
Single-Minded Unlimited Supply Pricing on Sparse Instances

Patrick Briest∗ Piotr Krysta†

Abstract

We deal with the problem of finding profit-maximizing
prices for a finite number of distinct goods, assuming that
of each good an unlimited number of copies is available,
or that goods can be reproduced at no cost (e.g., digital
goods). Consumers specify subsets of the goods and the
maximum prices they are willing to pay. In the considered
single-minded case every consumer is interested in precisely
one such subset. If the goods are the edges of a graph
and consumers are requesting to purchase paths in this
graph, then we can think of the problem as pricing computer
network connections or transportation links.

We start by showing weak NP-hardness of the very re-
stricted case in which the requested subsets are nested, i.e.,
contained inside each other or non-intersecting, thereby re-
solving the previously open question whether the problem
remains NP-hard when the underlying graph is simply a line.
Using a reduction inspired by this result we present an ap-
proximation preserving reduction that proves APX-hardness
even for very sparse instances defined on general graphs,
where the number of requests per edge is bounded by a con-
stant B and no path is longer than some constant `. On
the algorithmic side we first present an O(log ` + log B)-
approximation algorithm that (almost) matches the previ-
ously best known approximation guarantee in the general
case, but is especially well suited for sparse problem in-
stances. Using a new upper bounding technique we then give
an O(`2)-approximation, which is the first algorithm for the
general problem with an approximation ratio that does not
depend on B.

1 Introduction

The question of how to optimally price goods in a given mar-
ket has always been central in economics. Only recently,
however, companies are faced with a variety of new pos-
sibilities emerging from the wide spread use of the Inter-
net to gather large amounts of data about consumer pref-

∗Department of Computer Science, University of Dort-
mund, Baroper Str. 301, 44221 Dortmund, Germany. E-mail:
patrick.briest@cs.uni-dortmund.de. The author is sup-
ported by DFG grant Kr 2332/1-2 within Emmy Noether program.

†Department of Computer Science, University of Dort-
mund, Baroper Str. 301, 44221 Dortmund, Germany. E-mail:
piotr.krysta@cs.uni-dortmund.de. The author is supported by
DFG grant Kr 2332/1-2 within Emmy Noether program.

erences in their market segments. A lot of work has been
done on the side of computer science to answer the ques-
tion of how this data can be used in the computation of op-
timal, i.e., revenue maximizing prices. Inspired by General
Motor’s Auto Choice Advisor (a web site designed to gather
such data), Rusmevichientong, Van Roy and Glynn [15] de-
fined the non-parametric multi-product pricing problem, in
which consumers are characterized by a ranking of all avail-
able products and some budget constraint. The first algo-
rithms with provable approximation guarantee for this prob-
lem were given by Aggarwal, Feder, Motwani and Zhu [1].
Very recently, another approach to pricing that requires more
precise knowledge about consumers’ preferences was intro-
duced by Guruswami, Hartline, Karlin, Kempe, Kenyon and
McSherry [11]. In the envy-free pricing problem the goal
is to find profit-maximizing prices that allow an allocation of
the goods that maximizes the personal utility of all participat-
ing consumers. This problem, which is particularly relevant
in the case that goods are only available in limited supply, is
inspired by the notion of truthfulness in mechanism design
[14], which has in turn received a lot of attention from the
side of computer science in the context of efficiently com-
putable auctions during the last years [2, 5, 7, 13]. In fact,
envy-free pricing and a corresponding allocation define a fair
pricing equilibrium and can be used as a comparison to mea-
sure the quality of the revenue generated by auctions. Gu-
ruswami et al. present hardness results and approximation
algorithms for the case of unit-demand bidders (i.e., con-
sumers that are interested in purchasing a single good out of
their set of preferences) and for single-minded bidders (i.e.,
bidders that are interested in a single subset of all goods) as-
suming unlimited supply. The later nicely models the sale of
digital goods or, in general, goods that can be reproduced at
no or almost no additional cost, and it is the base problem
for our paper. If we assume that the goods we are selling are
the edges of a graph and that consumers are purchasing paths
in this graph we can interpret this as the problem of pricing
network connections, street segments (therefore termed toll-
booth problem in [11]) or other types of transportation links
(e.g., railway or flight connections). If the underlying graph
is just a line, then this problem is called highway problem in
[11]. Interestingly, even this very restricted variant turns out
to be intriguingly complex. Hartline and Koltun [12] have
presented a near-linear time FPTAS for the practically rele-
vant case that the number of goods for sale is a fixed constant.

Independently of this work, Balcan and Blum [4] also give
approximation algorithms for the unlimited supply case.

Another related line of research is mechanism design
for profit maximization with goods available in unlimited
or limited supply [8, 10]. The main difference between
this approach to profit maximization and the one studied in
this paper is that they define a specific benchmark (optimal
fixed price profit) to which they compare the attained profit,
whereas we compare to the overall best possible profit.
Especially, incentive issues do not need to be taken into
account in the unlimited supply case, as clearly every bidder
who can afford to buy her requested goods at the computed
prices can be allocated what she requests.

Bouhtou et al. [6] study a related pricing problem with
unlimited supply on a directed graph, which has interesting
applications in telecommunication networks. In fact they
prove that their version of the problem is APX-hard by
using a reduction from the same problem as we do, but their
reduction does not imply APX-hardness for the problem we
consider in this paper.

1.1 Preliminaries Our definition of the single-minded un-
limited supply pricing problem is the same as the one given
in [11]. We will associate a single-minded bidder with the
set she is interested in and mostly talk of a set and its value
rather than a bidder and her bid.

DEFINITION 1. The single-minded unlimited supply pricing
problem (SUSP) is defined by a universe U of goods and a
collection S of subsets of U (allowing multiple copies of a
subset), where each set S ∈ S has value w(S). We want to
assign prices c∗ : U → R

+
0 to the goods, such that

c∗ ∈ argmaxc

∑

S∈S:w(S)≥
P

e∈S
c(e)

∑

e∈S

c(e),

i.e., c∗ maximizes the sum of prices of goods in those sets
for which the sum of prices is smaller than the set’s value.
By prof(c) we refer to the total profit resulting from price
assignment c.

Intuitively, a bidder specifies the maximum price she is
willing to pay for a certain set of goods. After a price has
been assigned to each good, bidders decide to buy their sets
depending on whether the sum of prices of goods contained
in their sets exceeds their specified budget. If this is not the
case, a bidder is charged exactly the sum of prices of the
goods she receives. Whenever the problem is defined on an
underlying graph, we slightly adjust our notation to reflect
this difference.

DEFINITION 2. In the SUSP problem on graphs (G-SUSP)
we are given a graph G = (V, E) rather than a universe
of goods and a collection P of paths in G. A feasible price
assignment is a mapping c : E → R

+
0 .

Note, that if sets are nested, i.e., for any S1, S2 ∈ S
we have that S1 ⊆ S2, S2 ⊆ S1 or S1 ∩ S2 = ∅, it does
not make a difference if the problem is defined on a graph
or not. In fact, each such instance can easily be defined on
a graph that consists of a single line by simply ordering the
goods appropriately.

1.2 Our results We will present two types of results in
this paper. Guruswami et al. [11] proved that SUSP is APX-
hard. However, their reduction creates a problem instance in
which certain goods are requested by a constant fraction of
all participating bidders. From a technical standpoint, this
appears quite unavoidable, since an approximation preserv-
ing reduction to SUSP always brings up the problem that we
need to force optimal (or approximately optimal) solutions
to be in a sense integral in order to be able to reconstruct
solutions to the (integral) problem that was our reduction’s
starting point. On the other hand, it is certainly desirable to
have hardness results also for sparse instances, especially
because it turns out that the number of requests per good is
the most crucial parameter when it comes to finding good
approximations using upper bounding techniques known
so far. The main result of the first part of this paper is a
proof of APX-hardness even if the parameters mentioned
above (and some more) are bounded by a small constant.
The proof is done by an approximation preserving reduction
from a variant of MAX-SAT. Technically, this requires the
design of individual components (a small graph with some
paths defined on it) to represent the formula’s clauses, which
ensure integrality of the optimal solution and give different
profit depending on whether the corresponding clause is
satisfied. The design used here is inspired by much simpler
components that are used to prove NP-completeness of the
highway problem. Summarizing, we present the following
negative results:

(1) Guruswami et al. [11] have already pointed out that
G-SUSP is surprisingly complex even when G is a line, but
left as an open problem whether it remains NP-hard or is
polynomially solvable. We answer this question and show
that this version of the problem is NP-hard even with the
further limitation that paths are nested. Additionally, we
give an FPTAS for the case of nested paths, showing that
NP-hardness here is only weak.

