
Energy-Efficient Broadcast Scheduling for Speed-Controlled
Transmission Channels

Patrick Briest∗ Christian Gunia†

Abstract

We consider the problem of computing energy-efficient broadcast schedules for a speed-controlled
broadcast channel, i.e., our goal is to find broadcast schedules that minimze overall energy consumption,
where sending at speeds for t time units consumes energyt·sα and transmission speed for each broadcast
needs to be fixed when it is started. The main part of the paper is focused on the case that the server
holds only a single message and every request defines a strictdeadline before which a full broadcast
has to be performed. We present anO(2α)-competitive deterministic online algorithm and prove that
this is asymptotically best possible even allowing randomization. We then discuss some possible problem
extensions. For the case of multiple different messages we prove that an extension of our online algorithm
achieves competitive ratio(4c− 1)α if the lengths of requests do not vary by more than a factor ofc. For
the problem variation in which the speed of running broadcasts may be changed, we present lower bounds
showing that competitive ratios that depend exponentiallyonα are still unavoidable.

1 Introduction

Classical objectives in online broadcasting usually abstract away from the precise hardware architecture of
the underlying computing machinery. They mostly aim at producing solutions that ensure a high degree of
convenience for the serviced clients, but do not take into account the cost of actually realizing the solution.
While this approach is quite reasonable in many traditionalscenarios, recent years have brought about an
increasing number of applications in which these issues become non-neglectible.

The most important factor determining thecostof running a broadcasting algorithm in practical appli-
cations is the algorithm’s energy consumption. In fact, energy efficiency has become a premier objective in
many different areas of computer science and recent advances have already led to changes in the structure
of processors, graphic cards and other parts of computer hardware. Reduced energy consumption offers new
application areas for computer systems. Multi-agent systems consisting of dozens of small, self-sustaining
units support engineers and researchers in an increasing number of applications that range from production
process planning to geographical observations [6]. Multi-agent systems depend on a reliable communication
link between them that is typically provided by means of a wireless connection. Due to characteristics of
their operation areas they are likely to be small and, consequently, carry a limited power supply. To use this
as efficiently as possible specialized hardware like, e.g.,low-power CPUs are utilized.

However, the energy consumed by the wireless connection is also far from being negligible. As wireless
communication is implicitly done via broadcasts we proposeto exploit this fact. We focus on a single agent
that acts as a data server and adapt the situation introducedby Yao et al. in their seminal work [14]: we
consider requests that have individual release times and deadlines and allow that multiple requests for the
same piece of data can be answered by a single broadcast. While doing this results in a smaller number of

∗Dept. of Computer Science, Dortmund University, Otto-Hahn-Str. 14, 44221 Dortmund, Germany. E-mail:
patrick.briest@cs.uni-dortmund.de. Supported by DFG grant Kr 2332/1-2 within Emmy Noether program.

†Dept. of Computer Science, Freiburg University, Georges-Köhler-Allee 79, 79110 Freiburg, Germany. E-mail:
gunia@informatik.uni-freiburg.de. Supported by DFG research training program No 1103 ’Embedded Microsystems’.

1

broadcasts needed to answer all requests, it also reduces the time slot left for the broadcast at hand and, thus,
requires higher transmission speed.

In previous works (e. g., [4] and [9]) the transmission poweris merely used to adjust the transmission
range in order to construct a topology that supports broadcasts but minimizes the energy consumption. We
propose a completely different usage of the transmission power and use it to adjust the maximal transmission
speed of the broadcast channel. As observed for example at the 802.11b-WLAN technology, the signal-to-
noise ratio needed to send a transmission increases with increasing transmission speed [12] and, thus, higher
speed results in increased energy consumption. Looking at it from the optimistic point of view, the server
can reduce its energy consumption by simply keeping transmission speed low. We assume here that at speed
s the power consumption issα per time unit, whereα ≥ 2 is constant.

1.1 Related Work

Extensive research on various versions of online broadcasting has been going on for several years. The most
popular problem variation aims at flowtime minimization, i.e., minimizing the time span between the arriving
of a request and the time by which it is answered [1, 5]. Other objectives that have been investigated include
minimization of the number of unsatisfied requests [8] or different QoS-measures allowing messages to be
split up into an arbitrary number of smaller objects [11]. The question of energy efficiency in broadcasting
is addressed in [7], where the main objective is still flowtime minimization, but an additional constraint
defines the maximum energy consumption allowed for servicing a given sequence of requests. Adjusting
the transmission energy has been used to reduce interference between different stations in large wireless
networks by Burkhart et al. [3] and by Moscibroda et al. [10].

A related problem that has received a lot of attention also from the energy perspective is job scheduling
with deadlines [14]. Here, a sequence of jobs, each with release time, deadline and a certain workload need to
be scheduled on a single processor, such that all jobs are finished in time and the overall energy consumption
is minimized. Here, the machine is speed-controlled andsα for a constantα ≥ 2 represents the energy
consumed per time unit at speeds. Yao et al. [14] present an algorithm that runs in polynomialtime and
computes an optimal schedule. They also propose two online algorithms AVERAGE RATE and OPTIMAL

AVAILABLE and prove that the competitive ratio of AVERAGE RATE is somewhere betweenαα and2ααα.
Bansal et al. [2] show that the competitive ratio of OPTIMAL AVAILABLE is exactlyαα. Furthermore, they
prove that the competitive ratio of any online algorithm is at leastΩ((4/3)α).

1.2 Preliminaries

As the base problem of this paper we consider a server that is confronted with a sequenceR = (r1, r2, . . .)
of requests for the same piece of information. This piece of information has a transfer volume of one, i.e., it
can be broadcasted completely in1/s time units at speeds. Requestrj = (tj , dj) is posed at its release time
tj and has to be answered until its deadlinedj, i.e., the server’s message has to be broadcasted completely
between timestj anddj at least once. A broadcast performed at speeds for t time units consumest · sα

energy units forα ≥ 2. Therefore broadcasting the message completely in timet at fixed speed1/t consumes
(1/t)α−1 energy units. Due to the convexity of the energy function, itis not difficult to see that this is the
minimal amount of energy needed to deliver the whole information within t time units. For the first part of
this paper this will also be the only allowed type of broadcast, i.e., we will assume that the transmission speed
for each broadcast needs to be fixed the moment it is started and cannot be changed while the broadcast is
running. We consider the problem of finding a feasible schedule of broadcasts (i.e., answering all requests
within their deadlines) that minimizes the overall energy consumption.

We will also consider two extensions of the problem defined above. First, we will investigate the case in
which the server holds a larger numberk ∈ N of messages. Every requestrj = (tj , dj ,mj) then asks for a

2

single messagemj to be delivered before its deadline. We then turn to the variation in which the speed of a
running broadcast can be adapted by the algorithm. As before, sending at speeds for t time units causes an
energy consumption oft · sα.

Finally, let us introduce some notation that will be used throughout the rest of the paper. Given a se-
quence of requestsR, we letB = (b1, b2, . . .) andB∗ = (b∗1, b

∗
2, . . .) denote the corresponding sequences

of broadcasts sent by an an online strategy or the optimal offline strategy, respectively. Sometimes it will be
convenient to associate a broadcastbi = (si, fi) with the interval[si, fi] defined by its starting and finishing
times. For requestsrj as well as for broadcastsbi we let |rj | and|bi| refer to their lengths.

1.3 Contributions

To the authors’ best knowledge, this is the first analysis directly addressed to the minimization of energy
consumption for broadcasting by speed scaling. We start by considering the restricted version of the problem
in which the server holds only a single message and transmission speed cannot be changed while a broad-
cast is being performed. We first point out how to compute in polynomial time an optimal solution in the
offline setting by applying an appropriate dynamic programming approach based on an interesting structural
property of the optimal solution, which turns out to be separable into disjoint blocks of uniformly distributed
broadcasts. We then present an easy to implement online algorithm and prove that it achieves competitive
ratioO(2α). For the analysis we again utilize the structural results from the previous section, which yields a
nice way of relating the cost incurred by our online strategyto the cost of an optimal offline solution. From
a technical perspective, the advantage of this approach is the fact that separating the optimal solution into
disjoint blocks allows an almost tight analysis with relatively small constants inside theO-notation. These
results are found in Sections 2.1 and 2.2.

