see that running time is pseudo—polynomial, note, that the algorithm is
calculating the entries of a (n x nV')-matrix and that each entry can be found in constant
time. A formal proof for the following lemma is omitted.
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Lemma 7. Algorithm RA,,, returns an exact solution to the Reverse Multi-Unit Auction
Problem in time O(n?V'), where V' denotes the value of the largest declaration.

This dynamic programming approach can now be used in the construction of the desired
FPTAS. As was already mentioned, the key idea lies in scaling the given declarations be-
fore applying RA,,,. Obviously, if declarations are scaled to a range that is polynomially
bounded in n and ¢!, applying RA,,, will result in running time poly(n,s~'). Hence, we
only need to find a range to scale to that will guarantee the desired approximation ratio.

In contrast to the Knapsack Problem, scaling becomes a little bit more difficult for reverse
auctions. As will be motivated in the proof of correctness, we first need to find a “good”
lower bound on the optimal solution’s cost ¢(Opt) that we can then use in the scaling process.
We can use the greedy algorithm R A from Section 4.1 to find this bound. If RA returns a
solution with cost ¢(A¢), then we simply take ¢* = ¢(A¢)/2 as a lower bound on ¢(Opt). It
immediately follows by Theorem 4 that

% - c(Opt) < ¢ < ¢(Opt).

Depending on ¢* it might then be necessary to remove extremely large declarations from the
input to ensure polynomial running time. The remaining computation can be done in analogy
to the Knapsack case.

Algorithm 6: RArpras

Input: Number of items m, bids (¢1,v1), ..., (gn, v,) @and e > 0.

1. Use algorithm R A to find a lower bound ¢* on the optimal solution’s
cost ¢(Opt), such that ¢(Opt)/2 < ¢* < ¢(Opt). Then remove all
declarations larger than 2 - ¢* from the input. For the ease of notation,
assume that no such declarations exist.

2. Let
n
Q=
g-c*
and scale the remaining declarations to range {1, ..., [2]}:
vii=la-v],i=1,...,n

3. Runalgorithm RA,,, on declarations

<Q17 Ui)v SRR) (an U%)

and let .S be the returned subset of bidders.

Output: Subset of bidders S.
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The following proof of correctness is done analogously to the proof given for the Knapsack
case, e.g., in [16]. It is included here to show that the lower bound computed in Step 1 of the
algorithm is indeed what has to be used for the scaling process.

Theorem 11. Forany e > 0, algorithm RA - p7 45 has approximation ratio 1+¢ and running
time O(n3¢~1), where n is the number of participating bidders.

Proof: We first argue about running time. After removing large declarations and scaling
the remaining ones, the largest declaration is bounded above by [2?”1. From Lemma 7 we
conclude that RA,,,’s running time on the scaled declarations is bounded by O(n?c~1).
Calling RA¢ in Step 1 results in running time O(n-logn), Step 2 can obviously be performed
in linear time. The claim follows.

We now show the approximation ratio. Let S denote the solution returned by RA ppras, Opt
an optimal solution. We first note that Opt is not changed in step 1. If bidder 7 is removed
from the input, then

v; >2-c" > ¢(Opt)

and 7 is obviously not part of Opt. Hence, w.l.0.g., we assume that no bidder is removed. We
now scale declarations back to their original range. Formally:

" Vi .
vy =—,1=1,...,n
«

Due to the fact that declarations were rounded in the algorithm’s scaling step, declarations

are not scaled back to their exact former values. We note that, forall i € {1,...,n},
R L] B T ok S
i 1 o [ o [ o

By ¢(S) and ¢’(.S) we denote the cost of solution .S when assuming declarations v; or v/,
respectively. We observe that

(Opt) — c(Opt) < |Opt]-
= - <

We know that RA,,,, computes a solution S that is optimal with respect to declarations v;. It
follows that S is also optimal with respect to declarations v;. We conclude:

e(S) < "(S) < (Opt) < (1 +¢) - e(Opt)
The last inequality is due to the above observation. This completes the proof. O
This finishes the first part of this section. As promised, we have adopted the well known

Knapsack FPTAS for our reverse auction scenario. It turns out, however, that this ap-
proach cannot directly be used for the design of a truthful approximate mechanism, because
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RAprpras IS not a monotone algorithm. We want to have a closer look at why this is the
case. Clearly, RA,,, is monotone, since it computes exact solutions. Hence, monotonicity
is lost because of our scaling procedure.

Consider some bidder ¢ and assume that 7 is selected by RAg and by RAppras. Then
decreasing declaration v; will obviously have an influence on the solution computed by RA«
and, thus, will cause ¢(A¢) and ¢* to decrease. What can we then say about the scaled
declarations v’? We know that all declarations will slightly increase, because we are dividing
by a smaller value c*. At the same time, we cannot control how much each v; will increase,
because declarations are rounded after scaling. Now assume that RAppras Selects i as
part of a solution, where decreasing v; causes every scaled and rounded declaration v; of
the other selected agents to increase by 1. If there exists a second best disjoint solution,
where rounded declarations do not increase, then clearly this solution might now become
optimal. This would cause 7 not to be selected anymore and, thus, contradict RArpras’s
monotonicity.

: . dyn
Algorithm 7: RA;”

Input: Number of items m, bids (¢1,v1), ..., (gs, v,) and e > 0.

1. Set v} := min{v;, 282} forall i € {1,...,n}.

2. Let
n
(07—
k g2k
and scale the modified declarations:
vl = Jap vl i=1,...,n

3. Runalgorithm RA,,, on declarations

(Q17 Ui/)v SR (qnv U;:)

and let .S be the returned subset of bidders.

Output: Subset of bidders S.

We note that the main problem with monotonicity is caused by the fact that declarations have
a direct influence on the algorithm’s scaling procedure. If we could avoid this, we might be
able to reestablish monotonicity. On the other hand, it is clear that scaling independently
of actual declarations will not allow us to generally guarantee a good approximation ratio.
In the next step, we will consider a set of algorithms RAZy” as defined above which scale
declarations independently of their actual values, thereby ensuring monotonicity. They also
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guarantee a good approximation ratio if we assume that the optimal solution’s cost falls into
a fixed range depending on k. Once more applying the toolkit presented by Mu’alem and
Nisan [10], these algorithms can then be used as building blocks for a monotone FPTAS.

Lemma 8. Let 0 < ¢ < 1 and ¢(Opt(q,v)) denote the value of an optimal solution for a
given set of declarations (¢, v). Algorithm RAgy”’s running time is bounded by O(n3c™1).
If 2¢ < ¢(Opt(q,v)) < 2¥*1, then RA™ computes a (1 + ¢)—approximation to ¢(Opt) on
declarations (g, v).

Proof: After Step 1 no declaration with value higher than 2%+2 exists. Hence, in Step 2 all
declarations are scaled to range {1,..., [%2]}. The claimed running time is then a direct
consequence of Lemma 7.

The approximation ratio can be shown as for algorithm RArpras in the proof of Theo-
rem 11. Let again S denote the solution returned by RAgy”, Opt an optimal solution. As
before, Step 1 does not change the value of Opt, since, if declaration v; is changed, we have
that

v; > 2572 > 2. ¢(Opt)

and, thus, 7 is obviously not part of Opt. We note that, as a consequence of ¢ < 1, also
RAZy” will not select any bidder ¢ whose declaration is changed in Step 1. Hence, we have
v; = v; for every bidder i in Opt and S. Now the proof of Theorem 11 can be applied. We
again define

"
V.
v/'=-"i=1,...,n
73
and note that
/

ay - U Qy + Uy o v+ 1 1
Qy, Qy, Qy Qg

as mentioned above for any bidder i in Opt. Using the same notation as before, it follows
that
" 1 n
"(Opt) — c(Opt) < [Opt]- — < —
Qy 677
= ¢-2"<e-c(Opt).
The solution computed by RA,,, is optimal with respect to declarations v and v}". We

conclude
c(S) = (8) < "(S) < "(Opt) < (1+¢)-¢(Opt),

as claimed. 0

It remains to be shown that RA%" is monotone. In addition to showing this, we will once
more also prove bitonicity, which will again be required for the application of a generalized
version of the M I N—operator presented in the previous section.
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cost to society \ i

|
|
I

O(v_;) = o0 0<0(v_y) < [4?n'| O(v_i) =0

Figure 4.4: Cost to society of algorithm RAZy" as a function of declaration v;.