(2) APX-hardness of G-SUSP has been shown in [11]. We
prove that G-SUSP remains APX-hard even under a variety
of strong restrictions, e.g., considering only constant degree
graphs, a constant number of requests per edge, paths of
constant length, etc.

In the second part of the paper we present approxi-
mation algorithms for general SUSP with approximation

ratios that depend on the maximum size ` of the sets and the
maximum number B of requests per good. The ratio of our
first algorithm depends on ` and B and matches the ratios
of previously known algorithms even in the worst case, i.e.,
if none of the above parameters can be bounded better than
trivially (` ≤ |U |, B ≤ |S|). If these parameters turn out to
be small, however, our algorithms are capable of exploiting
these instances’ sparse structure in order to obtain better
approximation ratios. The approximation ratio of our second
algorithm depends only on `. More precisely, we present the
following:

(1) Guruswami et al. [11] gave an O(log |U | + log |S|)-
approximation for SUSP. Our first algorithm achieves
approximation ratio O(log B + log `), which gives an
advantage on sparse instances but matches the previous
result in the general case. It is interesting to see that our
result in the general situation can be achieved by completely
different approaches than those of [11]. Our algorithm is
based on an elementary partitioning argument. We use
the sum of the values of all sets as an upper bound on the
value of an optimal solution (the same upper bound is used
in [11]), and our approximation ratio is almost tight with
respect to this upper bound.

(2) The second algorithm gives an O(`2)-approximation.
This cannot be achieved by using the sum of the values of
all sets as an upper bound on the optimal profit, but requires
a novel upper bounding technique, which is obtained by first
defining optimal prices for each single good without taking
care of other prices. The main step towards a solution is then
combining these prices into a common price assignment,
which is done by using a specially designed hypergraph
structure to model dependencies that we have to take into
account. Independently of our results Balcan and Blum [4]
have achieved a randomized O(`)-approximation, which
relies on a basically identical upper bounding technique.

The rest of the paper is organized as follows. Section
2 deals with the highway problem in which the underly-
ing graph is simply a line. We first give a proof of NP-
completeness and then show how to derive an FPTAS for the
restricted case used for the preceeding hardness result. Sec-
tion 3 gives an APX-hardness result for a severely restricted
class of instances modeling realistic networking conditions.
After this, Sections 4 and 5 present the two approximation
algorithms for the general pricing problem.

2 The Highway Problem

We now focus on the special case of G-SUSP where the un-
derlying graph structure is simply a line. We can think of
this as the problem of pricing single segments of a privately
owned highway. Guruswami et al. give a pseudopolynomial

algorithm (which can be turned into an FPTAS by appropri-
ately scaling the input) for the case in which the length of
all paths is bounded by a constant. We introduce another
special case of the problem in which we allow paths to have
arbitrary length but require that they are nested, i.e., given
any two paths P1, P2 ∈ P we have that P1 ⊆ P2, P2 ⊆ P1

or P1 ∩ P2 = ∅. As mentioned before any instance of SUSP
in which the requested sets are nested can be viewed as de-
fined on a line. We will prove NP-hardness of this problem
and show how to derive an FPTAS by a simple dynamic pro-
gramming approach.

2.1 NP-hardness We prove NP-hardness by a reduction
from the PARTITION problem. Given weights w1, . . . , wn

we want to find a set S ⊂ {1, . . . , n}, such that
∑

i∈S wi =
∑

i/∈S wi, i.e., find a partitioning into two sets of identical
total weight. PARTITION is known to be NP-hard [9].

THEOREM 2.1. G-SUSP with nested paths is NP-hard.

Proof. We prove a polynomial time reduction from PARTI-
TION to the considered problem. For each weight wi we con-
struct a weight component Wi as depicted in Figure 1. On a
graph consisting of 3 vertices vi

1, vi
2, vi

3 and 2 edges ei
1, ei

2 we
define the 3 possible different paths P i

1 = {ei
1}, P i

2 = {ei
2},

P i
3 = {ei

1, e
i
2} and let w(P i

1) = w(P i
2) = w(P i

3) = wi.
We start with a simple observation about weight components
which turn out to have the nice property of in a sense dis-
cretizing the problem.

More precisely, the maximum profit obtainable from
weight component Wi is 2wi. If profit 2wi is obtained under
price assignment c then c(ei

1) = c(ei
2) = wi or c(ei

1) +
c(ei

2) = wi. To see this, note that if path P i
3 contributes to the

profit, it must be the case that c(ei
1)+c(ei

2) ≤ wi. P i
1 and P i

2

can never give more profit than c(ei
1) and c(ei

2), respectively.
It immediately follows that total profit is at most 2wi. On the
other hand, the profit obtained from each P i

1 and P i
2 is also

bounded by wi and so profit 2wi can also not be exceeded
if P i

3 does not contribute. This gives the first part of the
claim. From the above argumentation it follows that profit
2wi cannot be reached if c(ei

1) + c(ei
2) < wi, while, e.g.,

c(ei
1) = c(ei

2) = wi/2 results in full profit. Now assume
that c results in profit 2wi but c(ei

1) + c(ei
2) > wi. Then P i

3

obviously contributes 0. It follows that P i
1 and P i

2 must give
profit wi each and, thus, c(ei

1) = c(ei
2) = wi. We note that

we can make use of the symmetry of a weight component by
slightly changing the above claim and requiring w.l.o.g. that
c(ei

1) = c(ei
2) = wi/2 instead of c(ei

1) + c(ei
2) = wi. In

fact, we will from now on only consider the price c(Wi) =
c(ei

1) + c(ei
2) that is assigned to weight component Wi and

implicitly assume that this price is split evenly among edges
ei
1 and ei

2.
We now define the final G-SUSP instance. The weight

components W1, . . . ,Wn are assembled into a single line by

identifying vertices vi
3 and vi+1

1 for i = 1, . . . , n − 1. We
define one more path P running all the way from v1

1 to vn
3

and set w(P) = (3/2)
∑n

i=1 wi, as shown in Figure 1. It is
then straightforward to argue that total profit (7/2)

∑n
i=1 wi

can be reached on this instance if and only if a partitioning S
with

∑

i∈S wi =
∑

i/∈S wi exists. For the one direction we
define prices c by c(Wi) = 2wi if i ∈ S and c(Wi) = wi

else. For the other direction we argue that the optimal pricing
is of just this form and let S = {i | c(Wi) = 2wi}. �

_3
2 Σwi

i=1

n

w(P)=

P1
i P2

i
P3

i

v1
i v2

i iv3e1
i e2

i

w i w i

w i

Figure 1: Single weight component Wi. Path P connect-
ing all n components ensures that maximum profit can be
reached only if the weights can be 2-partitioned.

2.2 An FPTAS We present a pseudopolynomial algorithm
which can be turned into an FPTAS by scaling and rounding
the input appropriately. For the description of the dynamic
programming approach we assume that all declared prices
are integral. By an observation of Guruswami et al. concern-
ing the unimodularity of the problem’s constraint matrix this
implies the existence of an integral optimal solution. Given a
G-SUSP instance with edges E, |E| = m, and nested paths
P , |P| = n, we define the set of intervals I as follows.
First, each path P defines an interval I = P . Then we add
the interval E = {e1, . . . , em} containing all edges. Now
consider any interval I and let J be the maximum size in-
terval contained in I . We then also add K = I\J to I if it
is not already contained. Note, that in general K need not
be an interval in the classical sense, since it might contain
edges that are situated on the left or right of J , respectively.
It is, however, w.l.o.g. to assume that this is not the case,
because we can always reorder edges to ensure that I and
J have the same left border. Conceptually, at this point we
view paths as simply collections of edges and observe that
edges can be arranged in a single line, such that paths are
mapped onto intervals. If interval I is defined by path P we
let w(I) = w(P) be the interval’s value. If I is defined in
a later step (i.e., not defined by a path), we set w(I) = 0.
Note, that intervals can naturally be arranged as a binary tree
with root corresponding to the complete line of edges. For
any interval I we let AI

b refer to the maximum profit that can
be obtained from paths fully contained in I under the condi-
tion that the prices assigned to edges in I sum up to exactly

b, i.e.,
∑

e∈I c(e) = b. Consider interval I containing maxi-
mum length subintervals J and K. We have

AI
b =

{

maxb′{AJ
b′ + AK

b−b′} + b, if b ≤ w(I)
maxb′{AJ

b′ + AK
b−b′}, else

by the observation that any path which is contained in I is
also fully contained in either J or K. We now only need to
compute maxb AE

b to find the optimal price assignment by
simple backtracking.