It turns out that our algorithm’s competitive ratio is best possible, as we proceed by showing a matching
lower bound that holds even for randomized online algorithms. The lower bound is based on what could be
called agrowing gapargument. Towards a contradiction, we assume that a given online algorithm achieves a
better competitive ratio and then construct a series of requests, such that in each newly added request there is
agap, i.e., a time interval that the algorithm cannot use for answering the last request. The key ingredient of
the proof is a way of constructing the sequence, such that thesize of the gap increases with every newly added
request. The necessary technique is first developed for deterministic algorithms only. Adding randomness to
the construction and applying some additional technical arguments, we then transfer the result to randomized
algorithms, as well. Details are found in Section 2.3.

Since from a technical point of view it appears that good lower bounds require sequences of requests
of heavily decreasing lengths, we also have a closer look at instances in which all requests are of identical
length. We prove that in this case the competitive ratio of our algorithm improves to(3/2)α.

We point out that even this rather restricted single-message scenario is of practical interest. In mobile
multi agent scenarios for example, a single agent might be broadcasting some current sensor status to the
other agents whenever it is needed. In our model, this means that the server is in fact holding only a single
message, although it might of course be changing over time.

We nevertheless continue by investigating the multiple-message scenario, in which the server holds any
larger numberk ∈ N of different messages. We present an extension of our onlinealgorithm for the single-
message case and show that it has competitive ratio(4c − 1)α if all requests have length betweenℓ andcℓ
for some positive constantsc andℓ, i.e., if lengths vary by at most a factor ofc. Especially, this yields a
3α-competitive algorithm for requests of identical length. Surprisingly, these ratios do not depend on how
many different messages are hosted by the server, i.e., theyare completely independent from parameterk.
Finally, we take a look at the effect of allowing the algorithm to adapt the speed of running broadcasts. We
prove a lower bound of1.38α on the competitive ratio of any online algorithm in the general case and a lower
bound of1.09α for requests of identical length. For results on these extensions see Section 3.

3

2 Single-Message Broadcasting

In this section we describe the results about the scenario inwhich the server holds a single message and
transmission speed for a broadcast needs to be fixed at its beginning. We start by stating some facts about
the optimal offline solution and develop a dynamic programming based algorithm in Section 2.1. We then
prove our main result by presenting anO(2α)-competitive online algorithm in Section 2.2 and proving its
optimality by a matching lower bound in Section 2.3.

2.1 Computing the Offline Solution

LetR = (r1, . . . , rn) be a given sequence of requests and assume that an optimal broadcast schedule is given
byB∗ = (b∗1, . . . , b

∗
m), where theb∗i are ordered chronologically. We call the release times and deadlines of

requests inR event pointsand denote them byE = (e1, . . . , e2n) again assuming chronological order. By
B(i, j,m), i < j, we refer to a non-interrupted block ofm broadcasts of identical length with the first one
starting at timeei, the last one finishing at timeej . The following lemma states thatB∗ is just a collection of
blocks of this type. A proof is found in the appendix.

Lemma 1 An optimal schedule for a given input instance consists of blocksB(ik, jk,mk) for k = 1, 2, . . . , ν.

Based on this we solve the problem by a dynamic programming approach. LetT be thetable of overlaps,
i.e., T (j)first is the first request (the one with earliest release time) thatcontains event pointej , T (j)width

the number of requests that containej . Let ∆ = maxj T (j)width. It is easy to check that it is possible to
compute tableT for a given input instance within timeO(n log n) on spaceO(n).

The tuple(i, j, k, l) denotes the subproblem in which only the requestsT (j)first + i, T (j)first + i +
1, . . . , T (k)first + l have to be answered and all broadcasts have to be performed within [ei, ek]. Slightly
abusing notation the tuple also denotes the value of an optimal solution to this problem. Hence, we are
interested in computing(1, 0, 2n, T (2n)width − 1).

The main idea of algorithm OFFLINE is to identify the blocks as found in Lemma 1 by dynamic program-
ming. After initializing the table(i, j, k, l) with zeros, it already contains the correct solutions fori = k and
j = l as there is either no time to perform a broadcast or no requestto answer. OFFLINE then successively
computes the optimal solutions for(i, j, k, l) in lines3 to 6. By Lemma 1 it follows that an optimal solution
to (i, j, k, l) must either be identical to blockB(j, k,m) for somem ≥ 1, or must contain some event point
ei at which the problem can be split up, since it is not overlapped by any of the optimal broadcasts.

Input : Requests with release times and deadlines
Result: Minimal costs of a schedule of broadcasts answering them

Fill up table of overlaps, i. e.,T (i)first andT (i)width for 1 ≤ i ≤ 2n1
Initialize table of optimal solutions, i. e.,(i, j, k, l)← 0 for 1 ≤ i, k ≤ 2n, 1 ≤ j, k ≤ ∆2
for increasingk − i andl − j dodo3

v1 ← min{(i, j, i′, j′) + (i′, j′, k, l) | i ≤ i′ ≤ k ∧ j ≤ j′ ≤ j}4
v2 ← min{B(i, k, m) | 1 ≤ m ≤ n}5
(i, j, k, l)← min{v1, v2}6

end
return (1, 0, 2n, T (2n)width − 1)7

Algorithm 1: OFFLINE.

Theorem 1 For a given input instance algorithmOFFLINE computes an optimal schedule in timeO(∆2 ·n4)
and on spaceO(∆2 · n2).

4

2.2 An Online Algorithm

Algorithm ONLINE-SM proceeds as follows. If a requestr = (t, d) arrives at timet while the channel is
idle, we start a broadcast that uses the full lengthd− t of the request. If the channel is busy and the currently
running broadcast is scheduled to finish at timeτ , we abort and start a new broadcast if at least half of the
interval [t, d] defined byr lies beforeτ . In the implementation belowτ denotes the end of the currently
running broadcast,ρ refers to the earliest deadline of any request that needs to be answered by a broadcast
starting afterτ .

τ ← +∞, ρ ← +∞1

if a requestr = (t, d) arrivesthen2
if channel is idlethen3

τ ← d4
start broadcast at speed(τ − t)−15

if channel is busythen6
if τ − t ≥ d − τ then7

abort current broadcast8
τ ← min{τ, d}9
ρ ← +∞10
start broadcast at speed(τ − t)−111

else12
ρ ← min{ρ, d}13

if a broadcast finishes andρ < +∞ then14
τ ← ρ15
ρ ← +∞16
start broadcast at speed(τ − t)−117

Algorithm 2: ONLINE-SM .

Theorem 2 LetEON denote the energy consumption of algorithmONLINE-SM on any sequence of requests,
EOPT the value of an optimal offline solution on the same sequence.It holds that

EON ≤
(

α

α− 1

)2

2α · EOPT .

Before presenting the proof of Theorem 2 we point out that a better competitive ratio is obtained if we
require all requests to have identical length.

Theorem 3 LetEON denote the energy consumption of algorithmONLINE-SM on any sequence of requests
of identical length,EOPT the value of an optimal offline solution on the same sequence.It holds that

EON ≤ 2α

α− 1

(

3

2

)α

·EOPT .

We proceed by proving Theorem 2. First observe that algorithm ONLINE-SM outputs a feasible solu-
tion, i.e., every request is indeed answered by one of the algorithm’s broadcasts. Consider a single request
r = (t, d) arriving at timet. If either line 3 or line 7 apply, the algorithm immediately starts a broadcast with
finishing timeτ ≤ d. Afterwards this broadcast may well be aborted due to newly arriving requests. How-
ever, eventually there must be a completed broadcast finishing beforeτ and, thus, answeringr. If neither line
3 nor line 7 apply, we getτ < ρ ≤ d due to line 13 of the algorithm. If the current broadcast is completed
at timeτ , the algorithm starts a broadcast with finishing timeρ ≤ d due to lines 14 to 17, which answers
r. If the current broadcast is aborted due to other requests, the first completed broadcast with finishing time
beforeτ will answerr. This completes the proof of correctness.

In order to prove the competitive ratio claimed above we firstneed to bound the cost incurred by our
algorithm due to aborted broadcasts. The following lemma states that this cost becomes negligible for larger
values ofα. Due to space limitations the proofs of Lemma 2 and Theorem 3 are omitted.