Lemma 9. For any fixed k& € Ny, algorithm RAzy” IS monotone and bitonic.

Proof: Given a declaration v;, let f(v;) denote the value of v/ after Step 1 of the algorithm,
g(f(v;)) the value of v/ after Step 2. We observe that both f(-) and ¢(-) are non—-decreasing
functions on R. For any declarations v;, v; we note:

visv = f(v) < f(w)

fi) < flv) = g(f(vi) < g(f(v))

It was already mentioned that obviously RAg4,, is monotone, since it computes exact so-
lutions. Let 6(v_;) denote bidder ¢’s critical value with respect to her scaled declaration
g(f(v;)). Thus, for a fixed set of declarations v_;, bidder 7 is selected whenever declaring v;,
such that g(f(vi)) < 6(v—,).

Now assume that v; is a winning declaration for bidder 7 and let v, < v;. We immediately
conclude that

g(f (7)) < g(f (v3)) < 0(v—;)

and, thus, v} is a winning declaration. This completes the proof of monotonicity.

Bitonicity can also be derived from the monotonicity of f(-) and g(-) and the fact, that R A,
finds exact solutions. Let again v; be winning and v, < v;. Now look at the resulting cost to
society. For bidder i’s scaled declaration we have that g(f(v})) < g(f(v;)), while the scaled
declarations of all other bidders remain unchanged. As a consequence, RA,,, will compute
the same solution as before and cost to society can only decrease.

If, on the other hand, v; is a loosing declaration, then increasing v; will also increase i’s
scaled declaration and RAg,, will still compute the same solution not containing ¢. As a
consequence the cost to society remains constant. O
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Since k is a fixed parameter for every algorithm RAiy”, it is clear that the gap between
2%+2 and bidders’ actual declarations can become arbitrarily large. Since nevertheless some
solution is computed, it can obviously happen that a certain bidder is selected although her
declaration is larger than 2*+2. Such a bidder is then selected for all larger declarations, as
well, because the algorithm treats all declarations larger than 2*+2 as having the same value.
Just in the same way, it might be the case that some bidder is never selected, no matter how
small her declaration becomes. The possible cases are depicted in Figure 4.4. We note that,
of course, in every case the requirement of bitonicity is fulfilled.

We will now proceed with the construction of our monotone FPTAS. We will again make
use of the M I N—operator defined in the previous section to combine algorithms RAZy” into
the desired algorithm. We define the ordered set

A= {RAY"|0 < k < o0},

where a natural ordering is obviously given by index k. By M 1N (.A) we refer to the appli-
cation of the M [ N—operator to A, i.e.,

MIN(A)(q,v,¢) = argmin{c(RAP" (g, v,2))|[RA"™ € A},

where RAgy”(q, v, £) denotes the solution computed by RAzy” on declarations (g, v) for any
parameter 0 < ¢ < 1 and ¢(RA*"(q,v,¢)) the corresponding cost. We assume that ties
are broken based on the ordering described above, i.e., if algorithms RA;“’” and RA%™ with
j < k produce solutions with identical cost, then RA?‘”” will be given preference. Note,
that M 1N (A) is well-defined, since there is only a finite number of feasible solutions for
any given set of declarations. For the moment, we will ignore the question of MIN(A)’s
running time. Obviously, running an infinite number of algorithms to find a minimum will
result in unacceptable running time. It is, however, clear that we in fact do not have to run
every RAY", since the number of different feasible solutions is limited. We will return to
this problem later. We start by showing that M 1N (.A) defines a monotone algorithm and
ensures the desired approximation ratio.

Lemma 10. For any 0 < ¢ < 1, algorithm M IN(.A) is monotone and has approximation
ratio 1 + e.

Proof: We start by showing monotonicity. Assume that M IN(A) is not monotone. Then
there exist a bidder : and declarations v; < v?, such that v} is loosing and v? winning
declaration. Let RA%" (v;) = RA%"(q, (v;,v_;), ) denote the solution returned by RA%"
as a function of v;.

With bidder i declaring v} let RA;ZW be the algorithm that computes the solution with mini-
mum cost c(RAS" (v})), formally

c(RAP™(v})) < c(RAP™(v})) ¥ 0 <k < oo.
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From the bitonicity of RA" it follows that
c(RAJ™ (v7)) < c(RAJ™(v)).

With bidder i declaring v? let RAfy” be the algorithm resulting in a solution with minimal
cost, thus,
c(RAM™ (1)) < c(RAP™(v2)) ¥ 0 < k < o0.

From the bitonicity of RA" we conclude that
c(RAP™ (v])) < c(RAP™ (v7)).
Putting these together closes the cycle and shows that

C(RAD™ () = (RAM™ (62)) = c(RA™ (11)) = c(RAP™(17)),

7 7 7 7

If j =, then RAj.ly" cannot be a monotone algorithm. Hence, we can assume that j # . We

now look at our tie breaking rule. From the fact that RA;”/" is given preference when bidder
i declares v}, it follows that ; < [. Analogously, the situation when declaring v? implies
[ < j, acontradiction. We conclude that M TN (.A) is monotone.

The approximation ratio remains to be shown. Consider declarations (¢, v) and let ¢(Opt)
be the cost of an optimal solution for these declarations. Define k*, such that

2k < ¢(Opt) < 28"+,

The claimed approximation ratio is a direct consequence of RAZ%{" € Aand Lemma8. [

Algorithm 8: RA} pr4s

Input: Number of items m, bids (¢, v1), ..., (¢, v,) and e > 0.

1. Let V := max; v;, Cnin := +00 and S := (). Then repeat the next step
forall k =0,..., [log (2V)]:

2. Run RAzy” on the given declarations and let Sy, be the returned solution.
If ¢(Sk) < Cmin, then set S := Sy and ¢, := ¢(Sk).

Output: Subset of bidders S.

The last step in the construction of our FPTAS is now to find an implementation of M/ 1N (A)
that guarantees polynomial running time. This implementation will be based on the follow-
ing idea. Each algorithm RAZy” starts by scaling the declarations. This is basically done
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by multiplying with some constant and then dividing by 2*. As k gets larger, the range that
declarations are scaled to clearly becomes smaller and finally will be {1}. Any further in-
crease of £ will not have an effect on the algorithms outcome, since R A, is always run on
identical input. This idea immediately leads to algorithm RA}. ;4 as defined above.

Theorem 12. RA}.pr 4 1S @ monotone algorithm for reverse multi-unit auctions among
known single minded bidders. For any 0 < € < 1, RA}.pr 45 has approximation ratio 1 + ¢
and running time O(n3s =1 log(ne~'V)), where n is the number of participating bidders and
V' denotes the value of the largest declaration.

Proof: Assume declarations (v, ¢) and let V' = max; v;. Now define &* = [log (2V/)], fix
some k > k* and consider algorithm RA%". In Step 2 of RA?" declarations are scaled. For
any declaration v; we observe that
vf <V'=[ -V ]<1.
N——
<apxV<V-1V

It follows that RA"™ = RAY" for every k > k* and, hence,

We can then conclude monotonicity and the claimed approximation ratio directly from
Lemma 10.