LEMMA 2.1. The above algorithm finds an optimal solution
for any instance of G-SUSP with nested paths and integral
valuations in time O(n3W 2), where W = maxP∈P w(P).

The pseudopolynomial time algorithm can easily be
turned into an FPTAS for the problem. To this end, let
α = nm/(εW) and define scaled maximum prices w′(P) =
bαw(P)c for all paths. Also, define w′′(P) = α−1w′(P) to
undo the scaling step without respect to the applied rounding.
Since it immediately follows that w(P) − w′′(P) ≤ α−1

for any P we can compare total profit of the original op-
timal solution Opt and an optimal solution Opt′′ under the
rounded valuations and get that prof(Opt)−prof(Opt′′) ≤
nmα−1 = ε · W ≤ ε · prof(Opt). This is due to the fact
that we can obtain a solution under the rounded valuations by
taking the original optimal solution and reducing the price of
each edge by α−1. In this solution, all paths that give any
profit in the optimal solution will still do so. On the other
hand, each of the n paths contains at most m edges, bound-
ing our loss on a single path by m · α−1. For polynomial
running time observe that after scaling no declaration with
value higher than nm/ε exists.

THEOREM 2.2. For any instance of G-SUSP with nested
paths the FPTAS described above achieves approximation
ratio (1 − ε) in time O(n5m2ε−2).

3 The Tollbooth Problem

We now turn to the general G-SUSP, which was termed
tollbooth problem in [11], since it can be thought of as setting
up tollbooths on a highway system. In general it models the
problem of defining the prices for direct connections in any
public transportation system or network. Our focus here will
be laid on rather sparse instances, i.e., we will especially be
interested in graphs with constant maximum degree, paths of
bounded length and a bounded number of requests per edge.
We show APX-hardness by a reduction from MAX-2SAT(3).
Remember that the MAX-2SAT problem is defined by a
set of variables V ar = {x1, . . . , xn} and a collection of
disjunctive clauses of at most 2 literals, where each literal
is a variable or negated variable from V ar. We want to find
a truth assignment t : V ar → {0, 1} that maximizes the
number of satisfied clauses. MAX-2SAT(3) is the special

case in which the number of occurrences of each literal is
bounded by 3. MAX-2SAT(3) is APX-hard [3].

For each appearance of a literal in the SAT instance we
define a literal component as found in Figure 2. Literal com-
ponents are completely similar to the weight components
that were used in the previous section. We now simply set
the value of all paths to 1. As before we will w.l.o.g. not as-
sign prices to the individual edges of a literal component but
only to the component itself, assuming that the price is split
evenly among the edges. We note that a literal component L
gives maximum profit 2 under price assignment c if and only
if c(L) = 1 or c(L) = 2. If two literals appear in the same
clause, their corresponding literal components will be com-
bined into a clause component as depicted in Figure 2. We
assume w.l.o.g. that all clauses have length 2. Clauses that
consist of only a single literal l are transformed into clauses
of type (l ∨ y) ∧ (y ∨ y), where y is a newly added variable.
The following lemma states that clause components indeed
model the behavior of clauses in the SAT-instance.

e1

e2

e3

L1 L2

333 3 3 3

3

11

1

1 1

111

1

Figure 2: Two literal components L1 and L2 are combined
into a clause component.

LEMMA 3.1. Let C be a clause component with literal com-
ponents L1 and L2. The maximum profit obtainable from
C is 25. Profit 25 is obtained under price assignment c if
and only if c(Li) = 2 and c(Lj) = 1, {i, j} = {1, 2}, or
c(L1) = c(L2) = 2. C gives profit 24 if c(L1) = c(L2) = 1.

The main ideas for the proof of Lemma 3.1 are not much
different from those needed to treat the weight components
of the previous section. As the length of the proof, how-
ever, tends to grow with the complexity of the component in
question, details are omitted in this extended abstract. Fig-
ure 3 shows the maximum profit obtainable from a clause
component as a function of the prices assigned to its literal
components. Depending on the prices assigned to both literal
components profit from a clause component is maximized by
finding the optimal price for edges e1, e2 and e3 (see Fig. 2).
A precise analysis is omitted due to space reasons.

We will now define the complete G-SUSP instance for
our reduction. For each clause ci = (xj ∨ xk) we con-
struct a clause component Ci on literal components Lh(xj)

2

1,8
19

1,6
1

20

y
1,2

21

1,4

1,4

22

1,2

23

1,6x

24

1,8 1

25

2

Figure 3: Maximum profit from a clause component as a
function of c(L1), c(L2) ∈ [1, 2].

and Ll(xk), h, l ∈ {0, 1, 2}, as described above. We
then add dummy literal components until for each variable
xi exactly 6 literal components L0(xi),L1(xi),L2(xi) and
L0(xi),L1(xi),L2(xi) exist. A connected graph is ob-
tained by identifying the end vertex of a literal component
Lh(xk) with the central vertex of a clause component Cl

containing literal component Lh(xk) in a cyclic fashion, i.e.,
we continue by connecting Lh(xk) with Lh+1 mod 3(xk),
Lh+1 mod 3(xk) with Lh+1 mod 3(xk) and so on. Addition-
ally 6 literal exclusion paths P i

1, . . . , P
i
6 for each variable xi

are defined. Every literal exclusion path P contains the 4
edges belonging to two of the literal components that were
just joined together and has value w(P) = 3.

A price assignment c on the resulting graph is said to
be integral if c(L) ∈ {1, 2} for all literal components L.
We say that an integral price assignment is SAT-feasible
if c(L0(xi)) = c(L1(xi)) = c(L2(xi)), c(L0(xi)) =
c(L1(xi)) = c(L2(xi)) and c(L0(xi)) 6= c(L0(xi)) for all
i. The intuition behind SAT-feasibility is quite obvious. We
can associate a SAT-feasible price assignment c with a truth
assignment t for the original SAT instance by setting t(xi) =
1 if c(L0(xi)) = 2 and t(xi) = 0 else. On the constructed
graph SAT-feasible prices result in maximum profit from
all dummy literal components and literal exclusion paths.
Profit from each clause component is 24 or 25 depending
on whether at least one of the contained literal components
has price 2. Obviously, total profit of price assignment c is
then directly related to the number of clauses satisfied by t.

The main step towards our hardness result lies in prov-
ing that we can transform in polynomial time an arbitrary
price assignment c on the constructed graph into a SAT-
feasible price assignment c∗ of no smaller profit. This also
yields that the optimal price assignment can be assumed to
be SAT-feasible and, thus, gives us an easy way of upper

bounding the optimal profit obtainable on the constructed G-
SUSP instance. Given any price assignment c, the following
transformation returns a SAT-feasible price assignment c∗.

1. Define c′ by c′(L) = 1 if c(L) < 1, c′(L) = 2 if
c(L) > 2 and c′(L) = c(L) else.

2. Let c′′ = c′ and iterate over all literal exclusion paths P .
Let P connect literal components L1, L2 and c′′(L1) ≤
c′′(L2). If c′′(L1) + c′′(L2) > 3 set c′′(L1) = 1.

3. Let c∗ be the SAT-feasible price assignment that mini-
mizes

|{L | c′′(L) > 1.75 ∧ c∗(L) = 1}|.

LEMMA 3.2. For price assignments c and c∗ as defined in
the above transformation it holds that prof(c∗) ≥ prof(c).