5

Lemma 2 LetEab denote the energy consumed by algorithmONLINE-SM due to aborted broadcasts,Eco

the energy used by completed broadcasts. ThenEab ≤ (1/(α − 1))Eco for any given sequence of requests.

Proof of Theorem 2:For the remainder of the proof it will be important to know to which request to
assign the cost of a single broadcast. Given broadcastb sent by algorithm ONLINE-SM we say thatb is linked
to requestr, if b is started due tor in lines 5, 11 or 17. It is straightforward to observe that|b| ≥ |r|/2,
wheneverb is linked tor.

Consider the optimal offline solution. By Lemma 1 broadcastsB sent by the offline strategy can be
partitioned into groupsB1, . . . , Bℓ, such that eachBi is a non-interrupted sequence of broadcasts of identical
length. Let us fix some groupBi containing some numberk ≥ 1 of broadcasts, with the first one starting at
times, the last one finishing at timet. Thus, every broadcast inBi has length(t− s)/k.

LetRi denote the set of requests answered by broadcasts inBi in the offline setting. Clearly, all requests
in Ri have length at least(t− s)/k. We are going to bound the energyE consumed by algorithm ONLINE-
SM for sending broadcasts linked to requests inRi. To this end, letE = E1 + E2 + E3, whereE1 denotes
energy consumption before times, E2 andE3 refer to energy consumed between timess andt and aftert,
respectively.

Let us first considerE1. We know that every request inRi has a deadline no earlier thans+ (t − s)/k,
as otherwise it could not be answered by a broadcast fromBi. Now assume that algorithm ONLINE-SM

is sending a broadcastb linked to some requestr ∈ Ri at timeu < s. It follows that |b| ≥ (1/2)|r| ≥
(1/2)(s+(t− s)/k−u) and, thus, the algorithm is sending at speed|b|−1 ≤ 2(s+(t− s)/k−u)−1 at time
u. We can then write that

E1 ≤ 2α

∫ s

0
(s+

t− s

k
− u)−αdu =

2α

α− 1
u−α+1

∣

∣

∣

∣

t−s
k

s+ t−s
k

≤ 2α

α− 1

(

t− s

k

)−α+1

.

We next considerE2 andE3. As observed before, broadcasts linked to requests inRi have length at least
(t − s)/(2k). Hence, no more than2k such broadcasts can be started between timess andt. Broadcasts
starting after timet are sent only if requests fromRi have been left unanswered. First observe that at most
one such broadcast is sent, as it will clearly answer all requests fromRi, which we know have starting times
beforet.

We then observe that requests fromRi can only be left unanswered before timet, if at most2k − 2
broadcasts starting betweens and t are sent. To see this, note that everyr ∈ Ri is posed before time
t − (t − s)/k, since otherwise it could not be answered by broadcasts inBi. However, since broadcasts of
algorithm ONLINE-SM linked to requests inRi have length at least(t− s)/(2k), no more than2k − 2 such
broadcasts can be started betweens andt− (t− s)/k. It follows that

E2 + E3 ≤ 2k

(

t− s

2k

)−α+1

= 2αk

(

t− s

k

)−α+1

.

On the other hand, the energy consumed by the offline strategyanswering requests fromRi isE∗ = k · ((t−
s)/k)−α+1, sincek broadcasts of length(t− s)/k are sent. Finally, we obtain

E ≤
(

2α

α− 1
+ 2αk

)(

t− s

k

)−α+1

≤ α

α− 1
2αk

(

t− s

k

)−α+1

=
α

α− 1
2α · E∗.

LetEON andEOPT denote the energy consumed by algorithm ONLINE-SM and the optimal offline strategy
on the complete set of requests, respectively. Summing up over all groupsRi and taking into account energy
consumption due to aborted broadcasts, we get

EON ≤
(

α

α− 1

)2

2α · EOPT ,

which proves the theorem. �

6

2.3 A Lower Bound

In this section we will show that algorithm ONLINE-SM is asymptotically best possible. We start with a
matching lower bound for deterministic algorithms in Theorem 4. Theorem 5 extends this to randomized
algorithms.

Theorem 4 The competitive ratio of every deterministic online algorithm for single-message broadcasting
is ω((2 − ε)α) for anyε > 0.

Here is the high-level idea of the proof: We construct a sequence of requests of exponentially decreasing
lengths. In every step of the construction, there will be a time interval contained within the very last request,
which the algorithm cannot use for sending a broadcast answering it. We will refer to this prohibited time
interval as agap. The key ingredient of the proof is Lemma 3, which states thatif an online algorithm has
competitive ratioO((2 − ε)α) for someε > 0, the relative length of the gap (i.e., compared to the length
of the last request) increases steadily, forcing the algorithm to violate its competitive ratio after a number of
requests.

Proof of Theorem 4:Towards a contradiction assume that deterministic online algorithmA has compet-
itive ratio O((2 − ε)α) for some constantε > 0. We denote our sequence of requests asr0, r1, . . . and let
Rj = (r0, . . . , rj). SinceA is deterministic, we can construct the input sequence in step by step manner, i.e.,
we can define requestrj+1 depending on the algorithm’s observed behavior onRj .

Before we give a detailed description of our construction, we need to define the notion of agap more
formally. We have to consider two different types of gaps. Wesay thatrj has a gap of relative lengthδ at its
beginning, if a broadcast that has been started beforerj is posed is not aborted and finishesδ · |rj | time units
afterrj is posed. Thus, the broadcast answeringrj must be started at leastδ · |rj| time units after the request
is actually posed. On the other hand, we say thatrj has a gap of relative lengthδ at its end, if there exists a
requestri, i < j, that has a deadlineδ · |rj | time units before the deadline ofrj and needs to be answered
by the same broadcast asrj. In this situation, the broadcast answeringrj clearly needs to finishδ · |rj| time
units before its deadline, as otherwiseri were left unanswered. Gap positions are depicted in Figure 1.

Let nowEOPT (Rj) denote the cost of an optimal offline solution onRj and assume for the moment
thatEOPT = O(|rj |−α+1), i.e., assume that the cost is dominated by the length of the last request. Having
this it is clear that algorithmA’s broadcast answeringrj must have length at least(1/2 + ε′)|rj | for some
appropriately chosenε′ > 0 in order to guarantee its competitive ratio. Let nowrj = (tj , dj) andmj =
(tj + dj)/2 refer to the middle of the interval defined byrj. We setr0 = (0, 1) and say thatr0 has a gap
of relative length0 at its beginning. For the definition ofrj+1 we distinguish two cases. Ifrj has a gap of
relative lengthδ at its beginning, we setrj+1 = (mj + (δ + ε′)|rj+1|, dj + (δ + ε′)|rj+1|). If a gap of the
same length is at the end ofrj, we setrj+1 = (mj − (δ − ε′)|rj+1|, dj − (δ − ε′)|rj+1|). Intuitively, rj+1

has length2−j−1 spanning the second half of requestrj and is shifted according to the gap’s position inrj .
By Lemma 3 the relative length of the gap increases by at leastε′ in each step. Hence, its relative length

exceeds1/2 at some point and there must exist a requestrn that algorithmA answers by a broadcast of length
at most(1/2)|rn|. Thus, the energy consumption of algorithmA onRn isEA(Rn) = Ω(2(α−1)(n+1)).

It remains to boundEOPT (rn) from above. The optimal schedule uses the full length of|rn| for its last
broadcast. Consider then an arbitrary requestrj. If rj contains somerk, k > j, then it is answered by the
broadcast answeringrk. Otherwise, all requestsrk, k > j, are posed aftermj andrj can be answered by a
broadcast of lengthmj − tj = |rj|/2. Now remember that|rj | = 2−j and we obtain that

EOPT (Rn) ≤
n−1
∑

j=0

(|rj |/2)−α+1 + |rn|−α+1 =

n−1
∑

j=0

2(α−1)(j+1) + 2(α−1)n = O(2(α−1)n),

which finishes the proof. �

7

δ

2i
δ+ε′

2i

δ+ε′

2i+1

δ+ε′

2i+1

(c) front to front

δ

2i
δ+ε′

2i

δ+ε′

2i+1

(d) front to back

δ

2i

δ+ε′

2i+1

δ+ε′

2i+1

ε′

2i

(e) back to front

δ

2i

δ+ε′

2i+1

ε′

2i

(f) back to back

Figure 1: Construction for a gap of relative lengthδ with respect to its position in thei-th request. Intervals
corresponding to requests and broadcasts are depicted as dashed and solid lines, respectively. The flash
symbol denotes abortion of a running broadcast. Boxes mark gaps as described in Theorem 4.