The running time is a straightforward observation. The main loop is repeated [log (2V')]
times. Each call to some RAZy” needs time O(n3¢~1!) as shown in Lemma 8. O]

We see that RA} 14 IS indeed a monotone FPTAS for the Reverse Auction Problem. We
again point out the fact that with this algorithm, we have also found an FPTAS for the ap-
proximation of VCG payments for reverse auctions as shown in Corollary 1 in Section 3.3.
We note that this implies a sort of trade—off as the choice of an optimization goal is con-
cerned. If we want a truthful mechanism that gives a good approximation to the optimal cost
to society, then this mechanism must also approximate VCG payment. If we are, however,
interested in a truthful mechanism that improves on VCG payments, we cannot expect such
a mechanism to approximate optimal cost to society really well.

4.4 Hardness of payment computation

We have seen that the FPTAS developed in the previous section can also be used as an
FPTAS for the approximation of VCG payments in reverse auctions. As to further motivate
our interest in such an approximation, we will now show that, apart from the design of
truthful mechanisms with payment close to VCG, even the computation of VCG payments
is already a hard problem.
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Definition 14. Consider languages L; and L, over alphabet >. We say that L, is polynomial
time reducible to L., denoted as L, <, Lo, if there exists a transformation f that can be
computed by a deterministic Turing machine in polynomial time, such that, for all w € >*,

w € Ly < f(w) € L.

Now consider a search problem IT and a language L. We say that IT is Turing reducible
to L, denoted as IT <7 L, if there exists a deterministic Turing machine that solves II in
polynomial time and uses an oracle for L. Analogously we define L < II. If L <p II
for some NP—complete language L, then II is said to be NP-hard. If II <; L for some
L € NP, then IT is NP—easy. Search problems that are NP-hard and NP—easy are referred
to as NP—equivalent.

Due to the fact that we are not primarily concerned with questions from complexity theory,
the above definition’s way of treating search problems is somewhat sloppy. Formally, a
Turing machine does not “solve” a search problem II. Rather, it computes a function that
realizes some relation Ry C (X*)2, which in turn corresponds to IT itself. We omit the
precise definitions needed in this context.

Remember, that the Reverse Multi-Unit Auction Problem is defined by a set of bidders’

declarations (g, v1), . - ., (¢n, v,) @and a number m of items to be acquired. Then
Lra = {((q1,01), -, (@uova)m k) |3S C {1, on} 0> g 2m Ay v < k)
ies sh

defines the language that describes the corresponding decision problem. Given a set of decla-
rations (qi,v1), - - ., (qn, vs), We need to decide whether there is a subset of bidders that offer
at least m items at a total price of at most . We note that this definition looks very similar to
the decision variant Lk p of the Knapsack Problem. It is easy to see that Lxp <, Lra. For
the Knapsack Problem, we need to decide if there is a subset of goods with sufficient profit
that will fit into the knapsack. Obviously, we can just as well ask whether there is a subset
of items with sufficient size and small enough profit to leave out of the knapsack. Formally,
we consider the polynomial time computable transformation f with

f(qr,v1)s -y (Gnyvn),my k) == ((q1,v1), - - -, (qn,vn),Zqi — m,Zvi — k)

for instances ((q1,v1), - - -, (qn, vn), m, k) Of the Knapsack Problem. This immediately gives
the following lemma.

Lemma 11. Lz, is NP—-complete.

By VCG(RA) we denote the problem of computing the total payment handed out by the
normalized VCG mechanism on an instance of the Reverse Multi-Unit Auction Problem
RA. If we can show that this problem is hard, this certainly implies that this is also true for
the computation of an agent’s individual payment.
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Theorem 13. VCG(RA) is NP—equivalent.

Proof: We start by showing that Lz <r VCG(RA). Consider an instance

I = ((Chavl)u ) (QMUH)vm? k)

of Lra, letv,,;, = min; v; and consider a modified instance

‘[/ = ((qlavl)a teey (qnavn)a (Qn-l—lavn-i—l)am, k))

where ¢,,.1 = mand v, 11 = Uy, —e for some small e > 0. Run an algorithm for VCG(RA)
on this input. We know that in our modified instance the only optimal solution to the Reverse
Multi-Unit Auction Problem is selecting only the newly added bidder n + 1. It then follows
by Lemma 4 and Observation 2 that the total VCG payment on this instance corresponds to
the critical value of bidder n» + 1 and can be written as

PO Opt(I) = 6.1
= c(Opt(I"| ~(n+1))) = (c(OptI"| (n+1))) = vn41)

J/

-
=0

= c(Opt(I'|=(n+1))) = c(Opt(I)).

This is exactly the value of an optimal solution to the Reverse Multi-Unit Auction Problem
on the original instance /. By comparing it to & it can immediately be decided whether
I € Lry. Itis clear that all modifications can be done in polynomial time. It follows that
VCG(RA) is NP-hard.

We proceed by showing that VCG(RA) <r Lra. We note that, if we have an algorithm A
that decides L4 in polynomial time, then we can find the cost of an optimal solution on our
instance in polynomial time, as well. Given declarations (¢, v1), ..., (gn,v,) and a num-
ber of items m, we know that the optimal solution’s cost falls into the interval [0, > v;].
Hence, applying binary search, log (>""_, v;) calls to algorithm A are sufficient to find the
desired value. We can use this idea to compute the VCG payment for each bidder 7 explic-
itly by removing i’s bid from the list and then computing the value of two optimal solutions
supplying m or m — g; items, respectively. We conclude that VC'G(RA) is NP—easy. O

This finishes our discussion of the complexity of computing VCG payments in reverse multi—
unit auctions. We especially note that the computation turns out to be NP-hard. It then
follows that the FPTAS as presented in Section 4.3 is the best possible type of polynomial
time approximation algorithm for the problem.

4.5 Unknown Single-Minded Bidders

The last section of this chapter is devoted to the slightly more general model of unknown
single-minded bidders, as opposed to the case of known single-minded bidders that we
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considered so far. Remember, that in our reverse multi—unit auction scenario, bidder 7 is
considered known if her offered number of items ¢; is known to the mechanism. In this
case, the only private information of any bidder is her true cost of supplying these items. In
Section 2.3 truthful mechanisms for known single—-minded bidders were characterized.

We now cite a corresponding characterization of truthful mechanisms for reverse multi—unit
auctions among unknown single-minded bidders which is due to Lehmann et al. [9] and
Mu’alem and Nisan [10]. Essentially, we need to adapt the definition of monotonicity to
meet the requirements of this more general setting.

Definition 15. Let A be an algorithm for reverse multi-unit auctions among single—-minded
bidders. A is said to be monotone, if for any bidder i and fixed declarations (¢_;, v_;) of the
remaining bidders, whenever (g;, v;) is a winning declaration for 7, so is any bid (¢}, v;) with
q; > q; and v} < v;.

Given this very natural generalization of the notion of monotonicity, the following theorem
states the desired characterization of truthfulness.

Theorem 14. A normalized mechanism m = (A, p) for reverse multi-unit auctions among
single-minded bidders is truthful if and only if A is monotone and p is the associated critical
value payment scheme.

We will now show that the first two mechanisms presented in this chapter are also truthful
when applied to the case of single—-minded bidders. As we have just seen, it is enough to show
that the presented approximation algorithms RAq (Section 4.1) and RApras (Section 4.2)
are monotone as defined above. For both algorithms we have already seen that they are
monotone with respect to the declared prices, i.e., if (¢;,v;) is a winning declaration for
bidder i, so is (¢;, v;) for any v, < v;. It is then sufficient now to prove monotonicity with
respect to the offered numbers of items, i.e., if (¢;, v;) is a winning declaration for bidder 4,
so is (q},v;) for any ¢, > ¢;. Clearly, monotonicity as in the above definition then follows.

We start by considering RAq. As before, the results obtained for RA. will then be useful
for our argumentation about RApras. The proof of the next theorem is very close to that
of Theorem 5. Nevertheless, there are important differences about the arguments given for
some of the considered cases.

Theorem 15. Algorithm R A is monotone with respect to the declared numbers of items.