Sketch of Proof: The full proof of this fact is omitted here.
We just briefly describe the main ideas needed to show that
profit does not decrease in any of the individual steps.

Step 1: It can be shown that profit does not decrease on
any of the components of the graph. For a dummy literal
component L this is straightforward, since profit becomes
maximal if c′(L) 6= c(L). Then consider a literal exclusion
path P connecting literal components L1 and L2. If c(L1)+
c(L2) ≤ 3, we observe that c(L1) + c(L2) ≤ c′(L1) +
c′(L2) ≤ 3, which gives the claim. If c(L1)+c(L2) > 3 then
profit from P under c is 0 and the claim follows trivially. For
clause components we can apply a similar, but more lengthy,
argument.

Step 2: Price assignment c′′ is constructed by iterating
over all literal exclusion paths and modifying c′ locally.
We consider a single iteration and prove that profit can
only be increased by the modifications. Let P be literal
exclusion path connecting literal components L1 and L2,
where w.l.o.g. c′(L1) ≤ c′(L2). If c′(L1) + c′(L2) ≤ 3
nothing is changed. Assume then that c′(L1) + c′(L2) >
3. Thus, we have c′′(L1) = 1, c′′(L2) = c′(L2). The
profit under c′ and c′′ may differ in the following 3 places:
the clause component C in which literal component L1 is
contained, literal exclusion path P and the second literal
exclusion path Q in which L1 is contained. We refer to the
change of profit in these places as ∆C , ∆P , ∆Q and note
that the total change of profit caused by changing c′(L1) can
be written as ∆ = ∆C + ∆P + ∆Q. We will bound each
summand individually.

Consider literal exclusion path P . Since c′(L1) +
c′(L2) > 3 it follows that P gives profit 0 under price
assignment c′. From c′(L1) ≤ c′(L2) we conclude that
c′(L2) ≥ 3/2. We also observe that c′(L2) ≤ 2 by
construction. With c′′(L1) = 1 path P then gives profit
at least 5/2 under c′′ and we have that ∆P ≥ 5/2. For
literal component L1 we have that c′(L1)− c′′(L1) ≤ 1 and,

thus, ∆Q ≥ −1. For clause component C we can argue that
∆C ≥ −3/2. Details of this part of the proof are omitted.
We conclude that ∆ ≥ −3/2 + 5/2− 1 = 0.

Step 3: We first note that the SAT-feasible assignment
c∗ can be constructed locally, i.e., considering only the
literal exclusion paths belonging to one variable at a time.
We will also follow this local approach to show that total
profit does not decrease. For variable xi we define Xi =
{L0(xi),L1(xi),L2(xi)}, X i = {L0(xi),L1(xi),L2(xi)}
and let

αi = |{L | L ∈ (Xi ∪ X i) ∧ c′′(L) > 1.75 ∧ c∗(L) = 1}|

denote the number of problematic literal components be-
longing to variable xi. We start by arguing that αi ∈ {0, 1}.
To this end, let B = {L | L ∈ (Xi ∪ X i) ∧ c′′(L) > 1.75}.
If B ⊆ Xi or B ⊆ X i then we can obviously define a SAT-
feasible c∗ such that αi = 0. Assume then that B ∩ Xi 6= ∅
and B ∩ X i 6= ∅. From the construction of c′′ we know that
B cannot contain 2 literal components that are connected
by a literal exclusion path. Using this we can argue that
|B ∩ Xi| = |B ∩ X i| = 1. This gives the claim.

Let now ∆i denote the change in profit in all literal
exclusion paths belonging to variable xi going from price
assignment c′′ to c∗. We will show that ∆i ≥ αi. If αi = 0
this is clear, because profit from all literal exclusion paths
becomes maximal under c∗. If αi = 1 we can use a similar
argument as above to isolate two literal exclusion paths that
give profit at most 5/2 under c′′. This implies that profit
from all literal exclusion paths of variable xi is bounded by
17 under c′′ and becomes 18 under c∗.

For a clause component C let ∆C denote the change in
profit. We can argue that ∆C ≥ 0 if C does not contain a
problematic literal component and ∆C ≥ −1 if it does. We
omit the rather technical details of this argument. It follows,
however, that at most

∑

i αi clause components can have
negative ∆C-values. This finishes the proof. �

For a given MAX-2SAT(3) instance ISAT with m
clauses over n variables the optimal truth assignment can im-
mediately be turned into an optimal solution for our G-SUSP
instance with profit 18n + 24m + 2d + 43v + opt(ISAT),
where opt(ISAT) refers to the maximum number of satis-
fiable clauses in the original SAT formula, v is the num-
ber of variables added due to clauses of length 1 and d
denotes the number of dummy literal components in the
graph. We note that opt(ISAT) ≥ m/2 and, thus, the ex-
pression 18n + 24m + 2d + 43v can be upper bounded
by 133 · opt(ISAT). Hence, for any ε a (1 − ε/134)-
approximation algorithm for G-SUSP combined with the
above transformation into SAT-feasible solutions yields a
corresponding (1 − ε)-approximation for MAX-2SAT(3).

THEOREM 3.1. G-SUSP is APX-hard even if the length of
each path is bounded by a constant ` ≥ 4, the valuations

for all paths are of constant size, there are only 3 distinct
price levels, there is at most a single offer for each possible
path, the number of paths in which each edge is contained
is bounded by a constant B ≥ 8 and the underlying graph’s
maximum degree is bounded by a constant c ≥ 7.

The above APX-hardness result is in a sense best pos-
sible. Guruswami et al. present a pseudopolynomial time
algorithm for the highway problem with paths of constant
length. This approach also yields an FPTAS and can in fact
easily be generalized to the case of constant degree trees in-
stead of a line. Hence, APX-hardness is lost if we simulta-
neously require a tree and a maximum degree bounded by a
constant.

4 An O(log ` + log B)-approximation

We now deal with the design of approximation algorithms
for SUSP. Our algorithms are especially suitable for sparse
problem instances. We therefore assume that the size of each
set is bounded by ` and that none of the goods appear in more
than B sets. We let δ(S) = w(S)/|S| refer to the relative
price per good offered by set S. The following algorithm is
based on a partitioning approach.

1. Round all δ(S) to powers of 2 and let 2k = maxS δ(S).
Then partition S into S0, . . . ,St, where

Si =
{

S ∈ S | δ(S) ∈
{

2i+j·dlog(2`2B)e | j ∈ N0

}}

and t = dlog(2`2B)e − 1.

2. For all i let S∗
i = Si. Then remove set S ∈ S∗

i from
S∗

i if it intersects with a set T ∈ S∗
i and δ(S) < δ(T).

Define prices ci as ci(e) = δ(S) if e is still contained in
a set S ∈ S∗

i and ci(e) = 0 else.

3. Return c = argmax{prof(ci) | ci, i = 0, . . . , t}.

The crucial step in the analysis of the above algorithm
consists of showing that we do not lose too much potential
profit by removing sets in Step 2. This claim is formalized
in the following lemma.

LEMMA 4.1. Let Si and S∗
i be defined as in the above

algorithm. Then
∑

S∈S∗

i
|S|δ(S) ≥

∑

S∈Si\S∗

i
|S|δ(S).

Proof. We will construct the following collection of trees.
We start with a single vertex v(S) for each set S. If set
S1 is removed from S∗

i because of its intersection with
S2, we assign vertex v(S1) as a child to vertex v(S2).
Since we require δ-values to be strictly increasing in this
procedure, it follows that we do not construct cycles. In the
resulting collection of trees S∗

i corresponds to the set of all
root vertices, while Si\S∗

i contains the sets corresponding

to inner vertices. We assign to each vertex v(S) a label
α(v(S)) = |S|δ(S).

For a single tree with root r and inner vertices W it
holds that α(r) ≥

∑

v∈W α(v). To see this, consider some
vertex v with children u1, . . . , uj and let v correspond to set
S. Then α(v) ≥ δ(S). From the fact that S contains at
most ` goods and each of these goods is itself contained in at
most B − 1 further sets, we can upper bound the number of
vertices assigned as children to v, thus, j ≤ `B. From our
partitioning step we know that for any set Si corresponding
to vertex ui it must be true that δ(Si) ≤ (2`2B)−1 · δ(S).
Consequently |Si|δ(Si) ≤ (2`B)−1δ(S). Thus,

j
∑

i=1

α(ui) ≤ `B · (2`B)−1 · δ(S) ≤
1

2
α(v).