Lemma 3 Given an online algorithm as in the proof of Theorem 4, the relative length of the gap increases
with each newly added request by at leastε′.

Proof: Due to the regular construction of the instance it suffices toshow the claim for a single step. We
have a look at requestsri andri+1. To simplify notation, assume w.l.o.g. that the length of requestri is
1. Hence,|ri+1| = 1/2 and the length of the broadcast that answers requestri has to be of length at least
(1/2 + ε′) because of algorithmA’s competitive ratio. It follows that due to our construction this broadcast
is still being performed the moment requestri+1 is issued. As the algorithm is not allowed to change the
running broadcasts’s speed, it has only two ways to deal withthis situation: it either aborts or continues the
broadcast answeringri. We do a case inspection on the position of the gap inri and the algorithm’s behavior.
All cases are depicted in Figure 1. Letδ denote the relative length of the gap inri.

Case (a)As the algorithm does not abort the broadcast it does not finish before time1/2 + δ + ε′.
Remember that the requestri+1 is issued at time(1+ δ+ ε′)/2. Hence, at least the first(δ+ ε′)/2 time units
of requestri+1 are not used to answer it. It follows that the relative lengthof its gap is at least(δ + ε′).

Case (b)The algorithm aborts the broadcast instantly the moment requestri+1 is issued. Hence, the next
broadcast must not finish beyond time1. As requestri+1 is issued at time(1 + δ+ ε′)/2 and has length1/2,
its deadline is at time1 + (δ + ε′)/2. This yields a gap of relative length(δ + ε′) at its end. The same is
obviously true if the algorithm aborts the running broadcast not immediately, but at some later point of time.

Case (c)The broadcast that answers requestri is scheduled to finish at time1/2 + ε′ at the earliest. Due
to the construction requestri+1 is issued at time(1 − δ + ε′)/2. Since the algorithm does not abort the
broadcast prematurely, the relative length of the gap of requestri+1 is at leastδ + ε′.

Case (b)The algorithm aborts the broadcast the moment requestri+1 is issued. Remember that there is
a gap of relative lengthδ at the end of requestri. Hence, there exists a request with deadline1 − δ. This
request is still unanswered, since the broadcast was aborted. Therefore, the next broadcast must not finish
beyond this time. As requestri+1 is issued at time(1 − δ + ε′)/2 and has length1/2, its deadline is at time
1 − (δ − ε′)/2. We conclude that this yields a gap of relative length at least δ + ε′ at the end of this request.
Again, the same argumentation holds if the broadcast is aborted at a later point. �

8

The next theorem extends this result to randomized algorithms as well. We briefly sketch the key idea.
As the length of the broadcast answering the last request dominates the cost of the solution, we know that
the expected length of the broadcast answeringrj must not fall below(1/2 + ε′)|rj |. Assuming that each
request is added as before, we obtain that the expected length of the gap increases in every step. However,
as an adversary we do not know the random coin flips of the algorithm and, thus, do not know the position
of the gap. We solve this problem by shifting requests in either of the two possible directions randomly. The
key observation is that for constantε′ > 0 we need only a constant number of successful steps to reach a
sufficient gap size and, thus, this randomized constructionis still strong enough to achieve a contradiction.

Theorem 5 The expected competitive ratio of every (randomized) online algorithm for single-message broad-
casting isω((2 − ε)α) for anyε > 0.

3 Extensions

Finally, we will briefly sketch a number of results for some natural extensions of our problem. Section 3.1
presents a competitive online algorithm for the case that more than a single message needs to be broadcasted.
Section 3.2 discusses the implications of allowing the speed of a running broadcast being changed.

3.1 An Online Algorithm for Multiple Messages

We present an online algorithm for the case that the server holds some numberk ∈ N of different messages.
Requestr = (t, d,m) now also specifies the messagem that needs to be received. We assume that requests
have lengths that vary betweenℓ and cℓ for some positive constantsc and ℓ. Algorithm ONLINE-MM
repeatedly collects a number of requests which are then answered by a sequence of broadcasts of overall
lengthℓ/2. In the implementation belowN denotes the set of messages that need to be sent within the next
sequence of broadcasts,L refers to messages that will be sent later. Parametersτ andρ are the finishing
times of the next two upcoming broadcasting sequences.

N, L← ∅, τ, ρ← +∞1

if a requestr = (t, d, m) arrives then2
if channel is idlethen3

τ ← min{τ, d− ℓ/2}4
N ← N ∪ {m}5

if channel is busythen6
ρ← min{ρ, d− ℓ/2}7
L← L ∪ {m}8

at timeτ do9
start broadcasts of lengthℓ/(2|N |) each for messages inN10
N ← ∅, τ ← +∞11

if a sequence of broadcasts finishes andρ < +∞ then12
N ← L, L← ∅13
τ ← ρ, ρ← +∞14

Algorithm 3: ONLINE-MM .

The following theorem states that algorithm ONLINE-MM has a constant competitive ratio that depends
only onc, i.e., the factor by which request lengths may vary. We specifically note that this competitive ratio
is independent from the numberk of messages held by the server. A proof is found in the Appendix.

Theorem 6 Let EMM denote the energy consumption of algorithmONLINE-MM on any sequence of re-
quests with lengths varying betweenℓ and cℓ for some fixedc ≥ 1, EOPT the value of an optimal offline
solution on the same sequence. It holds thatEMM ≤ (4c− 1)α ·EOPT .

9

3.2 More Flexible Speed-Adjustment

We will briefly address another extension to our problem. It is conceivable to allow the server a speed change
during a broadcast without enforcing a restart. Obviously,the lower bound presented earlier does not apply
to this situation. The next theorem states that the competitive ratio of any algorithm capable of speed-up
depends exponentially onα, as well. Its proof can be found in the appendix.

Theorem 7 The competitive ratio of any (randomized) online algorithmcapable of speed-up isω((γ − ε)α)
for everyε > 0, whereγ = (5 + 5

√
5)/(5 + 3

√
5) > 1.38. If all requests are of identical length the

competitive ratio is at leastΩ(1.09α).

References

[1] N. Bansal, D. Coppersmith, and M. Sviridenko. Improved Approximation Algorithms for Broadcast Scheduling.
In Proc. of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

[2] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic Speed Scaling to Manage Energy and Temperature. InProc. of
the IEEE Symposium on Foundations of Computer Science (FOCS), 2004.

[3] M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger. Does Topology Control Reduce Interference?
In Proc. of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2004.

[4] A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the Complexity of Computing Minimum Energy
Consumption Broadcast subgraphs. InProc. of the Symposium on Theoretical Aspects of Computer Science
(STACS), 2001.

[5] J. Edmonds and K. Pruhs. Multicast Pull Scheduling: WhenFairness is Fine.Algorithmica, 36, 3:315–330, 2003.

[6] G.-Y. Gao and S.-K. Wang. A Multi-Agent System Architecture for Geographic Information Gathering.Journal
of Zhejiang University SCIENCE, 5(11):1367–1373, 2004.

[7] C. Gunia. On Broadcast Scheduling with Limited Energy. In Proc. of the Conference on Algorithms and Com-
plexity (CIAC), 2006.

[8] B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling Broadcasts in Wireless Networks. InProc. of
the European Symposium on Algorithms (ESA), 2000.

[9] X-Y. Li, W-Z. Song, and W. Wang. A Unified Energy-EfficientTopology for Unicast and Broadcast. InProc. of
the ACM-IEEE International Conference on Mobile Computingand Networking (MobiCom), 2005.

[10] T. Moscibroda and R. Wattenhofer. Minimizing Interference in Ad Hoc and Sensor Networks. InProc. of the
Joint Workshop on Foundations of Mobile Computing, 2005.

[11] K. Pruhs and P. Uthaisombut. A Comparison of Multicast Pull Models. InProc. of the European Symposium on
Algorithms (ESA), 2002.

[12] D. Qiao, S. Choi, and K.-G. Shin. Goodput Analysis and Link Adaptation for IEEE 802.11a Wireless LANs.
IEEE Transactions on Mobile Computing, 1(4):278–292, 2002.

[13] A.C.-C. Yao. Probabilistic Computations: Towards a Unified Measure of Complexity. InProc. of the IEEE
Symposium on Foundations of Computer Science (FOCS’77), pages 222–227, 1977.

[14] F. Yao, A. Demers, and S. Shenker. A Scheduling Model forReduced CPU Energy. InProc. of the IEEE
Symposium on Foundations of Computer Science (FOCS), 1995.

10

A Appendix

Lemma 1. An optimal schedule for a given input instance consists of blocksB(ik, jk,mk) for someik, jk,mk

for k = 1, 2, . . . , ν.

Proof: For the sake of contradiction, we pick the largest block thathas at most one border and does not
match any release time or deadline except for its borders. Asit is possible that a block consists of merely one
broadcast such a block has to exist if this lemma is not fulfilled. It is not difficult to see that this block can
collide with other blocks at most at its borders. For now, letus assume that this block has at most one border.
Then we can further assume, without loss of generality, thatthere is no border at the end of the block. We
scale the block up by slowing down its last broadcast by a sufficiently small amount. We see that the solution
remains feasible but its cost decreases since slowing down abroadcast results in lower cost. This contradicts
the fact that the schedule was optimal in the first place. In the same manner we can prove that all requests
of one block have to have the same length if the block has two borders; otherwise we can reduce the cost by
rescaling the broadcasts while keeping the block’s size constant. In doing so the schedule remains feasibly
since it matches no release time and deadlines except for itsborders. �

Theorem 1. For a given input instance algorithmOFFLINEALG computes an optimal schedule in time
O(∆2 · n4) and on spaceO(∆2 · n2).

Proof: The main idea of algorithm OFFLINEALG (Algorithm 1 on Page 4) is to divide the given problem in
two smaller subproblems while ensuring that an optimal solution for the original problem can be composed
of optimal solutions of the subproblems. We use the event points as cut-off points for the division. If we knew
that at some timet a broadcast ends and requestsri, ri+1, . . . , rn are left unanswered, we would canonically
obtain two subproblems:

• Create a schedule with minimal cost that answers requestsr1, r2, . . . , ri−1 and whose last broadcast
ends at timet.

• Create a schedule with minimal cost that answers requestsri, ri+1, . . . , rn and whose first broadcast
starts after timet.

Obviously, we can compose an optimal solution for the original problem of optimal solutions for these two
subproblems. The problem is that we do not know when a broadcast ends. This is the point at which Lemma 1
comes in. Intuitively speaking, it tells us that in an optimal solution there is either a broadcast whose ending
point coincides with an event point or the structure of the optimal solution is trivial.

Let T be the table of overlaps mentioned above, i. e.,T (j)first is the first request that overlaps event
point ej andT (j)width the number of overlapping requests. In algorithm OFFLINEALG the tuple(i, j, k, l)
denotes the subproblem in which solely the requestsT (j)first + i, T (j)first + i + 1, . . . , T (k)first + l have
to be answered and all broadcasts have to be executed within[ei, ek]. The tuple also denotes the value of an
optimal solution to this problem. Hence, we are interested in (1, 0, 2n, T (2n)width − 1).

With this information at hand we have a look the pseudo code ofalgorithm OFFLINEALG. After ini-
tializing the tableT of overlaps, it creates a table(i, j, k, l) that is intended to contain the values of the
subproblems defined above. The algorithm initializes this table with zeros, that is the correct value for all
subproblems withi = k or j = l as there is either no time for executing a broadcast or no requests to answer.
Beginning with line3 it starts filling up the table by increasingk − i andl − j. Within these linesv1 rep-
resents the minimal cost of the “trivial solution” andv2 the minimal cost of a solution obtained by solving
subproblems. Finally, in line7 the value of an optimal solution is returned.

11

Obviously, spaceO(n) suffices to store tableT . Furthermore, the table(i, j, k, l) does not consume more
thanO(∆2 · n2) space since each entry consists of merely one value. This proves the claimed upper bound
on the space consumption. As it is easy to verify that lines4 to 6 can be executed in timeO(n2) the upper
bound on the running time holds as well.

Finally, we will prove the correctness of algorithm OFFLINEALG. According to Lemma 1, an arbitrary
optimal solution consists of blocks of broadcasts. The broadcasts within one block have all the same length.
The starting and ending point of each of these blocks coincides with an event point. Therefore, each block
is represented by a specific subproblem(i, j, k, l) with appropriately chosen parametersi, j, k, l. We point
out that this subproblem contains just one broadcast block in its optimal solution. As a consequence, the
algorithm will compute the optimal solution of this block inline 6. We use this as an induction basis for an
induction over the number of broadcast blocks.

If an optimal solution of a subproblem(i, j, k, l) consists of more than one broadcast block, the endpoint
of one broadcast block has to coincide with an event point dueto Lemma 1. Hence, the subproblem can
be divided into two subproblems(i, j, i′, j′) and(i′, j′, k, l) with appropriately choseni′ andj′. Since the
algorithm traverses all feasible cut-off points it will certainly try the “right one”. Each of the resulting
subproblems contains less broadcast blocks than(i, j, k, l) and, therefore, an optimal solution for each of
them is already known to OFFLINEALG. Hence, the corresponding parameters will yield the lowestcost and
the optimal solutions for the subproblem(i, j, k, l) will be constructed in line4. �

Lemma 2. LetEab denote the energy consumed by algorithmONLINE-SM due to aborted broadcasts,Eco

the energy used by completed broadcasts. Then

Eab ≤
1

α− 1
Eco

for any given sequence of requests.

Proof: Let B = (b1, . . . , bn) be a sequence of (aborted and completed) broadcasts sent by algorithm
ONLINE-SM on some sequence of requests and assume that broadcasts are ordered by their starting times. We
can partitionB into groupsBi = (bk, . . . , bℓ), such that in each group broadcastsbk, . . . , bℓ−1 are aborted,
broadcastbℓ is completed.

Let us now fix some groupBi = (bk, . . . , bℓ) and assume w.l.o.g. that the first broadcastbk starts at time
0. Furthermore, letbℓ start at times and finish at timet. In algorithm ONLINE-SM every starting broadcast
is scheduled to be finished at timeτ for the current value ofτ . During our subsequence of broadcasts
the channel is never idle and, while this is the case, the value of τ can only be decreased. It follows that
bk, . . . , bℓ−1 are all scheduled to be finished at some timeτ ≥ t. Thus, at any time0 ≤ u ≤ s our algorithm
is sending at speed at most(t−u)−1, which bounds energy consumption at this point of time by(t−u)−α. Let
Eab(Bi) andEco(Bi) denote the energy consumption on broadcastsBi alone. From the above we conclude
that

Eab(Bi) ≤
∫ s

0
(s− u)−αdu =

1

α− 1
u−α+1

∣

∣

∣

∣

t−s

t

≤ 1

α− 1
(t− s)−α+1.

On the other hand,bℓ is sent at speed(t − s)−1 and, thus,Eco(Bi) = (t − s)−α+1. Summing up over all
groups gives the claim. An illustration of the proof is foundin Fig. 2. �

Theorem 3. LetEON denote the energy consumption of algorithmONLINE-SM on any sequence of requests
of identical length,EOPT the value of an optimal offline solution on the same sequence.It holds that

EON ≤ 2α

α− 1

(

3

2

)α

·EOPT .

12

(t−s)−α

energy

times t

E Eab co

Figure 2: Energy consumption due to aborted broadcasts.

Proof: Let R be a given sequence of requests and assume w.l.o.g. that all requests have length1. Further-
more, letB andB∗ denote the broadcasts sent by algorithm ONLINE-SM and the optimal offline strategy,
respectively. By the definition of algorithm ONLINE-SM, everybi ∈ B starts at the release time or deadline
of some requestr1i ∈ R and ends at the deadline of some requestr2i ∈ R, where not necessarilyr1i 6= r2i . We
say thatbi is flankedby r1i = (t1i , d

1
i) andr2i = (t2i , d

2
i) and distinguish the cases that(1) bi = (t2i , d

1
i) or (2)

bi = (d1
i , d

2
i) as depicted in Fig. 3.

Let now∆i = d1
i − t2i denote theoverlapof r1i andr2i . Since all requests have length1, we know that

|bi| ≥ 1/2 and, thus,∆i ≥ |bi| ≥ 1/2 in case(1), ∆i ≤ 1− |bi| ≤ 1/2 in case(2). We next lower bound the
cost incurred by the offline strategy answeringr1i andr2i .

In case(1) we have that|bi| = ∆i. The optimal schedule may either answer bothr1i andr2i with a single
broadcast, or it has to send at least two broadcasts between timest1i andd2

i , whered2
i − t1i = 2 − ∆i. In any

case the optimal strategy sends at least one broadcastb∗i of length

|b∗i | ≤ max

{

∆i, 1 − ∆i

2

}

≤ max

{

|bi|,
3

4

}

≤ 3

2
|bi|,

answering one of the flanking requestsr1i andr2i .
In case(2) we have|bi| = 1 − ∆i and a broadcastb∗i sent by the offline strategy answering eitherr1i or

r2i must have length

|b∗i | ≤ 1 − ∆i

2
= (1 + ∆i) −

3

2
∆i ≤

3

2
− 3

2
∆i ≤

3

2
|bi|,

where we use the fact that∆i ≤ 1/2 and, thus,1 + ∆i ≤ 3/2.
So far, we have assigned everybi ∈ B to someb∗i ∈ B∗ answering one ofbi’s flanking requests, such that

|b∗i | ≤ (3/2)|bi|. Let nowAi refer to the set of all broadcasts assigned tob∗i , E(Ai) to energy consumption
due to sending them. Consider a single broadcastb∗i sent by the offline strategy and letr1, . . . , rk be the
requests answered by it, ordered by their release times. Lett be the release time ofr1, d the deadline ofrk.
Eachb ∈ Ai that is assigned tob∗i must be flanked by one ofr1, . . . , rk and, thus, must have starting time
betweent andd.

If |b∗i | > 1/2, we know thatd − t ≤ 2 − |b∗i | < 3/2. Additionally, |b| ≥ 1/2 holds for everyb ∈ B,
which yields that|Ai| ≤ 3. Thus, we obtain

E(Ai) =
∑

b∈Ai

|b|−α+1 ≤ 3

(

2

3
|b∗i |
)−α+1

= 2 ·
(

3

2

)α

|b∗i |−α+1.

If |b∗i | ≤ 1/2, we only have thatd − t ≤ 2 − |b∗i | < 2 and, thus,|Ai| ≤ 4. However, we also know that in

13

∆ i ∆ i

bi bi

ri 1

ti 1 ti 1ti 2 ti 2di
1 di

1di
2 di

2

(1) (2)

ri 2
ri 1

ri 2

Figure 3: Broadcastbi is flanked by requestsr1i andr2i .

this case|b| ≥ |b∗i | for all b ∈ Ai and may then write that

E(Ai) =
∑

b∈Ai

|b|−α+1 ≤ 4 · |b∗i |−α+1 ≤ 2 ·
(

3

2

)α

|b∗i |−α+1,

where we use thatα ≥ 2. Finally, letEON andEOPT again refer to overall energy consumption on sequence
R. Letm = |B∗|. Taking into account aborted broadcasts, we have

EON ≤ α

α− 1

∑

b∈B

|b|−α+1 =
α

α− 1

m
∑

i=1

∑

b∈Ai

|b|−α+1

≤ α

α− 1

m
∑

i=1

2 ·
(

3

2

)α

|b∗i |−α+1 =
2α

α− 1

(

3

2

)α

· EOPT ,

which proves the claim. �

Theorem 5. The expected competitive ratio of every (randomized) online algorithm isω((2 − ε)α) for any
ε > 0.

Proof: Theorem 4 shows that the claim holds for deterministic algorithms. Therefore, we will extend its
proof to hold for any randomized algorithmA as well. Hence, we assumeA to have a competitive ratio of
O((2 − ε)α) for an arbitrary constantε > 0. The proof of the cited theorem uses Lemma 3 which relies on
a case inspection in each step of the construction of the worst case instance depending on the gap’s position.
Obviously, as an oblivious adversary we do not know the random bits algorithmA uses when we have to
fix the instance. Consequently, we cannot use this case inspection that easily. However, we will modify our
approach to fit this situation as well.

First, we point out that underestimating the length ofδ in the cited proof does not influence the proof’s
correctness: In this case the gap’s relative length increases each step as well. However, the length of the series
sufficient to show the contradiction increases accordingly. Consequentially, we assume for the construction
of the input instance that the relative length increases exactly by ε′ each iteration. Requestri will still be of
length2−i. We start by issuing requestsr0 andr1 in exactly the same way as we do in the cited proof. As
α grows large algorithmA has to perform a broadcast of length at least1/2 · (1/2 + ε′) · |r0| in order to
answerr0 as otherwise the competitive ratio ofA would beω(1/2 · (2 − ε′)α) = ω((2 − ε)α) which can
easily be seen by omitting requestr1. Hence, we chooseα sufficiently large and obtain with probability1/2
a broadcast that ends(δ + ε′) · |r0| time units after the middle of requestr0. We assume in the following
such a broadcast is performed by algorithmA and compensate for this assumption with an additional factor

14

1/2 in the expected cost of algorithmA. When algorithmA gets aware of requestr1 it decides either to
continue the current broadcast or to abort it. This decisiondoes not need to be deterministically done but one
of the two alternatives has a probability of at least1/2. We assume the algorithm to select this alternative,
compensate for that assumption with an additional factor1/2, and construct requestr2 accordingly for this
case (by following the construction rules of the cited proof). Now, we can argue again that—for sufficiently
largeα—the probability to perform a broadcast of length at least1/2 · (1/2 + ε′) · |r1| has to be at least1/2.
It follows that we can iterate this construction. In doing soone observes that with probability at least(1/4)t

the relative length of the gap has increased to at leastt · ε′ in the t-th iteration and we can compensate for
this in the competitive ratio with a factor(1/4)t. Replacingt by 1/(2ε′) = O(1) shows that with constant
probability—remember thatε′ does not depend onα—the gap’s relative length has increased to1/2 after a
constant number of iterations. We conclude that this yieldsa competitive ratio ofω((2 − ε)α). This is the
contradiction we are looking for and completes this proof. �

Theorem 6. LetEMM denote the energy consumption of algorithmONLINE-MM on any sequence of re-
quests of varying length betweenℓ andcℓ for some fixedc ≥ 1,EOPT the value of an optimal offline solution
on the same sequence. It holds that

EMM ≤ (4c− 1)α ·EOPT .

Proof: Let B1, . . . , Bn denote the sequences of broadcasts sent by algorithm ONLINE-MM on any given
sequence of requests. We first observe that every requestr = (t, d,m) completely contains some sequence
Bi including messagem. To see this, note, that when requestr arrives at timet, the algorithm setsτ =
min{τ, d−ℓ/2} (or ρ, respectively) and, thus, eventually there will be a sequence of broadcasts starting after
timet, finishing before timed and containingm. We shall say that requestr is assigned to groupBi. Assume
now that eachBi consists of broadcasts forki different messages and letEi refer to the corresponding energy
consumption. It clearly holds that

Ei = ki ·
(

2ki

ℓ

)α−1

.

By Ri we refer to the set of requests assigned to the respective group of broadcastsBi. If the first broadcast
in groupBi starts at timeti, then requests inRi are posed between timesti − (c− 1/2)ℓ andti and, thus, are
contained in the intervalIi = [ti − (c− 1/2)ℓ, ti + cℓ]. We note thatti+1 ≥ ti + ℓ/2.

Let us now split up the groupsBi and definer = ⌈4c− 2⌉ and

Bk = {Bk, Bk+r, Bk+2r, . . .}

for k = 1, . . . , r. LetBj be the most expensive set of groups sent by algorithm ONLINE-MM among these.
The overall energy consumptionEMM of our algorithm is then bounded by

EMM ≤ r
∑

Bi∈Bj

ki ·
(

2ki

ℓ

)α−1

.

On the other hand, for anyBi, Bk ∈ Bj with i < k it holds thattk − (c − 1/2)ℓ ≥ ti + (c − 1/2)ℓ and,
thus, the corresponding intervalsIi andIk do not intersect. LetEOPT denote the energy consumption of
an optimal offline strategy on the given input. It is straightforward to argue thatEOPT is lower bounded by

15

the energy needed to service requests linked to groups inBj only and that inside each intervalIi at leastki

broadcasts need to be sent. Hence, we can write that

EOPT ≥
∑

Bi∈Bj

ki ·
(

ki

(2c− 1/2)ℓ

)α−1

.

This immediately yields that
EMM ≤ (4c− 1)α ·EOPT ,

which finishes the proof. �

A.1 Proof of Theorem 7

Theorem 7 The competitive ratio of any (randomized) online algorithmcapable of speed-up is at least
ω((γ − ε)α) for γ = (5 + 5

√
5)/(5 + 3

√
5) > 1.38 and anyε > 0. If all requests are of identical length the

competitive ratio is at leastΩ(1.09α).

For the sake of clarity, we split up the proof of this theorem into two parts. In the first one we prove the
lower bound ofω((γ − ε)α) for anyε > 0, while the bound ofΩ(1.09α) will be shown in the second part.

A.1.1 Lower boundω((γ − ε)α) for arbitrary requests

We will start by showing this bound for deterministic algorithms. Similarly to the proof of Theorem 4 we
assume there is an algorithmA that has a competitive ratio of at mostO((γ − ε)α) for a constantε > 0 and
construct a sequenceR0, R1, . . . of input instances that leads to a contradiction. Again, instanceRj consists
of requestsr0, r1, . . . , rj . Letφ := (1 +

√
5)/2 denote the golden section. We issue requestr0 with length1

at time0. Generally, requestri+1 is issued with lengthψi+1 := ((3−
√

5)/(
√

5− 1))i+1 whenφ−1 parts of
requestri have passed. We already argued in the cited proof that the behavior of algorithmA is identical on
instanceRj and onRj+1 up to the release time of requestrj+1 as the algorithm is online.

Next, we will limit the energy of an optimal schedule for instanceRn from above. We answer the last
request with a broadcasts that covers the whole request. This induces cost ofψ−(α−1)n. As each requestri+1

is issued afterφ−1 parts of requestri have passed, we can answer each remaining requestri with a broadcast
that has lengthφ−1 ·ψi. Therefore, the costOptn of an optimal schedule for instanceRn sums up to at most

Optn ≤ ψ−(α−1)n +

n−1
∑

i=0

(

φ · ψ−i
)α−1

=





(√
5 − 1

3 −
√

5

)α−1




n

+
1 +

√
5

2
·

(

(√
5−1

3−
√

5

)α−1
)n

− 1

(√
5−1

3−
√

5

)α−1
− 1

≤





(√
5 − 1

3 −
√

5

)α−1




n

·






2 +

(

1−
√

5
2

)α−1

(√
5−1

3−
√

5

)α−1







= 3 ·





(√
5 − 1

3 −
√

5

)α−1




n

= 3 · ψ−(α−1)n.

16

Hence, the cost of an optimal schedule is dominated by the cost of the very last request. Consequently, in
order to obtain a competitive ratio ofΩ((γ − ε)α) the length of each broadcast of algorithmA on instance
Rn must not be be below(γ − ε)−1 · ψn = (γ−1 + ε′) · ψn = (φ−1 + ε′′) · ψn for some properly chosen
constantsε′, ε′′ > 0. In particular, this holds for the broadcast answering requestrn.

Let us have a look at requestri. At its beginning there areδ · ψi time units not used to answer this
broadcast for someδ ≥ 0. Remember, that this period of time is called agap and δ denotes its relative
length. Note, thatδ = 0 is possible. Due to our argumentation, the broadcast that answersri has to be
of length at least(φ−1 + ε′′) · ψi. Therefore, this theorem would be proved if we showed thatδ exceeds
1 − φ−1 − ε′′ on instanceRn for a finiten. To this end, we will show that the relative lengthδ of the gap
increases with every newly added request. Figure 4 depicts this situation. When the algorithm becomes
aware of requestri+1 at its release time it essentially has two choices of action:either it aborts the currently
performed broadcast or it continues this broadcast until itis submitted completely. If the algorithm decides
to abort the broadcast the new broadcast has to be finished at the deadline of requestri. As there are at most
(1 − φ−1) · ψi time units of requestri left, this decision results in a competitive ratio of

1

3
·
(

ψ−(i)

ψ−(i+1)

)α−1

=
1

3
·





3−
√

5√
5−1

1 − 2
1+

√
5





α−1

=
1

3
·
(

1 +
√

5

2

)α−1

= Ω(φα) = ω(γα).

Hence, aborting the currently performed broadcastb that answers requestri is no option and we henceforth
assume that algorithmA does not abort it whenri+1 is issued. Nevertheless, it can change the speed at which
b is submitted. As we want to show that the gap’s relative length increases, decreasing the broadcast speed
is in our interest. Therefore, we assume that the algorithm increases the speed. We will delimit this speed
from above to show that the relative length of the gap of request ri+1 has increased at least by a constant
amount—compared to the relative length of the gap of requestri.

δ · ψi

(δ + ε′′) · ψi

φ−1
· ψi+1

> δ · ψi+1

Figure 4: The relative lengthδ of the gap increases when adding requestri+1.

As broadcastb cannot be finished beforeφ−1 + δ + ε′′ parts of requestri have passed, at least(δ +
ε′′)/(φ−1 + δ + ε′′) parts of broadcastb remain for submission when requestri+1 is issued. In order to
submit them in timet a speed of(δ+ ε′′)/((φ−1 + δ+ ε′′) · t) is necessary that yields an energy consumption
of

E(t) :=

(

1

t

)α−1

·
(

δ + ε′′

φ−1 + δ + ε′′

)α−1

.

Even when pessimistically ignoring the energy consumed up to that point energyE(t) must not exceed the
energy consumed by requestri+1, i. e.,ψ−(i+1)(α−1), by more than a factor(1/(φ−1 + ε′′))α−1 in order to

17

stick to the claimed competitive ratio. Doing some algebra reveals

(

1

t

)α−1

·
(

δ + ε′′

φ−1 + δ + ε′′

)α

<

(

1

φ−1 + ε′′
· 1

ψi+1

)α−1

⇒ t > α−1

√

δ + ε′′

φ−1 + δ + ε′′
· ψi+1 · (δ + ε′′)(φ−1 + ε′′)

φ−1 + δ + ε′′
.

By increasingα the root in the inequality above converges to1 and we see that the gap increases with
each newly issued request if(δ + ε′′)(φ−1 + ε′′)/(φ−1 + δ + ε′′) > δ holds for allδ. This is equivalent to
(ε′′)2+ε′′φ−1 > δ2. As soon asδ exceeds1−φ−1−ε′′ by a constant amount the theorem is shown. Therefore,
we assume this not to happen and transform inequality above into (ε′′)2 +ε′′φ−1 > (1−φ−1−ε′′)2. Finally,
this gives rise to

ε′′ >
1 + φ−12 − 2φ−1

2 − φ−1
=

3
√

5 − 5

5
√

5 + 5
= γ−1 − φ−1.

Sinceε′′ = γ−1 − φ−1 + ε′ holds, this inequality is fulfilled for eachε′ > 0. Therefore, the gap’s relative
length increases each step by a constant amount and, consequently, exceeds1−φ−1−ε′′ after a finite number
of steps. Hence, a competitive ratio of less thanΩ(γα) leads to a contradiction and the lower bound is proven
for deterministic algorithms.

Therefore, we merely need to extend its proof to hold for randomized algorithms as well. To this end we
assume that there is an algorithmA that achieves a competitive ratio ofO((γ − ε)α) for a constantε > 0
and use exactly the same input instances as in the deterministic version. The algorithm has to use at least
(γ−1 + ε′) parts of the last request with probability at least1 − γ · (γ−1 + ε′)α as otherwise it could not
achieve the claimed competitive ratio. As this holds for each instanceRi it holds with probability at least
(1 − γ · (γ−1 + ε′)α)n+1 for each requestr0, r1, . . . , rn of instanceRn. As the lengthn of the series that
suffices to obtain a contradiction depends only onε andε′ but notα, this probability converges to1 asα
increases. Hence, the claims follows directly from the law of total probability.

A.1.2 Lower boundΩ(1.09α) for requests of identical length

It remains to show the claimed lower bound of1.09α for randomized algorithms. As randomized algorithms
tend to be “hard to control”, we will use Yao’s minimax principle [13] for the sake of bounding the com-
petitive ratio of any online algorithm from below. This theorem allows us to look at deterministic online
algorithm only, so that we do not have to bother with randomization at all. However, in order to show a lower
bound we have to fix an input distributionR, compute the expected costEOff it causes when presented to
an optimal offline algorithm and, finally, bound the costEOn of an optimal deterministic online algorithm
A from below that is aware ofR. The last part is the most difficult one. Then, the ratioEOn/EOff is a
lower bound for the competitive ratio of any randomized online algorithm. We point out that th deterministic
algorithmA is aware ofR but does not know the actual choice of the random bits.

First of all, we have to specify the input distributionR. The key idea to show the lower bound is to
“force” the algorithmA to make a mistake before it knows which input instance it was given. Hence, we
define the following two input instances. InstanceR1 consists of one request at time0 with deadline1. For a
givent ∈ [0, 1]—that we will specify later on—we obtainR2 fromR1 by adding a request with release time
t and deadline1 + t. Observe that both requests have the length1. Next, we specify the input distribution
R by saying that instanceR1 is chosen with probability1 − p and instanceR2 otherwise. We will fixp
appropriately later on. As we are about to compare the expected cost induced by an online algorithm to the
expected cost induced by an optimal algorithm forR, we will compute the cost of an optimal schedule for
R in the following lemma.

18

Lemma 4 The expected costEOPT of an optimal broadcast schedule onR sum up to

EOPT =







(1 − p) + 2 · p ·
(

2
1+t

)α−1
if t ≥ α−1

√
2−1

α−1
√

2+1

(1 − p) + p ·
(

1
1−t

)α−1
otherwise.

In the first case the optimal solution consists of two broadcasts [0, (1 + t)/2] and [(1 + t)/2, 1 + t]. In the
latter case there is just one broadcast[t, 1].

Proof: Obviously, the single request of instanceR1 can be answered by a broadcast[0, 1] with cost1. Since
this instance is chosen with probability1 − p it yields a addend1 − p to the expected cost.

There are two possibilities to answer the two requests of instanceR2: Either by one broadcast that
answers both requests simultaneously, or by one broadcast for each request. Due to the given release times
and deadlines the optimal broadcast that answers both is[t, 1]. Therefore, its cost is(1/(1 − t))α−1. On
the other hand, as a consequence of Lemma 1 it is not hard to seethat the two broadcast[0, (1 + t)/2] and
[(1+ t)/2, 1] consume the least energy among all schedules that answer therequests by using two broadcasts
within [0, 1 + t]. In this case, the cost sums up to(2/(1 + t))α−1. Hence, we see that two broadcasts are
cheaper if and only ift ≥ (α−1

√
2 − 1)/(α−1

√
2 + 1) holds. Either way, the cost induced byR2 is weighted

with p in the expected cost ofR. This shows the lemma. �

Now we can complete the proof of Theorem 7. As we are intendingto use Yao’s minimax principle
it is time to specify the parameters ofR entirely. We use the above defined probability distributionon the
instancesR1 andR2 and use the parameterst :=

√
2 − 1 andp := ((1 + t)/2)α−1.

According to Lemma 4, for allα ≥ 2 an optimal broadcast schedule consists of two (identicallysized)
broadcasts and yields cost of

1 −
(

1 + t

2

)α−1

+ 2 ·
(

1 + t

2

)α−1

·
(

2

1 + t

)α−1

< 3.

Let us apply Yao’s minimax principle and have a closer look atit. The deterministic online algorithmA
used in it does know the input distributionR. In particular it knows the value oft. However, it is unaware of
the choice of the random bits, i. e., the choice betweenR1 andR2. This holds up to timet as it can distinguish
these two instances by then. Due to the convexity of the cost function the optimal algorithm does change its
transmission speed only at timet. Hence, we can assume without loss of generality that the algorithmA is
acting according to the scheme shown in Figure 5.

Choosingt′ < t does not result in an optimal algorithm since the interval[t′, t] is not used in instanceR1

as well as inR2 although using it is not prohibited by any deadline. Accordingly, we obtain a better solution
by redefiningt′new := (t+ t′)/2. Hence, we assumet′ ≥ t in the following.

We will adjust the parameterst′ andt′′ such that the expected cost is minimal and bound this cost from
below. In this way, we obtain the optimal online algorithm for R as well as a lower bound on its cost. For
this purpose, we first focus on finding the optimalt′′ for givent′.

As the choice oft′′ is only affecting Step 2a, we assume for the moment thatA chooses this kind of
schedule. Thus, instanceR2 was presented and answered by two broadcasts. Up to timet a portion of
1 − t/t′ of the first request has already been answered. Hence, the optimal speed for the interval[t, t′′] is
exactly(1 − t/t′)/(t′′ − t). Consequently, the functiong defined by

gt,t′(t
′′) := t ·

(

1

t′

)α

+ (t′′ − t) ·
(

1 − t
t′

t′′ − t

)α

+

(

1

1 + t− t′′

)α−1

represents the cost induced by the two broadcasts. It is straightforward to verify that this is minimal for
t′′0 := ((2t+ 1)t′ − t− t2)/(2t′ − t) and yields cost ofgt,t′′(t

′′
0) = (t+ (2t′ − t))/(t′)α. Now, that we know

19

1. Start broadcast[0, t′] and perform it up to timet.

2. If there is a new request at timet, reevaluate the situation and choose the more favor-
able of the following two strategies:

a Continue the current broadcast changing its speed accordingly such that it ends
at timet′′. Subsequently, perform another broadcast until time1 + t.

b Abort the current broadcast and start a new one, that answers both requests si-
multaneously within their deadlines.

3. If there is no new request at timet, change the speed of the current broadcast such that
it finishes at time1.

Figure 5: Scheme of an optimal algorithm for input distribution R.

the optimal choice fort′′ we can focus on finding the optimalt′. Step 2b results in costt ·
(

1
t′

)α
+
(

1
1−t

)α−1

and Step3 in costt ·
(

1
t′

)α
+

(

1− t

t′

1−t

)α

·(1−t). Since the condition of Step2 is fulfilled with probability1−p
and the one of Step3 with probabilityp, we have gathered all information needed to make up a connection
betweent′ and the expected cost. Therefore, the cost induced by the choice of time t′ is denoted by the
functionc that is defined by

c(t′) := cost(Step 1) + p · min{cost(Step 2a), cost(Step2 b)}

= t ·
(

1

t′

)α

+ (1 − p)

(

1 − t
t′

1 − t

)α

· (1 − t) + p · min

{

(

2 − t

t′

)α

,

(

1

1 − t

)α−1
}

.

Evaluating the min-term in the definition of this function might prove a little bit tricky. However, let us
recall that we are interested in finding a lower bound on the competitive ratio of an arbitrary online algorithm.
Hence, a lower bound on the minimal value off will suffice. It holds that

(

2 − t

t′

)α

<

(

1

1 − t

)α−1

⇔ t′ <
t

2 − (1 − t)
1−α

α

=: cα.

To obtain a lower bound on this term we define the two helping functionsc1 andc2 by

c1(t
′) := t ·

(

1

t′

)α

+ (1 − p) ·
(

1 − t
t′

1 − t

)α

· (1 − t)

andc2(t
′) := t ·

(

1

t′

)α

+ p

(

2 − t

t′

)α

.

As all addends inc are positive—we already reasoned thatt′ is bounded below byt—we obtain:

c(t′) ≥
{

c1(t
′) if t′ ≥ cα

c2(t
′) otherwise.

It is not difficult to verify that these functionsc1 andc2 take their minimal value at(1 + (α−1
√

1 − p − 1) ·
t)/(α−1

√
1 − p) and 1

2 · (t + α−1
√

α/(p · (α− 1)), respectively. Usingp = ((1 + t)/2)α−1 and doing some
algebra suffices to verify that the costc(t′min) of the algorithmA is bounded below byΩ(1.09α) holds. We
conclude that an application of Yao’s Theorem finishes the proof of this theorem as Lemma 4 states that the
expected optimal cost onR is constant.

20