Proof: We use the notation introduced in the proof of Theorem 5. Assume that (g;, v;) is a
winning declaration for bidder ¢ and that ’s position in the ordered list of bids is p;. Then
consider a declaration (¢/, v;), ¢ > g;, that lets i move to position p < p; in the list. By Best
and best we refer to the solution computed by RA; if i declares ¢; and its cost. Furthermore,
forany ¢t € {1,...,n} let G(t), G'(t), num(t), num!(t), val(t) and val'(t) denote the
content of RA’s variables after step ¢ with bidder 7 declaring g; or ¢, respectively. Again,
it is clearly sufficient to show that the following two claims hold with bidder i declaring ¢_:
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Claim 1 During its computation RA finds a possible solution S that includes ¢ and has
cost at most best.

Claim 2 RA finds no solution without ¢ that it does not find with bidder 7 declaring g;.

We assume that ; is a part of the solution returned by RA. when declaring ¢;. It is, however,
not clear how ¢ becomes part of this solution. Depending on this we differentiate between the
following cases. In all cases, let B denote the set of bidders on positions in {p},...,p; — 1}
that are added to G when bidder i declares g;.

Case 1: When declaring ¢;, bidder 7 is not added to G.
Case 1.1: When declaring ¢;, bidder ¢ is not added to G.

This is analogous to Case 2.1 in the proof of Theorem 5. Bidder i’s declaration moves up
the list of bids and appears in a new solution that corresponds to the previously best solution
without the bidders in B and obviously has cost no higher than before. The other feasible
solutions found by R A remain unchanged.

Case 1.2: When declaring ¢;, bidder  is added to G.

This is analogous to Case 2.2 in the proof of Theorem 5. Bidder i is added to G in step p..
After this, only bidders from B are added to . The first bidder from B that cannot be added
completes the solution S required in Claim 1. Claim 2 follows, since all solutions considered
after step p; must contain i.

Case 2: When declaring ¢;, bidder 7 is added to G.
Case 2.1: When declaring ¢;, bidder  is added to G.

This case is quite similar to Case 1 in the proof of Theorem 5. Here, however, we must pay
attention to the fact that it is the number of offered items that causes bidder i’s price per item
to decrease. As a result, we cannot be sure which bidders are still added to G when ¢ is
declared. If all bidders from B are still added, then the proof is in fact analogous to that of
Case 1 in the proof of Theorem 5. Otherwise, assume that % is the first bidder from B that is
processed and not added to G. This case is depicted in Figure 4.5.

The best solution found with ¢ declaring ¢; can be written as G(p; — 1) U BU {i} U R, where
R consists of some bidders on positions larger than p,. Let B" C B denote the bidders from
B on positions smaller than that of k. Since the list of bids up to position p; — 1 remains
unchanged when i declares ¢;, we have that G'(p; — 1) = G(p, — 1). With bidder ¢ declaring
¢, RA¢ finds the feasible solution G(p; — 1) U {i} U B’ U {k}. Clearly, this can be used
as the solution required by Claim 1. Again, no new solutions without ¢ will appear, since all
solutions found after step p’ contain ¢ and the list up to position p; — 1 has not been changed.

Case 2.2: When declaring ¢;, bidder 7 is not added to G.

We did not have to consider this case in Theorem 5. We start by showing the solution S
required for Claim 1. Since i is not added to G when declaring ¢/, we know that RA; finds



CHAPTER 4. REVERSE MULTI-UNIT AUCTIONS 54

the feasible solution G'(p; — 1) U {i}. With G’ (p, — 1) = G(p; — 1) it immediately follows
that we have found an appropriate solution, since we are dealing with a subset of Best, and
set S = G(p; — 1) U {i}. By ¢(S) we denote the total cost of solution S. Figure 4.5 shows
this situation.

Unfortunately, Claim 2 need not necessarily hold in this case. Instead of showing Claim 2,
we will prove directly that S as defined above is the best solution that is ever found with ¢
declaring ¢.. Clearly, this will also suffice. We start by observing the following fact:

Claim: Itis G'(p;) = G(pi)\{i}.

Proof: We have already noted that G’(p; — 1) = G(p, — 1) and, thus, num/(p; — 1) =
num(p;, — 1). By declaring ¢; bidder i is moved from position p; to p;. By assumption i is
not added to G. It is a straightforward observation that

G'(t) = G(t — 1) and num/(t) = num(t — 1)Vt € {p, ..., pi},

since every bidder & on position p, € {p.,...,p; — 1} is moved to position p; + 1 when i
declares ¢;. We conclude that

G'(pi) = G(pi — 1) = G(p)\{i}.
This finishes the proof of the claim. [J

The above proof uses the fact that, with bidder ¢ declaring ¢, in steps p.+1, . . ., p; algorithm
R A finds the solutions it previously found in steps p., . . ., p; — 1. Hence, all solutions found
in these steps have higher cost than the previously best solution Best, which was found in
a later step. Since our new solution S has cost at most best, no better solutions than S are
found until step p;.

Now consider any solution found in a later step. We can write this solution as G'(p;) U R,
where R is a set of bidders that are on positions larger than p;. Let

qr = qu and vy = Zvj.
jER jJER

Since all bidders in R are on positions larger than p;, it follows that vg/qr > v;/q;. When
declaring ¢;, i is added to G. It follows that m — num(p; — 1) > ¢; and, since G'(p;) U R isa
feasible solution, we have that gz > m — num/(p;) = m — num(p; — 1) > ¢;. We conclude
that vg > v; and, thus, solution G'(p;) U R has total cost

val'(p;) +vg = wval(p; — 1) + vg
> wal(p, — 1) +v;
= ¢(9).

This completes the proof of Case 2.2. O
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Figure 4.5: Cases from the proof of Theorem 15. Notation as in Figure 4.1.

This finishes our discussion of algorithm RA. Next, we will turn our attention to RApras.
Remember that, in our previous analysis, we considered RA pr 45 as being the result of the
M I N—operator’s application to a set of simpler building blocks RAg, which could them-
selves be seen as slight modifications of RA. Once again, this will be the way of proving
RApras’Ss monotonicity.

Theorem 16. Algorithm RApr 45 IS monotone with respect to the declared numbers of items.

Proof: For algorithm RAg and given declarations (g, v1), . . ., (qn, vs) let ¢s(g;) denote the
cost to society resulting from the solution computed by RAg as a function of the number of
items ¢; declared by bidder 7. In analogy to the definition of bitonicity we state the following
two claims about RAg:

Claim 1 Let (¢;,v;) be a winning declaration. Then cs(q;) < cs(g;) forall ¢; > g;.

Claim 2 Let (¢;, v;) be a loosing declaration. Then cs(q}) < ¢s(g;) for all ¢ < g;.

Furthermore, we have to require that algorithm RAg is monotone with respect to our gener-
alized definition and, thus, add another claim:

Claim 3 Algorithm RAg is monotone with respect to the declared numbers of items.

Now assume that all three claims hold for RAg and that (g¢;, v;) is a winning declaration with
respect to RApras. Increasing ¢; to ¢; then causes the cost to society of any RAg that selects
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(and continues to select) ¢ to decrease or stay constant, while the cost to society of any RAg
that does not select 7 behaves non—decreasing. Since RApras IS just an application of the
M I N—operator, it immediately follows that (¢., v;) is winning. This proves the claim.

We now have to show that our claims will indeed hold. We first argue about Claims 1 and
3. Consider some algorithm RAg, assume that (g;, v;) is winning with respect to RAg and
q¢; > q. Ifi ¢ S, then i is added by RA¢ in Step 2 of the algorithm. In this case it
follows directly from the proof of Theorem 15 that i is still selected when declaring ¢ and
that cs(q}) < cs(q;). We then assume that i € S. Now consider what RA does after ¢; is
increased to ¢.. Bidders that were previously not added to G will still not be added, because
the number of items left to be acquired has decreased. Bidders that were previously added,
might again be added or not. The first one that is not added, however, completes a feasible
solution with cost no higher than that of the previously best solution. Obviously, there is no
question about the fact that 7 is still selected. Claims 1 and 3 follow.

We then argue about Claim 2. We fix some RAg and assume that (g;, v;) is loosing with
respect to RAs and ¢, < ¢;. We need to show that cs(q;) < cs(g;). Clearly, since (g;,v;) is
a loosing declaration, we have that i ¢ S and, thus, it is enough to show that Claim 2 is true
for RAg.

We now argue about RA¢. Decreasing ¢; to ¢; lets i move from position p; to p, > p; in the
ordered list of bids. If the best solution is originally found in a step before p;, then this is not
changed by declaring ¢; and the claim follows. Hence, we can assume that the best solution
is originally found in a step p,, > p;. Since i is not part of this solution, we know that i is not
added to GG when declaring ¢;. The following is the central observation for this proof:

Claim: If, by declaring ¢/, bidder i moves to position p < py, then ¢ is again not added to G.

Proof: Assume that 7 is added to G when declaring ¢;. Using the notation from the proof of
Theorem 15, we observe that

Gt)y=Gt—-1Vte{p+1,...,0}

The best solution with i declaring ¢; can be written as G(p,) U R, where R is a set of bidders
on positions larger than p’. Again, let

qr = qu and v = Zvj.
JER JER
From the fact that 7 is added to G when declaring ¢} and that G(p}) U R is a feasible solution,
we conclude that
¢ < m—num(p,—1)
= m —num(p;)
< ({R.

We also note that v; /¢, < vgr/qg, since all bidders in R are on positions larger than p.. It
then follows that v; < vz. When bidder ¢ declares ¢;, RAq takes into account the feasible
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solution G(p; — 1) U {i}, since i is originally not added to G. With G(p; — 1) C G(p) it
follows from the above observation that this solution has smaller cost than G/(p}) U R. Hence,
(g:, v;) must be a winning declaration, a contradiction. (J

We can now finish our proof of Claim 2 for algorithm RA. First, assume that ¢ indeed
moves to a position p, < p,. Then, since ¢ is again not added to G, RA finds exactly the
same solutions not including ¢ as before. This immediately gives the claim. If, on the other
hand, ¢ moves to position p; > py, then we know that at least the previously best solution
Best is still found in step pr — 1. Thus, it is not important what happens in the algorithm’s
remaining steps, since we can only improve on this solution’s cost. This finishes the proof
of Theorem 16. OJ

We have seen that the greedy approximation algorithm (Section 4.1) and the more sophisti-
cated PTAS based on partial enumeration (Section 4.2) for reverse multi-unit auctions are
monotone with respect to the declared numbers of items and, thus, suitable for the design of
truthful approximate mechanisms for unknown single-minded agents. We note that a similar
result cannot be obtained for the FPTAS presented in Section 4.3. In this case bitonicity of
the building blocks with respect to the declared numbers of items is lost, because the applied
dynamic programming approach computes optimal solutions based on rounded declarations.
These, however, need of course not be optimal with respect to the original declarations. With
this negative result we finish our discussion of unknown single—minded bidders.



Chapter 5

Other Utilitarian Optimization Problems

In Chapter 4 we have constructed truthful approximate mechanisms for reverse multi-unit
auctions. We will now consider further utilitarian optimization problems and see how previ-
ous results can be applied here.

As a natural continuation of our discussion so far, we will first look at the popular scenario
of forward multi-unit auctions in Section 5.1. It will turn out that all the mechanisms that
were presented for reverse multi—unit auctions can easily be adopted for the forward variant.

In Section 5.2 we will then introduce a generalization of the Knapsack Problem, referred to
as Job Scheduling with Deadlines (JSD). As for the Knapsack Problem, an FPTAS based
on scaling the profits associated with each job before applying a dynamic programming ap-
proach with pseudo—polynomial running time is known for this problem. Again this FPTAS
is not monotone by itself. We will show that we can use our enumeration technique from
Section 4.3 to obtain a monotone FPTAS, which can then be used in the construction of a
truthful approximate mechanism.

As an example for several network and routing problems that are interesting from the point
of view of mechanism design, Section 5.3 deals with the Constrained Shortest Path Problem.
Once more, we will be able to apply our technique to obtain a monotone FPTAS.

In contrast to the previous chapter we are now faced with both minimization and maximiza-
tion problems. In Section 5.4 we will show how the results from Chapter 3 can be transferred
to the maximization case and what the main differences are.

5.1 Forward Multi-Unit Auctions

The setting of forward multi—unit auctions is similar to that introduced for the reverse case.
A single auctioneer wants to sell a number of identical goods to a set of potential buyers, or
bidders. Each bidder ¢ reports the number ¢; of items she is interested in and the maximum

58
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price v; she is willing to pay. The auctioneer then chooses the subset of bidders who will be
supplied with (at least) the requested number of items. Again we assume that the numbers
of items are known to the mechanism and, thus, bidders are known single—-minded.

Definition 16. A forward multi-unit auction among n single-minded bidders is defined by

bidders’ declarations (g, v1), . . ., (¢n, v,), @ NumMber of items m and feasible solutions
Oqrs-- -, qa) = {8 S {L,.o,n}| Y a < m}.
€S

The output S must be chosen to maximize . _¢ v;.

In case of maximization problems, the sum of the prices declared by the selected subset of
bidders is referred to as social welfare (instead of cost to society). We will adopt our notation
to reflect this difference.

Notation: For any subset of bidders .S, the social welfare is denoted as w(S) := > .. v;.

The first mechanism for reverse multi—unit auctions that was introduced in Section 4.1 was
obtained using a simple greedy technique based on ordering bids by the offered price per
item. A similar algorithm F'A for forward multi-unit auctions is given by the well known
greedy approach for the Knapsack Problem. This algorithm has been analyzed by Mu’alem
and Nisan [10] in the context of mechanism design.

Algorithm 9: F Ag

Input: Number of items m and bids (q1,v1), - - ., (¢n, Un).
1. Choose = to order bids by decreasing price per item
Un(1)/4r(1) Z *** Z Un(n)/ ()
and define G := 0, num := 0.
2. Repeat Step3fori=1,...,n:
3. If num + gy < m,then G := G U {7 (i)}, num := num + qx(.

4. Let vy = max; v;. Set S := argmax{w(G), w({k})}.

Output: Subset of bidders S.

Theorem 17. ([10]) Algorithm F A for forward multi-unit auctions among known single—
minded bidders has approximation ratio 2. Furthermore, algorithm F' A is monotone.



CHAPTER 5. OTHER UTILITARIAN OPTIMIZATION PROBLEMS 60

We can then continue with the construction of more sophisticated approximate mechanisms
by again applying the toolkit due to [10], that was explicitly developed for forward multi-
unit auctions. Algorithm F'Apr 45 is exactly the algorithm introduced by Sahni ([13]) for the
Knapsack Problem in 1975. Monotonicity can be shown as for the reverse variant presented
in Section 4.2 in analogy to the proof of Theorem 9. F'A pr 45 Can be seen as the application
of a M AX-operator to a set of algorithms that are basically modified versions of FA.
F Apras’s monotonicity is then concluded from the monotonicity and bitonicity of these
simpler building blocks, where an appropriate formal definition of bitonicity for the case of
maximization problems and the A/ A X —operator can be found in [10].

Algorithm 10: FAprag

Input: Number of items m, bids (¢, v1), . .., (¢, v,) and parameter k.

1. Consider all subsets of bidders with cardinality at most £. Formally,
let Best := (), best := 0 and repeat the following steps for all sets
SC{l,...,n} |S| <k

2. Use algorithm F' A to complete the partial solution S. Formally, let

q(S) = qu- and w(S) = Zvi.

i€S €S

Run F'Ag on the input given by number of items m — ¢(.S) and bids
{(gi,v;)|i ¢ S}andletS’ := SUSg, where S is the solution computed

3. Compare S’ to the best solution found so far. If w(S’) > best, then

Best := S’ and best := w(S").

Output: Subset of bidders Best.

Theorem 18. ([13]) For any given parameter k& € N, algorithm F'A p7 45 has approximation
ratio 1 + + and running time O(k - n***), where n is the number of participating bidders.

Theorem 19. Algorithm F' Apr4s IS monotone and bitonic.

The proofs of the two preceding theorems are analogous to the proofs of Theorems 7 and 9
in Section 4.2. In Section 4.5 the more general model of unknown single—minded bidders
was considered. Two of the mechanisms presented for reverse multi—unit auctions turned out
to be truthful in this scenario as well. Similar results can be obtained for forward auctions.
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Both FFAg and F'Apras meet the requirements described in Section 4.5. This is stated by
the following theorem. The proof, which is analogous to the proofs of Theorems 15 and 16,
Is omitted.

Theorem 20. Algorithms FAg and F'Apras are monotone with respect to the declared
numbers of items.

It remains to be shown that the FPTAS presented in Section 4.3 can also be adopted. In
fact, we will see that the technique that was used for the construction of a monotone FPTAS
for reverse multi-unit auctions can be applied to a whole class of problems. The following
results are stated for maximization problems only. They can, however, easily be transferred
to the minimization case in analogy to the example given in Section 4.3.

Let IT be some utilitarian maximization problem and assume single-minded agents. Then
according to the notation that was introduced in Section 2.3, input is given by declarations
(O,v) = ((OF,v1),...,(0O;F,v,)) and TI is fully specified by its set O(Of,...,O;") of
feasible solutions. For any given set of declarations and any agent 7, we require that there is
at least one feasible solution o € O(O7, ..., O;"), such that agent i is selected, i.e., i € S(o).
Now let V' = max; v; and assume that there is an exact algorithm Ay for IT with pseudo—
polynomial running time O(poly(n, V)).

Algorithm 11: Al

Input: Declarations (O, v;),..., (O}, v,)and ¢ > 0.
1. Setv! := min{v;, 281} foralli € {1,...,n}.
2. Let

(1+¢)-n

ap =
g2k

and scale the modified declarations:

vl = lag vl i=1,..0,n

3. Run algorithm Ay on declarations

(Of7 Ui’)? ttt <O+ U//)

n»-n

and let o be the returned solution.

Output: Solution o.

We can then define algorithms A}, k € N, as presented for reverse multi-unit auctions. A1l
works by scaling declarations depending on parameter £ and then running algorithm Ay on



CHAPTER 5. OTHER UTILITARIAN OPTIMIZATION PROBLEMS 62

the modified input. To ensure polynomial running time, declarations that are too large will
be cut appropriately. Compared to minimization, scaling becomes somewhat simpler now,
since by the above assumption, a trivial lower bound on the welfare of an optimal solution
is given by the maximum declared value V', which appears in at least one feasible solution.
Precisely, we have that V' < w(Opt(O,v)) < nV.

Analogously to Lemmas 8 and 9 the following are the central observations on the way to-
wards a monotone FPTAS.

Lemma 12. Lete > 0, k € N, w(Opt(O,v)) denote the welfare of an optimal solution
for a given set of declarations (O,v) and V' = max; v;. Algorithm All’s running time is
bounded by O(poly(n,e1)). If 28 < V' < 2% then AL computes a (1 + ¢)—-approximation
to w(Opt(O,v)) on declarations (O, v).

Lemma 13. For any k € Ny, algorithm All is monotone and bitonic.

For the proof of Lemma 12, note, that running time follows from the range that declarations
are scaled to. If 28 < V < 2k+1 then no declaration is changed in Step 1 of algorithm
A}l before scaling and V' is a lower bound on w(Opt(O,v)). Analogous to Lemma 8 one
can then show that w(AX(O,v)) > (1 —¢/(1 +¢)) - w(Opt(O,v)). As in Lemma 9, the
claims of Lemma 13 follow from the monotonicity of the scaling process and the fact that
Ap computes an optimal solution on the scaled declarations.

As in Section 4.3, we now characterize the desired FPTAS as an application of the M AX—
operator to an (infinite) set of algorithms. Formally, let Ar := {A}l|0 < k < oo} and

MAX (An)(O,v,¢) := argmax{w(A;(O,v,e))|A} € Ay}

for any declarations (O, v) and € > 0. As in Lemma 10 we observe the following fact.

Algorithm 12: A, .

Input: Declarations (O, vy),...,(O;,v,) and e > 0.

1. Let V := max; v, Wyae := 0 and o := (. Then repeat the next step for
all k=0,...,[log (%Vﬂ

2. Run All on the given declarations and let o, be the returned solution. If
w(0k) > Wz, then set o := o and wyq, := w(og).

Output: Solution o.

Lemma 14. Forany ¢ > 0, M AX (.Ay) is monotone and has approximation ratio 1 + ¢.
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In the last step we now need to describe a polynomial time implementation of M AX (Ap).

From the fact that, for &£ > log (gv), algorithm A}! scales all declarations to 0, it immedi-
ately follows that A" ..,o = MIN(An). The following theorem states that A%l .., is a
monotone FPTAS for I1.

Theorem 21. Let IT be a utilitarian maximization problem among known single-minded
agents as defined above. For any € > 0, algorithm A% .., has approximation ratio 1 + ¢
and running time O(poly(n,c~!,1og V')), where n is the number of participating agents and
V' denotes the value of the largest declaration. Furthermore, A%l ..., is monotone.

To finish this section, it remains to be shown that forward multi—unit auctions (FA) are among
the problems to which our technique applies. This is, however, a direct consequence of
the fact that an appropriate pseudo—polynomial algorithm is obtained by a dynamic pro-
gramming approach. In analogy to the discussion in Section 4.3, we now let A(7, v) denote
the minimum number of items that has a declared total value of exactly v, if only bidders
{1,...,i} are considered. Formally, we let

A(i,v) == min{q(5)|S C{1,...,i} AN w(S) =v}
and observe the recurrence
A(i,v) = min{A(i — 1,v), A(i — 1,v — v;) + ¢},

which can easily be verified by induction. Since we are interested in a subset of bidders S
that results in max{v|A(n,v) < m}, it is obviously sufficient to compute the entries of a
(n x nV)-matrix, V' denoting the largest declared value. The desired pseudo—polynomial
running time is then a straightforward observation.

5.2 Job Scheduling with Deadlines

Another class of utilitarian problems that is of interest from the point of view of mechanism
design is given by a variety of scheduling problems. A set of agents presents jobs that need
to be processed on some machines that are kept by the mechanism. Agents declare the time
requirements of their jobs, any constraints that have to be taken into account and a price that
they are willing to pay if their jobs are processed and no constraints are violated. Based
on this information, the mechanism then decides which jobs are to be processed on each
machine and in which order this is going to happen.

In this Section we will look at one of these scheduling problems, termed Job Scheduling
with Deadlines. We will show that our technique described in Section 5.1 can be used to
obtain a monotone FPTAS for this problem, which can then be used to construct a truthful
approximate mechanism as described in Section 2.3.
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We start by describing the problem. We assume that every agent presents a single job to
the mechanism and that all jobs are to be processed on a single machine. An agent declares
the time that her job will take on the machine, a deadline at which it should be finished
and a price that she is willing to pay if the deadline is not exceeded. The mechanism then
decides in which order the jobs are processed on the machine. We will assume that running
times and deadlines for all jobs are known to the mechanism and, thus, agents are known
single-minded. We now define the problem formally.

Definition 17. Job Scheduling with Deadlines (JSD) for single-minded agents is defined
by a set of reported jobs (¢, d1,v1), ..., (tn, dn, v,), job ¢ having running time ¢;, deadline
d; and profit v; if finished before its deadline. Feasible output is given by any permutation
m € S,. Corresponding to previous notation, we define

(%)
i€ S(n) e Zt,ﬁl(j) < d;,
j=1

i.e., 2 € S(m) if and only if job i is finished before its deadline when jobs are processed in
the order defined by 7. The output 7 must then be chosen to maximize >, g vi-

Notation: Forany S C {1,...,n}, letw(S) = >, qviand t(S) = >, s ti.

As we have seen in the previous section, our technique for the construction of a monotone
FPTAS is applicable if we can find an algorithm for JSD with running time that is polynomial
in the number of jobs n and the largest declared price V' = max; v;. Such an algorithm for
JSD has first been described by Sahni [14] in 1976. Although we will present a different
version here, it is still based on the same central observation.

Definition 18. Let J C {1,...,n} be a subset of jobs with J = {o(1),...,0(]J|)} and
dyry < ... < dyqs)- We say that J is processable if S0 t,) < dyq forall i =1,...,]J],
I.e., if every job is finished before its deadline when jobs are processed in order of increasing
deadlines. For a given instance (¢, d, v) of JSD, let P(¢, d) denote the set of all processable
subsets of jobs.

Lemma 15. ([14]) Given an instance (¢, d,v) of JSD, we have that

et w(S(m) = Jgﬂ%f,(d) w()-

Proof: Itis clear that max ;cpq,q) w(J) < max,cg, w(S(7)), since, for a given processable
set of jobs 7, we can define a permutation 7, € S,,, such that J = {m; ' (1),...,m; '(|J])}.
It follows that J C S(7;).

It remains to be shown that max,cg, w(S(m)) < maxjepe,q) w(J). We fix a permutation
7 € S, and consider the set of jobs S(). All jobs in S(7) are finished before their deadlines
if they are processed in the order given by =. We observe that this can also be obtained by
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processing in order of increasing deadlines. To see this, assume that there exist i, j € S(m),
such that (i) < 7(j) and d; > d;. Obviously, both jobs must then be finished before d;.
Hence, jobs i and j can as well be processed in the opposite order. It follows that S(7) is
processable. This completes the proof. O

Lemma 15 gives a new characterization of JSD. In the original definition, the problem’s
search space was given as the set of permutations .S,,. By Lemma 15, a corresponding search
space is defined by all processable subsets of jobs. Applying the technique of dynamic
programming, this fact can be used in the construction of the desired pseudo—polynomial
algorithm.

Assume that jobs are ordered by increasing deadlines, i.e., d; < --- < d,,. By J(i,v) we
denote a subset of jobs with minimum total running time that results in total profit of exactly
v and contains only jobs from {1, ..., i}. Formally, let

J(i,v) = argmin{t(J) | J C{1,...,¢} is processable and w(J) = v}.

For ease of notation we let ¢(7, v) refer to the total running time ¢(.J (i, v)) of jobs in J (7, v).
We set J(i,v) = 0 and t(i,v) = +oo forany i,v < 0, J(0,v) = () and ¢(0,v) = +oc for all
v #0, J(0,0) = @ and £(0,0) = 0. The following lemma states the recurrence required for
a dynamic programming approach.

Lemma 16. Let V = max;v;,i € {1,...,n}andv € {0,...,nV}.

Ift(i — Lv—wv)+t; <d;andt(i — 1,v —v;) +t; < t(i — 1,v) then
J(i,v) = J(i —1,v—v;) U{i}

else
J(i,v) = J(i —1,v).

Clearly, the claim can easily be verified by induction. We are interested in a subset of jobs
J(n,v*), such that v* = max{v | t(n,v) < 4+o0}. To find this subset, we need to compute
the entries of a (n x nV')—matrix. From Lemma 16 it follows that each entry can be found
in constant time. This gives the desired pseudo—polynomial algorithm J.S D 4,,, with running
time O(n2V'). From our previous discussion it is immediately clear how a monotone FPTAS
based on .J.S Dy, can be constructed. This finishes our discussion of JSD.

5.3 The Constrained Shortest Path Problem

Finally, we will now look at a problem from the area of networks and routing, which is
another central field of interest in the context of mechanism design. We assume that we have
a network that is defined by a given graph in which each edge is owned by a different agent.
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Every agent declares the properties of her edge (or communication network connection) and
the price at which it is available. What properties have to be declared obviously depends on
the respective problem.

The example of this kind that we will study is a minimization problem. Without going
through the proofs again, we note once more that our enumeration technique can be used
to obtain monotone FPTASs for general utilitarian minimization problems in analogy to
Section 4.3. As for reverse multi-unit auctions we require approximation ratio (1 + ) with
e <1.

Definition 19. The Constrained Shortest Path Problem (CSP) with single-minded agents is
defined by a graph G = (V, E) with agents declaring length /(e) and cost ¢(e) for each edge
e € FE, two special vertices s,¢ € V' and a maximum total length L. We want to find a path
P from s to ¢ that satisfies [(P) = > ., I(e) < L and has minimal cost ¢(P) = Y __p c(e).

It has been shown that CSP is weakly NP-hard. Pseudo—polynomial algorithms have been
proposed by Hassin [7] and Phillips [12]. We will present a slight modification of the ap-
proach presented by Phillips to obtain the required pseudo—polynomial algorithm with run-
ning time that is polynomial in the size of the graph and edges’ costs. This algorithm can
then be turned into a monotone FPTAS.

We modify the so—called search graph described in [12] and encode total cost of any path
rather than its length.

Definition 20. Given a graph G = (V, E), |V| = n, |E| = m, with edge costs and lengths
as defined above and C' = max.cg c(e), we construct the search graph G’ = (V', E') by
defining

V'i={(v,c)|veV,ced0,...,nC}}

and
E = {{(u,c), (v,c+c(e)} | {u,v} =e€ E,c€{0,...,nC — c(e)}}.

Edges are given the length of the original edges in G, i.e., [({(u, ¢), (v,d)}) = [({u, v}).

We can then use Dijkstra’s algorithm [5] to solve the Single Source Shortest Paths Problem
on G’. We are interested in finding a shortest path from s to ¢ in G with length at most L. In
G’ we compute paths from vertex (s, 0) to vertices (¢, ¢) and let I(c) denote their lengths. We
observe that [(c) denotes the length of a shortest path from s to ¢ in GG that has cost exactly
c. Now let ¢* = min{c|i(c) < L}. Then the path from (s,0) to (¢,c*) in G’ obviously
corresponds to the desired minimum cost path in G.

The search graph G’ can be constructed in time O(n*C + mnC), Dijkstra’s algorithm has
running time |V’| log |V'| + |E'| = O(n?C - log(nC) + mnC') on G'. This gives the desired
pseudo—polynomial running time.

It should be observed that our enumerative construction method has another advantage when

applied to CSP. Using the standard technique of scaling and rounding (i.e., without enumer-
ating) we first need to find a good lower bound on the optimal solution’s cost that can be
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Figure 5.1: Range for the critical values #;* of a monotone approximation algorithm A for a
maximization problem.

used in the scaling process. For CSP, however, finding this bound is non—trivial. Hassin [7]
solves this problem by first applying a pseudo—polynomial algorithm to “false” scalings until
paths of a certain quality are found. Using our technique we do not have to compute good
lower bounds explicitly, since they will be found implicitly at some point of time during the
enumeration. This might turn out as an important advantage also for other problems where
pseudo—polynomial algorithms are known but the computation of sufficiently good lower
bounds on the optimal solution’s cost is rather time consuming.

5.4 Payment and Maximization Problems

Chapter 3 presented a bound on the overpayment of truthful approximate mechanisms for
utilitarian minimization problems and single—-minded agents. We will now see how these
results can be modified to apply to the maximization case and what the main differences are.
We will use the notation that was introduced in Chapters 2 and 3, except that we will again
let w(S(0)) = > icq(o) vi refer to the social welfare obtained by output o to reflect the fact
that we are now considering maximization.
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For a fixed utilitarian maximization problem, we consider a normalized VCG mechanism
mop: = (Opt, pPP') and a truthful approximate mechanism m, = (A, p?), algorithm A
having approximation ratio (1 + ). We start by making an observation about the VCG
mechanism.

Observation 4. The VCG mechanism mo,; = (Opt, p°P*) is monotone with critical values
677" = w(Opt(v]=i) — (w(Opt(v]i)) —v;)

and p©P* is the associated critical value payment scheme.

This observation is analogous to Lemma 4 and Observation 2. As before, we can then con-
tinue by fixing a single agent ¢ and comparing her critical values in algorithms Opt and A.
Similarly to Lemma 5 we obtain the following result.

Lemma 17. Let Opt be an optimal algorithm for some utilitarian maximization problem
and let A be a monotone approximation algorithm for the same problem with approximation
ratio (1 + ¢). Then the following inequality holds for all declarations v_;:

o 1%6 -w(Opt(v|=i)) < 0 < 077 + & - w(Opt(v] i) (5.1)

The idea of the proof, which is analogous to that of Lemma 5, is depicted in Figure 5.1. We
again start with agent i declaring v; = prt and observe the existence of at least two optimal
solutions, one that selects agent ¢ and one that does not. Now assume that we decrease v;.
Then the value of any solution selecting ¢ will decrease by the same amount and finally have
a value smaller than (1 + ¢)~! times the value of an optimal solution not selecting 7. At
this point of time, algorithm A must stop to select i because of its approximation ratio. This
gives the lower bound. On the other hand, assume that we increase v;. Obviously, the value
of any solution selecting ¢ will increase. Finally, one of these solutions will become larger
than (1 + ¢) times the value of an optimal solution not selecting 7. From this point on, A has
no choice but to select agent s.

Having these inequalities, we can then again derive bounds on the total payment (also termed
revenue in case of maximization problems) collected by our approximate mechanisms. The
stated results are analogous to Theorem 3.

Theorem 22. Let mo,: and m4 be the mechanisms defined above. Fix some arbitrary dec-
laration vector v and let Opt = Opt(v) and A = A(v) denote the computed outputs. Then
the following inequalities hold:

p*(S(4))
pA

IA

OP(S(Opt)) + - [S(Opt)] - w(Opt) (5.2)

p
P (S(0pt)) = = - (IS(A)] +1) - w(Op) 53)

w
=
v
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The proof of this theorem is analogous to that of Theorem 3. We note, however, that both
inequalities appear to be somewhat simpler than in the minimization case. This is due
to the fact that for maximization problems w(Opt(v)) can be used as an upper bound on
w(Opt(v|—i)) forany i € {1,...,n}, while in Theorem 3 another inequality had to be used
to bound the difference between those two.

Chapter 3 closed with a corollary that used the results from Theorem 3 to derive an approx-
imation ratio for the approximate mechanism’s payment. This could be done because the
difference in payment was bounded by some multiplicity of the optimal solution’s value and
an upper bound on this value was given by the payment of the VCG mechanism. We note
that an analogous result for maximization problems is not possible, because now we have that
pPP (Opt) < w(Opt). Additionally, there is no way of bounding p©?!(Opt) below by some
polynomial fraction of w(Opt). To see this, one can look at forward multi—unit auctions and
consider a scenario where all items are allocated to a single agent declaring some astronomi-
cally high bid and whose payment will then be determined by the (much) smaller bids of the
remaining agents. It follows that our previous remark on fully polynomial time approxima-
tion schemes does not apply to maximization problems. Hence, an FPTAS for a utilitarian
maximization problem need not be an FPTAS with respect to the generated revenue. With
this negative result, we finish our discussion of maximization problems.



Chapter 6

Summary and Open Problems

Finally, we will now briefly summarize the presented main results. Rather than keeping to
the order in which results were presented in the main part of this work, focus will now be
laid on how single results relate to each other, what implications can be observed and what
questions have been left unanswered.

We have presented two enumerative techniques that lead to monotone approximation algo-
rithms for forward and reverse multi-unit auctions among known single—-minded bidders and
improve over the best previously known algorithm that was 2—approximate. The first tech-
nique due to Sahni [13] is based on the idea of enumerating over all partial solutions up to a
fixed size and completing each partial solution by some monotone procedure. The resulting
algorithm is monotone as it can be seen as an application of the toolkit developed by Mu’alem
and Nisan in [10]. For multi-unit auctions we obtain a PTAS with strongly polynomial run-
ning time that can also be used in the more general case of unknown single—-minded bidders.
A second enumerative method even leads to monotone FPTASs not only for multi-unit auc-
tions, but for a whole class of utilitarian mechanism design problems. While the standard
technique of rounding the declared prices based on data that has to be taken from the input
is inherently non—-monotone, this problem is avoided if we enumerate over all rounding pos-
sibilities and then pick the best found solution. Since the number of rounding possibilities
is potentially infinite, we now have to distinguish between the algorithm’s specification (i.e.,
enumerating over some infinite set) and its actual implementation (which must guarantee
polynomial running time). Compared to the PTAS described before, the resulting FPTAS
has two important disadvantages. First, its running time depends in a logarithmic way on
the declared prices and, thus, is only weakly polynomial. Second, it cannot be applied to the
more general scenario of unknown single—minded bidders.

A natural question is whether these two disadvantages can be removed. Weakly polyno-
mial running time is due to the fact that the number of rounding possibilities that have to
be checked depends on the declared prices. In order to regain strongly polynomial running
time, one would have to further limit the number of promising possibilities and make it

70
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independent of the actual declarations. To see the problem with unknown bidders for re-
verse multi—unit auctions, consider algorithm RAzy” from Section 4.3 that scales input with
respect to parameter £ and then applies the exact algorithm R A, based on dynamic pro-
gramming. To obtain a monotone FPTAS, we would need (among others) that RAZy" IS
bitonic with respect not only to the declared prices, but also the declared numbers of items.
Now assume that bidder i is selected by the algorithm and increases the number of items she
offers. Then consider the solution computed by RA,4,,, based on the rounded prices. Since
RA.,, is an exact algorithm, the new solution’s cost with respect to rounded prices can only
be smaller. But how do these two solutions relate to each other with respect to the original
prices? Here the situation may be opposite due to the rounding and the new solution might
potentially have higher cost. It follows that RAzy” IS not bitonic with respect to the declared
numbers of items. It is not clear whether — or how — this problem could be solved.

We also presented a first general bound on the overpayment of approximate utilitarian mech-
anisms in comparison to the respective VCG mechanism. Combining this result with our
monotone FPTASs for utilitarian mechanism design problems shows that the resulting truth-
ful mechanisms truly approximate the VCG mechanism both with respect to the objective
function value and payment. It is not clear, however, that a VCG mechanism’s payments are
optimal among all possible truthful mechanisms. Hence, one could be interested in design-
ing mechanisms that improve on VCG in this aspect. Our results imply, however, that such
a mechanism cannot approximate VCG well with respect to the objective function value.
Thus, we can observe a certain tradeoff here. If we want to improve on the VCG payments,
we necessarily have to accept higher deviation from the optimal objective function value.
Certainly, an interesting question is whether such mechanisms exist and can be constructed.

In Sections 4.1 and 4.2 we have seen that our bound on the overpayment from Chapter 3
Is tight in an asymptotic sense for reverse multi—unit auctions and the two considered ap-
proximation algorithms. Similar results can be obtained for forward multi-unit auctions.
Clearly, this suggests that multi—unit auctions might be a worst case example in terms of
overpayment among all utilitarian optimization problems. This speculation is supported by
the results of Talwar [15], who shows that multi—-unit auctions are indeed a worst case ex-
ample if we look at the payments generated by the VCG mechanism. It would be nice if
this could be generalized to capture also approximate truthful mechanisms. It seems to be
difficult to obtain such a result in full generality, i.e., for all possible approximate mecha-
nisms for multi—unit auctions. An idea, however, could be to find an appropriate subclass of
approximation algorithms that allow such results.

These questions for further research finish our discussion of approximate mechanisms and
their frugality.
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