Let L(j) be the set of all vertices of the tree with dis-
tance j from the root. By induction it readily follows that
∑

v∈L(j) α(v) ≤ 2−jα(r). Summing up immediately gives
the claim. Since the above holds for every tree in the collec-
tion this finishes the proof of the lemma. �

Applying this immediately yields the desired approxi-
mation guarantee.

THEOREM 4.1. The above algorithm computes an
O(log ` + log B)-approximation to SUSP.

Proof. For any set S let δ(S) refer to the rounded value after
Step 1 of the algorithm. We observe that δ(S) = δ(T) for
any S, T ∈ S∗

i with S ∩ T 6= ∅. Therefore, it holds that
prof(ci) =

∑

S∈S∗

i
|S|δ(S) for 0 ≤ i ≤ t. Choosing c =

argmax{prof(ci) | ci, i = 0, . . . , t} and applying Lemma
4.1 yields

prof(c) ≥
1

t + 1

t
∑

i=0

∑

S∈S∗

i

|S|δ(S)

≥
1

2(t + 1)

t
∑

i=0

∑

S∈Si

|S|δ(S)

=
1

2(t + 1)

∑

S∈S

|S|δ(S) ≥
1

4(t + 1)
opt,

where the last inequality takes into account the rounding
applied to δ-values in Step 1. Since t = O(log(`B)), the
claim follows. �

A lower bound. It has already been observed in [11] that
using the sum of values of all sets as an upper bound on the
optimal solution cannot result in an approximation guarantee
better than Ω(log B). As a tight example consider a single
good e and sets S1, . . . , SB with w(Si) = 1/i.

5 An O(`2)-approximation

Given that each set is of size at most `, we will derive an
O(`2)-approximation. It was already observed in [11] that
bounding the optimal solution’s value by the sum of values
of all sets cannot give an approximation ratio better than
log B. Thus, we will need to introduce a new upper bounding
technique. We proceed in two steps. First, we consider
a restriction of SUSP in which we count profit only from
those sets for which the total price is split evenly among
the contained goods. This is formalized in the following
definition.

DEFINITION 3. The smoothed single-minded unlimited sup-
ply pricing problem (s-SUSP) is defined on the same input
(U,S, w) as the general SUSP. We want to find the price
assignment c∗ that maximizes

∑

S∈Λ(c)

∑

e∈S c(e), where
Λ(c) = {S ∈ S | c(e) ≤ w(S)/|S| ∀ e ∈ S}.

Given a SUSP-instance I we can compare the opti-
mal profit opt(I), opts(I) under the objective functions
of SUSP and s-SUSP, respectively. It is straightforward to
note that opts(I) ≥ (1/`)opt(I). On the other hand, con-
sider an arbitrary price assignment c and let prof(c) and
profs(c) denote its profit under these two objectives. Then
clearly prof(c) ≥ profs(c), since S ∈ Λ(c) implies that
∑

e∈S c(e) ≤ w(S). It follows that in order to obtain the
desired O(`2)-approximation to SUSP it is sufficient to com-
pute an O(`)-approximation to s-SUSP on the same input.

To find such a solution to s-SUSP we start by computing
the optimal price separately for each good, i.e., assuming all
other prices are 0 and, thus, no bidder’s budget is exceeded
by the price of any of the remaining goods. Clearly, setting
prices independently from each other will lead to conflicts
in the resulting price assignment c, where we consider any
set S with e1, e2 ∈ S and c(e1) ≤ w(S)/|S| < c(e2) a
conflict. The main task lies in resolving these conflicts and
incorporating the individual prices into a consistent s-SUSP
solution.

Consider a single good e. For a given price assignment c
let Cc(e) = {S | ∃ e′ : e, e′ ∈ S∧c(e) ≤ w(S)/|S| < c(e′)}
refer to the sets that contain e and are not violated by its
price, but become conflicting because of some other good
e′. Analogously, the non-conflicting sets are denoted by
Nc(e) = {S | e ∈ S ∧ c(e′) ≤ w(S)/|S| ∀ e′ ∈ S}.
Finally, we let Cc =

⋃

e∈U Cc(e) refer to all conflicting
sets under c. The following hypergraph structure models
conflicts between different goods.

DEFINITION 4. Let c be an arbitrary price assignment. The
corresponding conflict graph is a labeled directed multi-
hypergraph H = (VH , EH) with a vertex ve for each
e ∈ U and a directed hyperedge fS = (P, Q) for every
conflicting set S ∈ Cc, where P = {ve |S ∈ Cc(e)} and
Q = S\P . For each fS = (P, Q) we let fS ∈ Out(ve) for

all ve ∈ P , fS ∈ In(ve) for all ve ∈ Q. We define labels
α(ve) = c(e) · |Nc(e)| and α(ve, fS) = c(e) for all ve ∈ VH

s.t. fS ∈ Out(ve), and let α(fS) =
∑

ve∈P α(ve, fS) for
all fS = (P, Q) ∈ EH . Finally, we set c(ve) = c(e) for all
ve ∈ VH .

The intuition behind a price assignment’s conflict graph
is quite simple. Each vertex corresponds to a good in the s-
SUSP instance, each hyperedge represents a conflicting set.
Label α(ve) of a vertex ve ∈ VH describes the profit made by
the corresponding good e under price assignment c on non-
conflicting sets only. Hyperedge fS is labeled with the profit
α(fS) that could be obtained by the corresponding set S
assuming there were no violations. Label α(ve, fS) denotes
the contribution of good e to the profit that is lost because
S is conflicting. For ease of notation, let H = (VH , EH),
V ′ ⊆ VH and E′ ⊆ EH and define α(V ′) =

∑

v∈V ′ α(v),
α(E′) =

∑

f∈E′ α(f) and α(H) = α(VH) + α(EH). The
following algorithm is based on the idea of transforming
the conflict graph of an initial price assignment obtained by
assigning optimal prices to each good separately.

1. For all e ∈ E find the optimal price c∗(e) under the
s-SUSP objective assuming all other prices are set to 0.

2. Construct conflict graph H1 = (V1, E1) for price
assignment c∗.

3. Let V1 = {v1, . . . , vm} where c(v1) ≤ · · · ≤ c(vm).
For i = 1, . . . , m check if

∑

f∈In(vi)

α(f) >
1

2

∑

f∈Out(vi)

α(vi, f).

In this case replace each f = (P, Q) ∈ Out(vi) by
f ′ = (P\{vi}, Q) and update α(f ′). Refer to the
resulting graph as H2 = (V2, E2), where V2 = V1.

4. Let R = {v ∈ V2 |Out(v) = ∅} and E = {(P, Q) ∈
E2 |Q ⊆ R}. If α(E) > α(R) then for all (P, Q) ∈ E
and all v ∈ P set α(v) = α(v)+

∑

f∈Out(v)∩E α(v, f),
for all v ∈ R set α(v) = c(v) = 0. Finally, remove
all edges from graph H2 and let H3 = (V3, E3) with
V3 = V2, E3 = ∅ denote the resulting graph.

5. For good e ∈ U with corresponding vertex ve in H3 set
c(e) = c(ve).

After the conflict graph of the initial price assignment
c∗ is constructed, the algorithm proceeds roughly as follows.
In Step 3 we transform the conflict graph in order to ensure
some purely technical requirement that will be of importance
later on. Especially, note that the resulting hypergraph might
no longer be a legal conflict graph of some price assignment
on our s-SUSP instance. Step 4 of the algorithm takes care of

this problem. Here, we first identify a set of hyperedges that
carry a large portion of the overall profit, namely E . We then
decide whether to make these hyperedges non-conflicting by
reducing the labels of vertices in R. Finally, we remove all
edges that are still present at this point of time. The following
lemma states that this again results in a legal conflict graph,
if we remove those sets from the s-SUSP instance whose
corresponding hyperedges have been removed at the very
end of the algorithm.

LEMMA 5.1. Let (U,S, w) be the original s-SUSP instance.
Then graph H3 is conflict graph for price assignment c
as defined by the algorithm on s-SUSP instance (U,S ′, w),
where S ′ ⊆ S.

Proof. If α(E) ≤ α(R) in Step 4, no vertex label is modified
and the algorithm simply removes all hyperedges from the
conflict graph. In this situation the observation is rather
trivial, since we can set S ′ = S\C, where C contains all
conflicting sets.

Else let R and E be defined as in the algorithm and
R′ = {v ∈ V2 |Out(v) ∩ E 6= ∅}. Sets corresponding to
hyperedges f ∈ E are by definition violated only by the
prices of goods corresponding to vertices v ∈ R. Hence,
as all these prices are set to 0, the sets corresponding to
hyperedges in E become non-conflicting. By definition of
the conflict graph labels of vertices v ∈ R′ must then be
updated by adding α(v, f) for each f ∈ Out(v)∩E , as done
by the algorithm. As before, the remaining hyperedges are
removed from the conflict graph and we get S ′ by removing
their corresponding sets from S. �

Conflict graph H3 does not contain hyperedges and,
thus, by Lemma 5.1 price assignment c does not cause any
conflicts on the remaining sets S ′. Hence, c realizes total
profit profs(c) = α(H3) under the s-SUSP objective. We
proceed by comparing α(H3) to the value α(H1) of the
initial conflict graph.

LEMMA 5.2. It holds that α(H2) ≥
1

2`−1α(H1).

Proof. As in the algorithm let c(v1) ≤ · · · ≤ c(vm). By
Ini(vi) and Outi(vi) we refer to the sets of incoming and
outgoing hyperedges of vertex vi at the beginning of the i-th
iteration, i.e., just before vertex vi is treated in Step 3 of the
algorithm. By αi(f) we denote the α-value of hyperedge
f at this time. The important observation is that by the
construction of H1 we have that

(P, Q) ∈ E1 ⇒ c(v) < c(w) ∀ v ∈ P, w ∈ Q,

since otherwise price c(w) could not violate a set’s value
which c(v) does not. This immediately implies that Ini(vi)∩
Outj(vj) = ∅ if j > i. Thus, Ini(vi) ⊆ E2 and αi(f) =
· · · = αm+1(f) for any f ∈ Ini(vi), because no hyperedge

from Ini(vi) can be removed or assigned a new label in
a later step. Now let W be the set of vertices vi that are
removed from their outgoing hyperedges Outi(vi) by the
algorithm. Then

∑

f∈E2

α(f) ≥ αm+1(
⋃

vi∈W

Ini(vi))

≥
1

` − 1

∑

vi∈W

∑

f∈Ini(vi)

αm+1(f)

=
1

` − 1

∑

vi∈W

∑

f∈Ini(vi)

αi(f)

>
1

2(` − 1)

∑

vi∈W

∑

f∈Outi(vi)

α(v, f)

=
1

2(` − 1)
(α(E1) − α(E2)) ,

where the second inequality is due to the fact that |Q| ≤ `−1
for all (P, Q) ∈ E1 and the fourth inequality holds by the
construction of H2. It follows that

α(E2) >
1

2`− 1
α(E1)

and, since α(V1) = α(V2), this finishes the proof. �

LEMMA 5.3. It holds that α(H3) ≥
1
3α(H2).

Proof. As in the algorithm, let R = {v ∈ V2 |Out(v) = ∅}
and E = {(P, Q) ∈ E2 |Q ⊆ R}. It suffices to show that

α(E) ≥
1

2
α(E2).

Having this, it readily follows that

max{α(E), α(R)} ≥
1

3
(2α(E) + α(R))

≥
1

3
(α(E2) + α(R))

and, since the algorithm removes either E or R from the
graph,

α(H3) = α(H2) − α(E2) − α(R)

+ max{α(E), α(R)}

≥ α(H2) −
2

3
(α(E2) + α(R)) ≥

1

3
α(H2).

We will now show the above claim. Let A = {v ∈
V2 | In(v) = ∅} and B = V2\(A ∪ R). W.l.o.g. assume
that B = {v1, . . . , vk}, where c(v1) ≤ · · · ≤ c(vk).
Initialize X0 =

⋃

v∈A Out(v) and Y 0 = ∅. Define label
γ(f) = α(f) for f ∈ X0 and γ(f) = 0 else. Again
let γ(F) =

∑

f∈F γ(f) for any F ⊆ E2. Obviously,
γ(X0) ≥ γ(Y 0). For j = 1, . . . , k we repeat the following
procedure.

1. Set Xj =
(

Xj−1\In(vj)
)

∪ Out(vj).

2. Set Y j = Y j−1 ∪ In(vj)

3. For each f ∈ Out(vj) set γ(f) = γ(f) + α(vj , f).

By the construction of H2 we know that

∑

f∈Out(vj)

α(vj , f) ≥ 2 ·
∑

f∈In(vj)

α(f)

for all ve ∈ B. Since γ(f) ≤ α(f) at all times, we have

γ(Xj) − γ(Xj−1) ≥
∑

f∈Out(vj)

α(vj , f)

−
∑

f∈In(vj)

α(f) ≥
∑

f∈In(vj)

α(f)

and

γ(Y j) − γ(Y j−1) ≤
∑

f∈In(vj)

γ(f) ≤
∑

f∈In(vj)

α(f).

Thus, the inequality γ(Xj) ≥ γ(Y j) must hold for any j.
Finally, we observe that Xk ∪ Y k = E2, γ(Xk) = α(Xk),
γ(Y k) = α(Y k) and Xk = E . It follows that

α(E) = α(Xk) ≥
1

2

(

α(Xk) + α(Y k)
)

=
1

2
α(E2),

finishing the proof. �

Thus, we lose at most a factor of ` by incorporating the
prices initially assigned to individual goods into a solution to
s-SUSP. This yields the following result.

THEOREM 5.1. The above algorithm computes an O(`2)-
approximation to SUSP with sets of size at most `.

Proof. Let I be a SUSP instance and let opts(I) be the value
of an optimal solution under the s-SUSP objective. We argue
that the algorithm computes an O(`)-approximation for s-
SUSP on this instance. In the initial price assignment c∗

let prof∗(e) = c∗(e) · |Nc∗(e) ∪ Cc∗(e)| denote the profit
made by good e assuming there were no conflicts. It holds
that α(H1) =

∑

e∈U prof∗(e) ≥ opts(I). Let c denote the
prices returned by the algorithm. By Lemmas 5.2 and 5.3,

profs(c) = α(H3) ≥
1

6`− 3
α(H1) ≥

1

6` − 3
opts(I).

As we have argued about the relation between SUSP and s-
SUSP before, this gives the claim. �

A lower bound. We can view our upper bound as the sum of
optimal profits obtainable from single goods. Clearly, using
this upper bounding technique we cannot expect to achieve

approximation ratios better than Ω(`). Independently of our
results, Balcan and Blum [4] recently presented a random-
ized algorithm with approximation ratio O(`) in expectation.
This algorithm relies on the same upper bounding technique
as ours, but uses randomization to determine a subset of all
goods and sets, such that pricing goods separately does not
lead to conflicts. Though this algorithm can be derandom-
ized in some cases, it is an interesting open problem to obtain
a deterministic O(`)-approximation in general.

6 Acknowledgments

We would like to thank Berthold Vöcking for proposing this
problem and Thorsten Bernholt for an insightful discussion
on a closely related topic.

References

[1] G. Aggarwal, T. Feder, R. Motwani and A. Zhu. Algorithms
for multi-product pricing. In Proc. of 31st ICALP, 2004.

[2] A. Archer, C.H. Papadimitriou, K. Talwar, and É. Tardos. An
approximate truthful mechanism for combinatorial auctions
with single parameter agents. In Proc. of 14th SODA, 2003.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela and M. Protasi. Complexity and Approximation.
Springer, 1999.

[4] N. Balcan and A. Blum. Approximation Algorithms for Item
Pricing. Technical Report CMU-CS-05-176, 2005.

[5] Y. Bartal, R. Gonen and N. Nisan. Incentive Compatible
Multi-Unit Combinatorial Auctions. In Proc. of 9th TARK,
2003.

[6] M. Bouhtou, A. Grigoriev, S. van Hoesel, A. van der Kraaij,
M. Uetz and F. Spieksma. Pricing Bridges to Cross a River.
Submitted. An extended abstract appeared as Pricing Network
Edges to Cross a River in Proc. of 2nd WAOA, 2004.

[7] P. Briest, P. Krysta and B. Vöcking. Approximation Tech-
niques for Utilitarian Mechanism Design. In Proc. of 37th
STOC, 2005.

[8] A. Fiat, A.V. Goldberg, J.D. Hartline and A. Karlin. Competi-
tive Generalized Auctions. In Proc. of 34th STOC, 2002.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-completeness. Freeman, 1979.

[10] A.V. Goldberg, J.D. Hartline and A. Wright. Competitive
Auctions and Digital Goods, In Proc. of 12th SODA, 2001.

[11] V. Guruswami, J.D. Hartline, A.R. Karlin, D. Kempe,
C. Kenyon and F. McSherry. On Profit-Maximizing Envy-free
Pricing. In Proc. of 16th SODA, 2005.

[12] J. Hartline and V. Koltun. Near-Optimal Pricing in Near-
Linear Time. In Proc. of WADS, 2005.

[13] D. Lehmann, L. O’Callaghan and Y. Shoham. Truth revelation
in approximately efficient combinatorial auctions. In Proc. of
1st EC, 1999.

[14] N. Nisan and A. Ronen. Algorithmic Mechanism Design. In
Proc. of 31st STOC, 1999.

[15] P. Rusmevichientong, B. Van Roy and P. Glynn. A Non-
Parametric Approach to Multi-Product Pricing. To appear in
Operations Research.

A Proofs from Section 3

We present the technical details from the proof of APX-
hardness of G-SUSP. Lemma A.1 shows how the profit
obtained from a clause component can be expressed as a
piecewise linear function that depends solely on the prices
assigned to the contained literal components L1 and L2.
This is due to the fact that the additional edges e1, e2 and
e3 (see Fig. 2) are contained only in paths that are part of
this component and, thus, their optimal prices are determined
by c(L1) and c(L2). Lemma 3.1 then follows as a simple
corollary.

Lemma A.1 For c(L1), c(L2) ∈ [1, 2] we can describe
prof(C) as a function of c(L1) and c(L2) as follows:

prof(C) =

(1) 24, if c(L1) = c(L2) = 1

(2) 24− c(L2), if 1 = c(L1) < c(L2) ≤
3
2

(3) 15 + 5c(L2), if 1 = c(L1),
3
2 < c(L2)

(4) 18 + 5c(L1) − c(L2), if 1 < c(L1) ≤ c(L2) ≤
3
2

(5) 9 + 5c(L1) + 5c(L2), if 1 < c(L1) < 3
2 < c(L2),

c(L1) + c(L2) ≤ 3

(6) - (9) symmetric to (2) - (5) with c(L1) > c(L2)

(10) 9 + 4c(L1) + 4c(L2), if c(L1) + c(L2) > 3

P2

P3
3 3

1P1 e

L L1 2

i

i i

i

Figure 4: Substructure of a clause component.

Proof. A clause component consists of its literal components
and three copies of the substructure found in Figure 4. In
order to prove the claim we just need to describe how c(ei)
has to be chosen to maximize total profit. Consider the
substructure in Figure 4 consisting of edge ei and the paths
defined on ei, L1 and L2. For any given c(L1) ≤ c(L2) in
[1, 2] there are only two possible prices that can potentially
give maximum profit. These are c(ei) = 1 or c(ei) = 3 −
c(L2), respectively. To see this, note, that for any c(ei) ≤ 1
edge ei will contribute 3c(ei) to the substructure’s total profit
(c(ei) for each path in which it appears). It follows that

any price assignment c with c(ei) < 1 can be improved
by setting c(ei) = 1. Now consider c with c(ei) > 1.
For c(ei) ≤ 3 − c(L2) edge ei contributes profit 2c(ei)
(being counted on two paths). Thus, any price assignment
c with 1 < c(ei) < 3 − c(L2) can be improved by setting
c(ei) = 3 − c(L2). Especially, since c(L2) ≤ 2, it follows
that 2c(ei) ≥ 2. For c(ei) > 3 − c(L2) the contribution
becomes c(ei), since the price for the path containing L2

exceeds its threshold and edge ei is counted only once on the
path containing L1. From c(L1) ≥ 1 it follows that ei can
contribute at most 2 on this path and, thus, profit does not
decrease by setting c(ei) = 3 − c(L2).

Using this observation it is clear how c(ei) must be
chosen in each case with c(L1) ≤ c(L2). We let c(ei) =
3 − c(L2) whenever 2(3 − c(L2)) > 3 (⇔ c(L2) < 3/2)
and c(ei) = 1 otherwise. Cases with c(L1) > c(L2) are
symmetric, thus, c(ei) = 1 or c(ei) = 3 − c(L1). Total
profit from clause component C is then obtained by summing
up over 3 copies of the substructure, 2 literal components and
path P (see Fig. 2). �

In Section 3 we present a procedure that transforms in
polynomial time an arbitrary price assignment c into a SAT-
feasible price assignment c∗ of no smaller profit. Lemmas
A.2, A.3 and A.4 show that none of the three steps of
this transformation decreases total profit of the solution.
Formally, we have that prof(c) ≤ prof(c′) ≤ prof(c′′) ≤
prof(c∗).

Lemma A.2 It holds that prof(c′) ≥ prof(c).

Proof. We show that profit does not decrease on any literal
exclusion path, in any clause or dummy literal component.
For dummy literal components this is trivial, since profit
from these components becomes maximal if the assigned
price is changed.

We now fix some clause component C with literal com-
ponents L1 and L2. We assume w.l.o.g. that c(L1) ≤ c(L2)
and consider all possible cases. By prof(C) and prof ′(C)
we refer to the total profit under c and c′, respectively.

Case (1) c(L1), c(L2) < 1 ⇒ c′(L1) = c′(L2) = 1. The
profit from each substructure (Fig. 4) is bounded by 6, thus,

prof(C) ≤ 3 · 6 + 3(c(L1) + c(L2)) ≤ 24 = prof ′(C),

by summing up over 3 substructures, 2 literal components
and the connecting path P .

Case (2) c(L1) < 1 ≤ c(L2) ≤ 2 ⇒ c′(L1) =
1, c′(L2) = c(L2). From the proof of Lemma A.1 we know
that maximum profit from each substructure is obtained by
setting c(ei) = 1 or c(ei) = 3 − c(L2) depending on c(L2).

In both cases increasing c(L1) to 1 gives an increase in profit
of 1− c(L1) in each substructure. Identical observations are
easily made for the literal components and path P . It follows
that

prof(C) ≤ prof(C) + 6(1 − c(L1)) = prof ′(C).

Case (3) c(L1) < 1, c(L2) > 2 ⇒ c′(L1) = 1, c′(L2) = 2.
By Lemma A.1 profit from C is maximal under c′ and the
claim follows.

Case (4) 1 ≤ c(L1) ≤ 2 < c(L2) ⇒ c′(L1) =
c(L1), c

′(L2) = 2. From observations analogous to those
in the proof of Lemma A.1 it follows that under price
assignment c it must be c(ei) = 3 − c(L2) in order to
obtain maximum profit 3 + 2(3− c(L2)) + c(L1) from each
substructure. (If c(L2) > 3 we let c(ei) = 0 and the former
is an upper bound on the profit from each substructure.)
Under c′ setting c′(ei) = 1 leads to profit 5 + c(L1). With
3 − c(L2) < 1 we can conclude that profit increases in each
substructure. Literal component L2 and path P give profit 0
under c and, thus, cannot contribute less under c′.

Case (5) c(L1), c(L2) > 2 ⇒ c′(L1) = c′(L2) = 2. By
Lemma A.1 profit from C is maximal under c′ and the claim
follows.

We then look at a single literal exclusion path P
connecting literal components L1 and L2. We distinguish
the following 2 cases.

Case (1) c(L1) + c(L2) ≤ 3. We observe that
c(L1) + c(L2) ≤ c′(L1) + c′(L2) ≤ 3 and, since in
this case profit from P is just the sum of these prices, it
follows that profit under c′ is no smaller than under c.

Case (2) c(L1) + c(L2) > 3. Then the profit from P under
price assignment c is 0 and can obviously only increase
when going to c′.

Hence, prof(c′) ≥ prof(c). This finishes the proof. �

Lemma A.3 It holds that prof(c′′) ≥ prof(c′).

Proof. Price assignment c′′ is constructed by iterating over
all literal exclusion paths and modifying c′ locally. We will
consider a single iteration and prove that profit can only be
increased by the modifications.

Let P be literal exclusion path connecting literal com-
ponents L1 and L2 and look at the iteration in which P is
considered. If c′(L1) + c′(L2) ≤ 3 then nothing is changed
and obviously profit remains the same. Assume then that

c′(L1) + c′(L2) > 3. We let w.l.o.g c′(L1) ≤ c′(L2) and,
thus, will have c′′(L1) = 1, c′′(L2) = c′(L2). The profit
under c′ and c′′ may differ in the following 3 places: the
clause component C in which literal component L1 is con-
tained, literal exclusion path P and the second literal exclu-
sion path Q in which L1 is contained. We refer to the change
of profit in these places as ∆C , ∆P , ∆Q and note that the to-
tal change of profit caused by changing c′(L1) can be written
as ∆ = ∆C + ∆P + ∆Q. We will bound each summand in-
dividually.

Consider clause component C that consists of L1 and
some other literal component L3. We go through all possible
cases and apply Lemma A.1. Note, that c′(L1) > 1.

Case (1) 1 = c′(L3) < c′(L1) ≤ 3/2. Due to the changed
price we jump from Case (2) to Case (1) in Lemma A.1.
Hence, ∆C ≥ 24 − (24− c′(L1)) ≥ 0.

Case (2) c′(L3) = 1, c′(L1) > 3/2. We jump from (3) to
(1), thus, ∆C ≥ 24− (15 + 5c′(L1)) ≥ −1.

Case (3) 1 < c′(L3) ≤ c′(L1) ≤ 3/2. We jump from Case
(4) to Case (6), thus,

∆C = (24 − c′(L3)) − (18 + 5c′(L3) − c′(L1))

= 6 − 5c′(L3) ≥ −3/2.

Case (4) 1 < c′(L3) < 3/2 < c′(L1), c
′(L1) + c′(L3) ≤ 3.

We jump from Case (5) to Case (6), thus,

∆C = (24 − c′(L3)) − (9 + 5c′(L3) + 5c′(L1))

= 15− 5(c′(L1) + c′(L3)) − c′(L3) ≥ −3/2.

Case (5) 1 < c′(L1) ≤ c′(L3) ≤ 3/2. We jump from Case
(8) to case (6), thus,

∆C = (24 − c′(L3)) − (18 + 5c′(L1) − c′(L3))

= 6 − 5c′(L1) ≥ −3/2.

Case (6) 1 < c′(L1) < 3/2 < c′(L3), c
′(L1) + c′(L3) ≤ 3.

We jump from Case (9) to Case (7), thus,

∆C = (15 + 5c′(L3)) − (9 + 5c′(L1) + 5c′(L3))

= 6 − 5c′(L1) ≥ −3/2.

Case (7) c′(L1)+c′(L3) > 3. If c′(L3) ≤ 3/2 then we jump
from Case (10) to Case (6) and have

∆C = (24 − c′(L3)) − (9 + 4c′(L1) + 4c′(L3))

= 15− 4(c′(L1) + c′(L3)) − c′(L3)

≥ 15− 4(2 + 3/2)− 3/2 ≥ −1/2.

If c′(L3) > 3/2 then we jump from Case (10) to Case (7)
and have

∆C = (15 + 5c′(L3)) − (9 + 4c′(L1) + 4c′(L3))

= 6 − 4c′(L1) + c′(L3) ≥ 6 − 8 + 3/2 ≥ −1/2.

We conclude that ∆C ≥ −3/2.

Consider literal exclusion path P . Since c′(L1) +
c′(L2) > 3 it follows that P gives profit 0 under price
assignment c′. From c′(L1) ≤ c′(L2) we conclude that
c′(L2) ≥ 3/2. With c′′(L1) = 1 path P then gives profit
at least 5/2 under c′′ and we have that ∆P ≥ 5/2. It is
c′(L1) − c′′(L1) ≤ 1. Since the profit on literal exclusion
path Q can decrease by no more than this difference we
observe ∆Q ≥ −1. We can then bound the total difference
in profit by

∆ = ∆C + ∆P + ∆Q

≥ −3/2 + 5/2− 1 = 0.

This gives the claim. �

Lemma A.4 It holds that prof(c∗) ≥ prof(c′′).

Proof. For each variable of the SAT-instance 6 correspond-
ing literal exclusion paths induce some cyclic structure on
our graph. Two of theses cycles can be connected by the
paths of a clause component containing literal components
from the respective cycles.

We first note that the SAT-feasible assignment c∗ can
be constructed locally, i.e., considering only the literal ex-
clusion paths belonging to one variable at a time. We
will also follow this local approach to show that total
profit does not decrease. For variable xi we define Xi =
{L0(xi),L1(xi),L2(xi)}, X i = {L0(xi),L1(xi),L2(xi)}
and let

αi = |{L | L ∈ (Xi ∪ X i) ∧ c′′(L) > 1.75 ∧ c∗(L) = 1}|

denote the number of problematic literal components be-
longing to variable xi. We start by observing that αi ∈
{0, 1}. Let B = {L | L ∈ (Xi ∪ X i) ∧ c′′(L) > 1.75}.
If B ⊆ Xi or B ⊆ X i then we can obviously define a
SAT-feasible c∗ such that αi = 0. So let us assume that
B ∩ Xi 6= ∅ and B ∩ X i 6= ∅. From the construction of
c′′ we know that B cannot contain 2 literal components that
are connected by a literal exclusion path, since one of the
prices would have been set to 1 in Step 2 of the transforma-
tion. From the fact that we are looking at a cyclic structure
of length 6 it then follows that |B| = 2 and we can assume
w.l.o.g that B = {L0(xi),L1(xi)}. It is then clear that any
SAT-feasible price assignment results in αi = 1.

Let ∆i denote the change in profit in all literal exclu-
sion paths belonging to variable xi going from price as-
signment c′′ to c∗. We will now show that ∆i ≥ αi.
To see this, first note that ∆i ≥ 0 is a trivial obser-
vation, since profit from the literal exclusion paths be-
comes maximal under c∗. It then only remains to be

shown that ∆i ≥ 1 if αi = 1. We have already argued
that we can assume w.l.o.g that B = {L0(xi),L1(xi)}.
Again from the construction of c′′ it follows that
c′′(L1(xi)), c

′′(L2(xi)), c
′′(L0(xi)), c

′′(L2(xi)) < 1.25.
Profit from paths P i

2 and P i
5 under c′′ is then bounded by

2.5 each. Hence, total profit from the cycle is at most
4 ·3+2 ·2.5 = 17 under c′′ and will increase to its maximum
of 18 under c∗, thus, ∆i ≥ 1.

For the second part of the proof we now consider an
arbitrary clause component C consisting of some literal
components L1, L2 and let ∆C refer to the relative change
of profit. Under price assignment c∗ each clause component
gives at least profit 24. From Lemma A.1 it follows that
profit from C under c′′ is at most 24 if c′′(L1), c

′′(L2) ≤
1.75. We note that ∆C ≥ 0 in this case. But how can ∆C

become negative? This can happen only if there is a j ∈
{1, 2} such that c′′(Lj) > 1.75 and c∗(L1) = c∗(L2) = 1.
It is clear that ∆C ≥ −1 in this case.

The important observation now is that each variable i
with αi = 1 can cause at most one clause component to have
decreasing profit. It immediately follows that

∑

C ∆C ≥
−

∑

i αi. Finally, we note that profit from any dummy
literal component is maximal under c∗ and, thus, can only
be higher than under c′′. Now let ∆ be the change of profit
in the complete graph. From the above argumentation it is
immediately clear that

∆ ≥
n

∑

i=1

∆i +
∑

C

∆C

≥
n

∑

i=1

αi −
n

∑

i=1

αi = 0.

This finishes the proof. �

