Energy-Efficient Broadcast Scheduling for Speed-Corddbll
Transmission Channels

Patrick Briest Christian Gunia

Abstract

We consider the problem of computing energy-efficient becaatischedules for a speed-controlled
broadcast channel, i.e., our goal is to find broadcast s¢ébethat minimze overall energy consumption,
where sending at speedor ¢ time units consumes energy* and transmission speed for each broadcast
needs to be fixed when it is started. The main part of the papiercused on the case that the server
holds only a single message and every request defines adsddtine before which a full broadcast
has to be performed. We present @2)-competitive deterministic online algorithm and provettha
this is asymptotically best possible even allowing randmtion. We then discuss some possible problem
extensions. For the case of multiple different messagesaephat an extension of our online algorithm
achieves competitive rati@c — 1)« if the lengths of requests do not vary by more than a facter &br
the problem variation in which the speed of running broatdoagy be changed, we present lower bounds
showing that competitive ratios that depend exponentaily are still unavoidable.

1 Introduction

Classical objectives in online broadcasting usually alostaway from the precise hardware architecture of
the underlying computing machinery. They mostly aim at paidg solutions that ensure a high degree of
convenience for the serviced clients, but do not take intmawct the cost of actually realizing the solution.
While this approach is quite reasonable in many traditigtainarios, recent years have brought about an
increasing number of applications in which these issuesrheamon-neglectible.

The most important factor determining thestof running a broadcasting algorithm in practical appli-
cations is the algorithm’s energy consumption. In factrgnefficiency has become a premier objective in
many different areas of computer science and recent advdraa already led to changes in the structure
of processors, graphic cards and other parts of computdnaae. Reduced energy consumption offers new
application areas for computer systems. Multi-agent systeonsisting of dozens of small, self-sustaining
units support engineers and researchers in an increasingarwf applications that range from production
process planning to geographical observations [6]. Madgnt systems depend on a reliable communication
link between them that is typically provided by means of aeleiss connection. Due to characteristics of
their operation areas they are likely to be small and, canssity, carry a limited power supply. To use this
as efficiently as possible specialized hardware like, lg-power CPUs are utilized.

However, the energy consumed by the wireless connectideddar from being negligible. As wireless
communication is implicitly done via broadcasts we propimsexploit this fact. We focus on a single agent
that acts as a data server and adapt the situation introduc&@o et al. in their seminal work [14]: we
consider requests that have individual release times aadlides and allow that multiple requests for the
same piece of data can be answered by a single broadcaste ddimg this results in a smaller number of

“Dept. of Computer Science, Dortmund University, Otto-H&tn 14, 44221 Dortmund, Germany. E-mail:
patrick. briest @s. uni -dort mund. de. Supported by DFG grant Kr 2332/1-2 within Emmy Noether pang

TDept. of Computer Science, Freiburg University, Georgébiir-Allee 79, 79110 Freiburg, Germany. E-mail:
guni a@ nf or mat i k. uni - f r ei bur g. de. Supported by DFG research training program No 1103 'Eméeddicrosystems’.

broadcasts needed to answer all requests, it also redwecamthslot left for the broadcast at hand and, thus,
requires higher transmission speed.

In previous works (e. g., [4] and [9]) the transmission powgemerely used to adjust the transmission
range in order to construct a topology that supports bradgdaut minimizes the energy consumption. We
propose a completely different usage of the transmissiarepand use it to adjust the maximal transmission
speed of the broadcast channel. As observed for example 8t 11b-WLAN technology, the signal-to-
noise ratio needed to send a transmission increases withagiog transmission speed [12] and, thus, higher
speed results in increased energy consumption. Lookingfrtnn the optimistic point of view, the server
can reduce its energy consumption by simply keeping trassar speed low. We assume here that at speed
s the power consumption ig* per time unit, wherex > 2 is constant.

1.1 Related Work

Extensive research on various versions of online broaithcplas been going on for several years. The most
popular problem variation aims at flowtime minimizatior, j minimizing the time span between the arriving
of a request and the time by which it is answered [1, 5]. Othégatives that have been investigated include
minimization of the number of unsatisfied requests [8] ofedént QoS-measures allowing messages to be
split up into an arbitrary number of smaller objects [11].eTduestion of energy efficiency in broadcasting
is addressed in [7], where the main objective is still flovgiminimization, but an additional constraint
defines the maximum energy consumption allowed for sewyiairgiven sequence of requests. Adjusting
the transmission energy has been used to reduce interfetmteeen different stations in large wireless
networks by Burkhart et al. [3] and by Moscibroda et al. [10].

A related problem that has received a lot of attention alsmfthe energy perspective is job scheduling
with deadlines [14]. Here, a sequence of jobs, each witlaseléme, deadline and a certain workload need to
be scheduled on a single processor, such that all jobs askduhin time and the overall energy consumption
is minimized. Here, the machine is speed-controlled gthdor a constanty > 2 represents the energy
consumed per time unit at speed Yao et al. [14] present an algorithm that runs in polynontiimle and
computes an optimal schedule. They also propose two onlgwgithams A/ERAGE RATE and QPTIMAL
AvAILABLE and prove that the competitive ratio o/ BRAGE RATE is somewhere betweesf* and2%a®.
Bansal et al. [2] show that the competitive ratio 0PTOMAL AVAILABLE is exactlya®. Furthermore, they
prove that the competitive ratio of any online algorithmtigeast((4/3)%).

1.2 Preliminaries

As the base problem of this paper we consider a server thahisomted with a sequende = (71,72, ...)
of requests for the same piece of information. This piecafafrimation has a transfer volume of one, i.e., it
can be broadcasted completelylifs time units at spees. Request; = (¢;,d;) is posed at its release time
t; and has to be answered until its deadlifjyei.e., the server's message has to be broadcasted completel
between times; andd; at least once. A broadcast performed at speéar ¢ time units consumes- s
energy units fory > 2. Therefore broadcasting the message completely intmhéxed speed /t consumes
(1/t)>~! energy units. Due to the convexity of the energy functioms itot difficult to see that this is the
minimal amount of energy needed to deliver the whole infaiomawithin ¢ time units. For the first part of
this paper this will also be the only allowed type of broadces., we will assume that the transmission speed
for each broadcast needs to be fixed the moment it is staretdaamot be changed while the broadcast is
running. We consider the problem of finding a feasible scleedfibroadcasts (i.e., answering all requests
within their deadlines) that minimizes the overall energpsumption.

We will also consider two extensions of the problem definemvabFirst, we will investigate the case in
which the server holds a larger numidee N of messages. Every request= (¢;,d;, m;) then asks for a

single message:; to be delivered before its deadline. We then turn to the trarian which the speed of a
running broadcast can be adapted by the algorithm. As heferaling at speegfor ¢ time units causes an
energy consumption df- s*.

Finally, let us introduce some notation that will be usedtighout the rest of the paper. Given a se-
quence of requestB, we letB = (b1, b2,...) andB* = (b7, b3, ...) denote the corresponding sequences
of broadcasts sent by an an online strategy or the optimat@ftrategy, respectively. Sometimes it will be
convenient to associate a broaddast (s;, f;) with the intervals;, f;] defined by its starting and finishing
times. For requests; as well as for broadcasis we let|r;| and|b;| refer to their lengths.

1.3 Contributions

To the authors’ best knowledge, this is the first analysieatiy addressed to the minimization of energy
consumption for broadcasting by speed scaling. We starbbgidering the restricted version of the problem
in which the server holds only a single message and tranemispeed cannot be changed while a broad-
cast is being performed. We first point out how to compute ilyrpmmial time an optimal solution in the
offline setting by applying an appropriate dynamic prograngnapproach based on an interesting structural
property of the optimal solution, which turns out to be sapé into disjoint blocks of uniformly distributed
broadcasts. We then present an easy to implement onlinathlgcand prove that it achieves competitive
ratio O(2%). For the analysis we again utilize the structural resutimfthe previous section, which yields a
nice way of relating the cost incurred by our online strategthe cost of an optimal offline solution. From
a technical perspective, the advantage of this approadteifatt that separating the optimal solution into
disjoint blocks allows an almost tight analysis with ralaty small constants inside thi@-notation. These
results are found in Sections 2.1 and 2.2.

It turns out that our algorithm’s competitive ratio is besspible, as we proceed by showing a matching
lower bound that holds even for randomized online algorghifhe lower bound is based on what could be
called agrowing gapargument. Towards a contradiction, we assume that a givareadgorithm achieves a
better competitive ratio and then construct a series ofastigu such that in each newly added request there is
agap, i.e., a time interval that the algorithm cannot use for arsivg the last request. The key ingredient of
the proof is a way of constructing the sequence, such thaizkef the gap increases with every newly added
request. The necessary technique is first developed famaleistic algorithms only. Adding randomness to
the construction and applying some additional techniqaiments, we then transfer the result to randomized
algorithms, as well. Details are found in Section 2.3.

Since from a technical point of view it appears that good lolb@unds require sequences of requests
of heavily decreasing lengths, we also have a closer looksémces in which all requests are of identical
length. We prove that in this case the competitive ratio afadgorithm improves tg3/2)“.

We point out that even this rather restricted single-messagnario is of practical interest. In mobile
multi agent scenarios for example, a single agent might badmasting some current sensor status to the
other agents whenever it is needed. In our model, this mémtshte server is in fact holding only a single
message, although it might of course be changing over time.

We nevertheless continue by investigating the multiplessage scenario, in which the server holds any
larger numbek € N of different messages. We present an extension of our oalgegithm for the single-
message case and show that it has competitive fétie- 1)* if all requests have length betweémand c/
for some positive constantsand/, i.e., if lengths vary by at most a factor of Especially, this yields a
3*-competitive algorithm for requests of identical lengthur@@isingly, these ratios do not depend on how
many different messages are hosted by the server, i.e. ateegompletely independent from parameier
Finally, we take a look at the effect of allowing the algomitho adapt the speed of running broadcasts. We
prove a lower bound of.38* on the competitive ratio of any online algorithm in the gexhease and a lower
bound of1.09¢ for requests of identical length. For results on these aibeis see Section 3.

2 Single-Message Broadcasting

In this section we describe the results about the scenanhioh the server holds a single message and
transmission speed for a broadcast needs to be fixed at itsnbagy We start by stating some facts about
the optimal offline solution and develop a dynamic prograngrbased algorithm in Section 2.1. We then
prove our main result by presenting é{2%)-competitive online algorithm in Section 2.2 and proving it
optimality by a matching lower bound in Section 2.3.

2.1 Computing the Offline Solution

LetR = (ry,...,m,) be agiven sequence of requests and assume that an optiradtasd schedule is given
by B* = (b},...,b},), where theb; are ordered chronologically. We call the release times aadiiéhes of
requests ink event pointand denote them by = (e, ..., es,) again assuming chronological order. By

B(i,5,m), i < j, we refer to a non-interrupted block of broadcasts of identical length with the first one
starting at time;, the last one finishing at timg;. The following lemma states th&t* is just a collection of
blocks of this type. A proof is found in the appendix.

Lemma 1 An optimal schedule for a given input instance consistsafdsiB (i, jx, my) fork =1,2,..., v.

Based on this we solve the problem by a dynamic programmipgoaph. Lefl” be thetable of overlaps
i.e., T(5)%s is the first request (the one with earliest release time)dbatains event point;, 7'(;)"i4th
the number of requests that contain Let A = max; T ()™t It is easy to check that it is possible to
compute tabld” for a given input instance within tim@(n log n) on space)(n).

The tuple(i, j, k,1) denotes the subproblem in which only the requdstg)f™t + 4, T(j)f™t + i +
1,...,T(k)¥s + [have to be answered and all broadcasts have to be perforntieic i, e;]. Slightly
abusing notation the tuple also denotes the value of an apswiution to this problem. Hence, we are
interested in computingl, 0, 2n, T'(2n)Vidth — 1),

The main idea of algorithm ErLINE is to identify the blocks as found in Lemma 1 by dynamic progra
ming. After initializing the tablg(i, j, k,) with zeros, it already contains the correct solutionsifer £ and
j = l as there is either no time to perform a broadcast or no reqoiestswer. GFLINE then successively
computes the optimal solutions fQr, j, &, 1) in lines3 to 6. By Lemma 1 it follows that an optimal solution
to (4, 4, k, 1) must either be identical to block(j, k, m) for somem > 1, or must contain some event point
e; at which the problem can be split up, since it is not overlappgany of the optimal broadcasts.

Input: Requests with release times and deadlines
Result Minimal costs of a schedule of broadcasts answering them

Fill up table of overlaps, i. eT(:)5™* and T (i)"'¥*" for 1 < i < 2n
Initialize table of optimal solutions, i. (3, j,k,1) < 0for1 <4,k <2n,1 <j, k<A
for increasingt — i andl — 5 dodo
vr — min{(i, 5,4, 5) + (', 5" k, 1) |1 <" <k AG <5 <}
vy «— min{B(i, k,m) |1 <m < n}
(4,7, k,1) < min{vi,v2}
end
7 return (1,0,2n, T(2n)V4h — 1)

o U hAh WN B

Algorithm 1: OFFLINE.

Theorem 1 For a given input instance algorith®@FFLINE computes an optimal schedule in tidéA2 - n*)
and on space(A? - n?).

2.2 An Online Algorithm

Algorithm ONLINE-SM proceeds as follows. If a request= (¢, d) arrives at time: while the channel is
idle, we start a broadcast that uses the full lengitht of the request. If the channel is busy and the currently
running broadcast is scheduled to finish at timeve abort and start a new broadcast if at least half of the
interval [¢, d] defined byr lies beforer. In the implementation below denotes the end of the currently
running broadcasiy refers to the earliest deadline of any request that neede &méwered by a broadcast
starting afterr.

1 7 +00,p«— +x© 14 if a broadcast finishes ang < +oo then
2 if arequest = (¢, d) arrivesthen 15 TP
3 if channel is idlehen 16 | pe—+o0
4 red 17 start broadcast at speéd — ¢) !
5 | start broadcast at speéd —)t
6 if channel is busyhen
7 if r—t>d— 7then
8 abort current broadcast
9 T < min{7,d}
10 p < +o00
11 start broadcast at speéd — t) !
12 else
13 L p < min{p, d}

Algorithm 2: ONLINE-SM.

Theorem 2 Let Ep denote the energy consumption of algoritmLINE-SM on any sequence of requests,
Eopr the value of an optimal offline solution on the same sequdhhbelds that

2
[0
Eon < (—1> 2% Eopr.

Before presenting the proof of Theorem 2 we point out thatteebeompetitive ratio is obtained if we
require all requests to have identical length.

Theorem 3 Let Epy denote the energy consumption of algoritBmLINE-SM on any sequence of requests
of identical length ,Eo pr the value of an optimal offline solution on the same sequdhhbelds that

2a 3\ ¢
Eon < <§> -Eopr.

We proceed by proving Theorem 2. First observe that algori®NLINE-SM outputs a feasible solu-
tion, i.e., every request is indeed answered by one of tharitigh’s broadcasts. Consider a single request
r = (t,d) arriving at timet. If either line 3 or line 7 apply, the algorithm immediatehads a broadcast with
finishing timer < d. Afterwards this broadcast may well be aborted due to newlyiag requests. How-
ever, eventually there must be a completed broadcast fagidi@forer and, thus, answering If neither line
3 nor line 7 apply, we get < p < d due to line 13 of the algorithm. If the current broadcast is\pteted
at timer, the algorithm starts a broadcast with finishing timec d due to lines 14 to 17, which answers
r. If the current broadcast is aborted due to other requdsdijrst completed broadcast with finishing time
beforer will answerr. This completes the proof of correctness.

In order to prove the competitive ratio claimed above we fiestd to bound the cost incurred by our
algorithm due to aborted broadcasts. The following lemratestthat this cost becomes negligible for larger
values ofa. Due to space limitations the proofs of Lemma 2 and Theorene ®mitted.

5

Lemma 2 Let E,;, denote the energy consumed by algoritbmLINE-SM due to aborted broadcast#;.,
the energy used by completed broadcasts. Thgn< (1/(« — 1)) E,, for any given sequence of requests.

Proof of Theorem 2:For the remainder of the proof it will be important to know ttiah request to
assign the cost of a single broadcast. Given broadcsestt by algorithm QLINE-SM we say thab is linked
to requestr, if b is started due te in lines 5, 11 or 17. It is straightforward to observe that> |r|/2,
wheneven is linked tor.

Consider the optimal offline solution. By Lemma 1 broadcd3tsent by the offline strategy can be
partitioned into group$, . . ., By, such that eacl; is a non-interrupted sequence of broadcasts of identical
length. Let us fix some group; containing some numbér > 1 of broadcasts, with the first one starting at
time s, the last one finishing at timee Thus, every broadcast iB; has lengtht — s) /k.

Let R; denote the set of requests answered by broadca&isimthe offline setting. Clearly, all requests
in R; have length at leagt — s)/k. We are going to bound the energyconsumed by algorithm QLINE-

Swm for sending broadcasts linked to request®in To this end, letF = E; + E5 + E3, whereE; denotes
energy consumption before timse F», and F3 refer to energy consumed between timeend¢ and aftert,
respectively.

Let us first consideF;. We know that every request iR; has a deadline no earlier than- (¢t — s)/k,
as otherwise it could not be answered by a broadcast fBpmNow assume that algorithm MRINE-SM
is sending a broadcastlinked to some request € R; at timeu < s. It follows that|b| > (1/2)[r| >
(1/2)(s+ (t — s)/k —u) and, thus, the algorithm is sending at spggd’ < 2(s+ (t —s)/k —u)~! attime

u. We can then write that
2x t— s\ ot
< .
Ta-—1 (k >

We next considelr; and E'5. As observed before, broadcasts linked to requests; inave length at least
(t — s)/(2k). Hence, no more tha?k such broadcasts can be started between tisreasd¢. Broadcasts
starting after timeg are sent only if requests fro; have been left unanswered. First observe that at most
one such broadcast is sent, as it will clearly answer allestgufromR;, which we know have starting times
beforet.

We then observe that requests frat can only be left unanswered before timef at most2k — 2
broadcasts starting betweenand¢ are sent. To see this, note that everye R; is posed before time
t — (t — s)/k, since otherwise it could not be answered by broadcasB;.iHowever, since broadcasts of
algorithm ONLINE-SM linked to requests i; have length at leagt — s)/(2k), no more thar2k — 2 such
broadcasts can be started betweemdt — (¢ — s)/k. It follows that

b\ ot p g\ el
B Fa <2k —— =2% [—— .
2 S (%) (F >

On the other hand, the energy consumed by the offline strategyering requests frol; is E* = k- ((t —
s)/k)~**1, sincek broadcasts of lengtft — s)/k are sent. Finally, we obtain

2¢ t— s\ ot « t—s\ ot «
E< 2%k < 2%k = 20 . BF,
_<oz—1+)(k > Ta-1 < k > a—1

Let Eon and Eppr denote the energy consumed by algorithmL@e-Sm and the optimal offline strategy
on the complete set of requests, respectively. Summing epasigroupsi; and taking into account energy
consumption due to aborted broadcasts, we get

t—
S t _ 2a Tk

E < 20‘/ (s+ A - u) " du = ——u~oH!

0

ol e

2

(0]

Eon < (—) 2% . Eopr,
a—1

which proves the theorem. d

2.3 A Lower Bound

In this section we will show that algorithm MRINE-SM is asymptotically best possible. We start with a
matching lower bound for deterministic algorithms in Trerar4. Theorem 5 extends this to randomized
algorithms.

Theorem 4 The competitive ratio of every deterministic online altfum for single-message broadcasting
isw((2 —¢)*) for anye > 0.

Here is the high-level idea of the proof: We construct a seqe®f requests of exponentially decreasing
lengths. In every step of the construction, there will baxaetinterval contained within the very last request,
which the algorithm cannot use for sending a broadcast airsyvie. We will refer to this prohibited time
interval as agap. The key ingredient of the proof is Lemma 3, which states iftat online algorithm has
competitive ratioO((2 — ¢)*) for somee > 0, the relative length of the gap (i.e., compared to the length
of the last request) increases steadily, forcing the algorio violate its competitive ratio after a number of
requests.

Proof of Theorem 4Towards a contradiction assume that deterministic onligerdhm A has compet-
itive ratio O((2 — ¢)¢) for some constart > 0. We denote our sequence of requestsg@s;, ... and let
R; = (ro,...,rj). SinceA is deterministic, we can construct the input sequence pmistestep manner, i.e.,
we can define request. ; depending on the algorithm’s observed behaviorgn

Before we give a detailed description of our constructioe, veed to define the notion ofgap more
formally. We have to consider two different types of gaps. &k thatr; has a gap of relative lengthat its
beginning if a broadcast that has been started befgrie posed is not aborted and finishiesr;| time units
afterr; is posed. Thus, the broadcast answeripngust be started at least |r;| time units after the request
is actually posed. On the other hand, we say thdtas a gap of relative lengthat its end if there exists a
requestr;, i < j, that has a deadling- |r;| time units before the deadline of and needs to be answered
by the same broadcast as In this situation, the broadcast answeringlearly needs to finish - |r;| time
units before its deadline, as otherwisavere left unanswered. Gap positions are depicted in Figure 1

Let now Eppr(R;) denote the cost of an optimal offline solution &) and assume for the moment
that Eopr = O(|rj|~*1), i.e., assume that the cost is dominated by the length ofteréquest. Having
this it is clear that algorithmi’s broadcast answering; must have length at leaét /2 + ¢’)|r;| for some
appropriately choses’ > 0 in order to guarantee its competitive ratio. Let new= (t;,d;) andm; =
(t; + d;)/2 refer to the middle of the interval defined by. We setr, = (0, 1) and say that, has a gap
of relative length0 at its beginning. For the definition of; we distinguish two cases. H; has a gap of
relative lengthy at its beginning, we set; ;1 = (m; + (0 + £')|rj11],dj + (6 + €')|rj41]). If a gap of the
same length is at the end of, we setr; | = (mj — (6 — &')|rj41|,dj — (6 — €')|rj41]). Intuitively, ;41
has lengt2—7—! spanning the second half of requestand is shifted according to the gap’s position-jn

By Lemma 3 the relative length of the gap increases by at #astach step. Hence, its relative length
exceedd /2 at some point and there must exist a requgshat algorithmA answers by a broadcast of length
at most(1/2)|r,,|. Thus, the energy consumption of algorithtron R,, is E4(R,,) = Q(2(@~ D+,

It remains to boundZo pr(r,,) from above. The optimal schedule uses the full lengthgff for its last
broadcast. Consider then an arbitrary requestif ~; contains somey,, & > j, then it is answered by the
broadcast answering,. Otherwise, all requests,, £ > j, are posed aftern; andr; can be answered by a
broadcast of lengtim; — ¢; = |r;|/2. Now remember that;| = 277/ and we obtain that

n—1 n—1
EOPT(Rn) < (|,r,j|/2)—a+1 + |,r,n|—oz+l _ Z 2(01—1)(j+1) + 2(04—1)n _ 0(2(a—1)n)’
=0 =0
which finishes the proof. O

>
=2
+
o
<
Jr
o,

>
(=2
+
o
<
Jr
.

2 ot 2i+1 21 ot 2i+T
—" — = — = — =
- | - |

— 4
= | e =
d+¢’

_ 2i+1 _
(c) front to front (d) front to back
e 5 e 5
20 20 20 20
N — S —
o fee = fe =
\ | %
\ \
=} + oo =
—— ——
o+e! o+e! oe!
2i+1 2i+1 2i+1
(e) back to front (f) back to back

Figure 1: Construction for a gap of relative lengtkvith respect to its position in theth request. Intervals
corresponding to requests and broadcasts are depictedshsddand solid lines, respectively. The flash
symbol denotes abortion of a running broadcast. Boxes mapk gs described in Theorem 4.

Lemma 3 Given an online algorithm as in the proof of Theorem 4, thatre¢ length of the gap increases
with each newly added request by at legst

Proof: Due to the regular construction of the instance it sufficeshow the claim for a single step. We
have a look at requesis andr;,;. To simplify notation, assume w.l.o.g. that the length @juestr; is
1. Hence,|r;+1| = 1/2 and the length of the broadcast that answers requéss to be of length at least
(1/2 + £') because of algorithml’s competitive ratio. It follows that due to our constructithis broadcast
is still being performed the moment requegt; is issued. As the algorithm is not allowed to change the
running broadcasts’s speed, it has only two ways to deal thishsituation: it either aborts or continues the
broadcast answering. We do a case inspection on the position of the gap and the algorithm’s behavior.
All cases are depicted in Figure 1. Leetlenote the relative length of the gaprin

Case (a)As the algorithm does not abort the broadcast it does nothfipefore timel/2 + § + ¢’.
Remember that the request ; is issued at timél + ¢ +&’) /2. Hence, at least the fir&f + ') /2 time units
of requestr; 1 are not used to answer it. It follows that the relative leruftlis gap is at leasty + ¢’).

Case (b)The algorithm aborts the broadcast instantly the momentasy; , ; is issued. Hence, the next
broadcast must not finish beyond tiheAs request;;; is issued at timé1l + 6 +¢’) /2 and has length /2,
its deadline is at timé& + (§ + €’)/2. This yields a gap of relative lengild + £') at its end. The same is
obviously true if the algorithm aborts the running broadcexd immediately, but at some later point of time.

Case (c)The broadcast that answers requgss scheduled to finish at time/2 + £’ at the earliest. Due
to the construction request,; is issued at timé1l — ¢ + ¢’)/2. Since the algorithm does not abort the
broadcast prematurely, the relative length of the gap afesty; | is at least + &'

Case (b)The algorithm aborts the broadcast the moment reqyestis issued. Remember that there is
a gap of relative length at the end of request. Hence, there exists a request with deadline . This
request is still unanswered, since the broadcast was aboFteerefore, the next broadcast must not finish
beyond this time. As request,; is issued at timgl — ¢ + ¢’)/2 and has length /2, its deadline is at time
1 — (6 —€’)/2. We conclude that this yields a gap of relative length attléas<’ at the end of this request.
Again, the same argumentation holds if the broadcast idedbat a later point. O

The next theorem extends this result to randomized algosths well. We briefly sketch the key idea.
As the length of the broadcast answering the last requesinddes the cost of the solution, we know that
the expected length of the broadcast answeringiust not fall below(1/2 + £)|r;|. Assuming that each
request is added as before, we obtain that the expectedhlehtie gap increases in every step. However,
as an adversary we do not know the random coin flips of the ittigorand, thus, do not know the position
of the gap. We solve this problem by shifting requests inegitf the two possible directions randomly. The
key observation is that for constasit > 0 we need only a constant number of successful steps to reach a
sufficient gap size and, thus, this randomized construdsiatill strong enough to achieve a contradiction.

Theorem 5 The expected competitive ratio of every (randomized) erigorithm for single-message broad-
casting isw((2 — €)®) for anye > 0.

3 Extensions

Finally, we will briefly sketch a number of results for someunal extensions of our problem. Section 3.1
presents a competitive online algorithm for the case thaerti@n a single message needs to be broadcasted.
Section 3.2 discusses the implications of allowing the dde running broadcast being changed.

3.1 An Online Algorithm for Multiple Messages

We present an online algorithm for the case that the senldslsome numbet € N of different messages.
Request = (t,d, m) now also specifies the messagethat needs to be received. We assume that requests
have lengths that vary betweénand ¢/ for some positive constantsand ¢. Algorithm ONLINE-MM
repeatedly collects a number of requests which are theneargvby a sequence of broadcasts of overall
length¢/2. In the implementation belo@ denotes the set of messages that need to be sent within the nex
sequence of broadcasts,refers to messages that will be sent later. Parametersd p are the finishing
times of the next two upcoming broadcasting sequences.

N,L— 0, 7,p+ +oo 9 attimer do
10 L start broadcasts of lengthi (2| N|) each for messages N

if a request = (¢, d, m) arrivesthen
11 N «— 0,7 «— +oo

if channel is idlehen
L 7« min{r,d — £/2} 12 if a sequence of broadcasts finishes and 4-oo then

o ~NOO O~ WN P

N« NU{m} 13 | Ne—L L0
if channel is busyhen 14 L T p,p+— +00
p — min{p,d — £/2}
L L — LU{m}

Algorithm 3: ONLINE-MM.

The following theorem states that algorithrmNONE-MM has a constant competitive ratio that depends
only ong, i.e., the factor by which request lengths may vary. We djpadly note that this competitive ratio
is independent from the numbkmnf messages held by the server. A proof is found in the Appendi

Theorem 6 Let £y, denote the energy consumption of algoritl@NLINE-MM on any sequence of re-
guests with lengths varying betweémnd ¢/ for some fixed: > 1, Eopr the value of an optimal offline
solution on the same sequence. It holds thaty, < (4c — 1)* - Eopr.

3.2 More Flexible Speed-Adjustment

We will briefly address another extension to our problens tidnceivable to allow the server a speed change
during a broadcast without enforcing a restart. Obvioubly,lower bound presented earlier does not apply
to this situation. The next theorem states that the conngetiaitio of any algorithm capable of speed-up
depends exponentially am as well. Its proof can be found in the appendix.

Theorem 7 The competitive ratio of any (randomized) online algoritbapable of speed-up is((y —¢)%)
for everye > 0, wherey = (5 + 5v/5)/(5 + 3v/5) > 1.38. If all requests are of identical length the
competitive ratio is at leas®(1.09%).

References

[1] N. Bansal, D. Coppersmith, and M. Sviridenko. Improveggpfoximation Algorithms for Broadcast Scheduling.
In Proc. of the ACM-SIAM Symposium on Discrete Algorithms (802006.

[2] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic Speed ScptinManage Energy and Temperature.Pioc. of
the IEEE Symposium on Foundations of Computer Science (FQG®4.

[3] M. Burkhart, P. von Rickenbach, R. Wattenhofer, and Allidiger. Does Topology Control Reduce Interference?
In Proc. of the ACM Symposium on Mobile Ad Hoc Networking andiLaimg (MobiHoc) 2004.

[4] A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P.a/dda the Complexity of Computing Minimum Energy
Consumption Broadcast subgraphs. Aroc. of the Symposium on Theoretical Aspects of Compuien&x
(STACS)2001.

[5] J. Edmonds and K. Pruhs. Multicast Pull Scheduling: WRaimness is FineAlgorithmicg 36, 3:315-330, 2003.

[6] G.-Y. Gao and S.-K. Wang. A Multi-Agent System Architect for Geographic Information Gatheringpurnal
of Zhejiang University SCIENGEK(11):1367-1373, 2004.

[7] C. Gunia. On Broadcast Scheduling with Limited EnergyPfoc. of the Conference on Algorithms and Com-
plexity (CIAC) 2006.

[8] B. Kalyanasundaram, K. Pruhs, and M. Velauthapillaih&tuling Broadcasts in Wireless Networks.Froc. of
the European Symposium on Algorithms (ESAP0.

[9] X-Y.Li, W-Z. Song, and W. Wang. A Unified Energy-Efficiefbpology for Unicast and Broadcast. Rtoc. of
the ACM-IEEE International Conference on Mobile Computimg Networking (MobiComP005.

[10] T. Moscibroda and R. Wattenhofer. Minimizing Inteece in Ad Hoc and Sensor Networks. Rrnoc. of the
Joint Workshop on Foundations of Mobile Computifg05.

[11] K. Pruhs and P. Uthaisombut. A Comparison of Multicagit Rlodels. InProc. of the European Symposium on
Algorithms (ESA)2002.

[12] D. Qiao, S. Choi, and K.-G. Shin. Goodput Analysis andd_Adaptation for IEEE 802.11a Wireless LANSs.
IEEE Transactions on Mobile Computinty4):278—-292, 2002.

[13] A.C.-C. Yao. Probabilistic Computations: Towards aifiél Measure of Complexity. IfProc. of the IEEE
Symposium on Foundations of Computer Science (FOCSaggs 222227, 1977.

[14] F. Yao, A. Demers, and S. Shenker. A Scheduling ModelReduced CPU Energy. IRroc. of the IEEE
Symposium on Foundations of Computer Science (FOISSpb.

10

A Appendix

Lemma 1. An optimal schedule for a given input instance consistsafksiB (i, ji, my) for someiy, jx, my
fork=1,2,...,v.

Proof: For the sake of contradiction, we pick the largest block treg at most one border and does not
match any release time or deadline except for its borders is\possible that a block consists of merely one
broadcast such a block has to exist if this lemma is not fefilllt is not difficult to see that this block can
collide with other blocks at most at its borders. For nowpeassume that this block has at most one border.
Then we can further assume, without loss of generality, ttiexe is no border at the end of the block. We
scale the block up by slowing down its last broadcast by acseffily small amount. We see that the solution
remains feasible but its cost decreases since slowing ddwmeacast results in lower cost. This contradicts
the fact that the schedule was optimal in the first place. énsdime manner we can prove that all requests
of one block have to have the same length if the block has twods; otherwise we can reduce the cost by
rescaling the broadcasts while keeping the block’s sizateoh. In doing so the schedule remains feasibly
since it matches no release time and deadlines except toriters. O

Theorem 1 For a given input instance algorithm®FFLINEALG computes an optimal schedule in time
O(A? - n*) and on spac&(A? - n?).

Proof: The main idea of algorithm EFLINEALG (Algorithm 1 on Page 4) is to divide the given problem in
two smaller subproblems while ensuring that an optimaltswiufor the original problem can be composed
of optimal solutions of the subproblems. We use the evemttpais cut-off points for the division. If we knew
that at some timeé a broadcast ends and requests;. 1, ..., r, are left unanswered, we would canonically
obtain two subproblems:

e Create a schedule with minimal cost that answers requests, ..., r;_1 and whose last broadcast
ends at time.
¢ Create a schedule with minimal cost that answers requests 1, .. ., 7, and whose first broadcast

starts after time.

Obviously, we can compose an optimal solution for the odbjroblem of optimal solutions for these two
subproblems. The problem is that we do not know when a breadaas. This is the point at which Lemma 1
comes in. Intuitively speaking, it tells us that in an optisalution there is either a broadcast whose ending
point coincides with an event point or the structure of thenoal solution is trivial.

Let T be the table of overlaps mentioned above, i)™t is the first request that overlaps event
point e; andT'(j)V'9th the number of overlapping requests. In algorithrAFQNEALG the tuple(i, j, k, 1)
denotes the subproblem in which solely the requégtg it + i, T(j)Tst +i + 1,...,T(k)"s* + [have
to be answered and all broadcasts have to be executed \ithin]. The tuple also denotes the value of an
optimal solution to this problem. Hence, we are interested 0, 2n, T'(2n)Vidth — 1),

With this information at hand we have a look the pseudo codalgdrithm CFFLINEALG. After ini-
tializing the table7" of overlaps, it creates a table, j, k,!) that is intended to contain the values of the
subproblems defined above. The algorithm initializes thidet with zeros, that is the correct value for all
subproblems withh = k or j = [as there is either no time for executing a broadcast or nestguiio answetr.
Beginning with line3 it starts filling up the table by increasirig— ¢ and! — j. Within these lines); rep-
resents the minimal cost of the “trivial solution” amgl the minimal cost of a solution obtained by solving
subproblems. Finally, in lin& the value of an optimal solution is returned.

11

Obviously, spac®(n) suffices to store tabl&. Furthermore, the tablg, j, k,) does not consume more
thanO(A? - n?) space since each entry consists of merely one value. Thiepthe claimed upper bound
on the space consumption. As it is easy to verify that lihés 6 can be executed in tim@(n?) the upper
bound on the running time holds as well.

Finally, we will prove the correctness of algorithnFELINEALG. According to Lemma 1, an arbitrary
optimal solution consists of blocks of broadcasts. Thedzaats within one block have all the same length.
The starting and ending point of each of these blocks co@scigith an event point. Therefore, each block
is represented by a specific subprobléiyy, k, 1) with appropriately chosen parametérg, k,[. We point
out that this subproblem contains just one broadcast blodts ioptimal solution. As a consequence, the
algorithm will compute the optimal solution of this blockline 6. We use this as an induction basis for an
induction over the number of broadcast blocks.

If an optimal solution of a subproblef, j, k,) consists of more than one broadcast block, the endpoint
of one broadcast block has to coincide with an event pointtdueemma 1. Hence, the subproblem can
be divided into two subproblems, j,4’, ;') and (¢, j', k,) with appropriately choseif and;’. Since the
algorithm traverses all feasible cut-off points it will tanly try the “right one”. Each of the resulting
subproblems contains less broadcast blocks thank,l) and, therefore, an optimal solution for each of
them is already known to E¥LINEALG. Hence, the corresponding parameters will yield the lowest and
the optimal solutions for the subproblei j, k, [) will be constructed in line. O

Lemma 2. Let E,;, denote the energy consumed by algoritbmLINE-SM due to aborted broadcast#;.,
the energy used by completed broadcasts. Then

1
Eab < —1 Eco

for any given sequence of requests.

Proof: Let B = (b1,...,b,) be a sequence of (aborted and completed) broadcasts setgdsithan
ONLINE-SM on some sequence of requests and assume that broadcastiesaed by their starting times. We

can partitionB into groupsB; = (by, ..., by), such that in each group broadcakgs. . ., b, are aborted,
broadcast, is completed.
Let us now fix some group; = (b, ..., by) and assume w.l.0.g. that the first broaddgsttarts at time

0. Furthermore, lek, start at times and finish at timeg. In algorithm QNLINE-SM every starting broadcast
is scheduled to be finished at timefor the current value of. During our subsequence of broadcasts
the channel is never idle and, while this is the case, theevafu- can only be decreased. It follows that
b, ...,be_1 are all scheduled to be finished at some time ¢. Thus, at any tim@ < « < s our algorithm

is sending at speed at md@st-«) !, which bounds energy consumption at this point of timétbyu) . Let
E.(B;) andE.,(B;) denote the energy consumption on broadcastalone. From the above we conclude

that
Eu(B)) < /s(s) tdu et e L e
wxmrr= a—1 . a—1 ’
On the other handy, is sent at spee@t — s)~! and, thus,E.,(B;) = (t — s)~*T!. Summing up over all
groups gives the claim. An illustration of the proof is found=ig. 2. O

Theorem 3 Let Epy denote the energy consumption of algoritBmLINE-SM on any sequence of requests
of identical length ,Ex pr the value of an optimal offline solution on the same sequdhhbelds that

2 (3\“
Eon < o—1 <§> - Fopr.

12

energy;

(t-sy°+

s t time

Figure 2: Energy consumption due to aborted broadcasts.

Proof: Let R be a given sequence of requests and assume w.l.0.g. thatja#ists have length Further-
more, letB and B* denote the broadcasts sent by algorithmL®E-SM and the optimal offline strategy,
respectively. By the definition of algorithmMRINE-SM, everyb; € B starts at the release time or deadline
of some request! € R and ends at the deadline of some requ@st R, where not necessari} # r2. We
say that; is flankedby r! = (t!,d}) andr? = (t2,d?) and distinguish the cases thay b, = (t7,d}) or (2)

177 177 17
b; = (d},d?) as depicted in Fig. 3.

Let nowA; = d} — ¢? denote theoverlapof ! andr?. Since all requests have lengthwe know that
|b;| > 1/2 and, thusA; > |b;| > 1/2incase(1), A; < 1—|b;| < 1/2in case(2). We next lower bound the
cost incurred by the offline strategy answerirjgandr?.

In case(1) we have thatb;| = A;. The optimal schedule may either answer bgfttandr? with a single
broadcast, or it has to send at least two broadcasts betimeestt andd?, whered? — ¢! = 2 — A;. In any

(2
case the optimal strategy sends at least one broabjcastength

A, 3 3
*| < S A G 020 < 2.
b7] < max{A,,l 5 } < max{]bl\, 4} < 2[62\,
answering one of the flanking reques}sandr?.
In case(2) we havelb;| = 1 — A, and a broadcast sent by the offline strategy answering eithgror
r2 must have length

A; <

3 3

. A; 3
|bi|§1—7_(1—|—A2)—§A2§§—

where we use the fact that; < 1/2 and, thusl + A; < 3/2.

So far, we have assigned evéfyc B to someb € B* answering one di;’s flanking requests, such that
|bX] < (3/2)|b;|. Let now A, refer to the set of all broadcasts assignedtaF(A4;) to energy consumption
due to sending them. Consider a single broadéasent by the offline strategy and let, ..., r; be the
requests answered by it, ordered by their release timeg. hesthe release time of, d the deadline of.
Eachb € A; that is assigned to must be flanked by one of;, ..., r; and, thus, must have starting time
betweert andd.

If 16| > 1/2, we know thatd — ¢ < 2 — |bf| < 3/2. Additionally, |b| > 1/2 holds for everyb € B,
which yields that A;| < 3. Thus, we obtain

o 9 —a+1 3 a)
E(A;) = —otl < 3 2 9. (2) et
(Ai) = bl —3<3|bz|> <2> |7

beA;

N W

If [0¥| < 1/2, we only have thal — ¢ < 2 — |bf| < 2 and, thus|A;| < 4. However, we also know that in

13

@ Aj 2 A

" ~A
2k --------- - (2 ---mmom - - -
R i \ [\
A P
bl bi
% % % e % % % —o
t1 t2 d! d? t1 t2 d? d?

Figure 3: Broadcagt; is flanked by requests' andr?.

this casgb| > |b}| for all b € A; and may then write that

306
EAZ‘ — b_a+1<4-b7k_a+1<2- b b=}<—oc+1
(4) =) bl <4-[b7] <2-{5) Wbil™,

beA;

where we use that > 2. Finally, let Eon and Ep pr again refer to overall energy consumption on sequence
R. Letm = |B*|. Taking into account aborted broadcasts, we have

m
(6 _ (0% _
Eon < —=> b7t =—=3 "% ™"

beB i=1 beA;
m o (6%
« 3 2« 3
2. () i oftt=——(%) -E
a—liz_; <2> 17 a—1<2> OFT
which proves the claim. O

Theorem 5 The expected competitive ratio of every (randomized) erdigorithm isw((2 — ¢)®) for any
e > 0.

Proof: Theorem 4 shows that the claim holds for deterministic dtlyors. Therefore, we will extend its
proof to hold for any randomized algorithi as well. Hence, we assumkto have a competitive ratio of
O((2 — €)®) for an arbitrary constant > 0. The proof of the cited theorem uses Lemma 3 which relies on
a case inspection in each step of the construction of thetwasg instance depending on the gap’s position.
Obviously, as an oblivious adversary we do not know the ramtds algorithmA uses when we have to
fix the instance. Consequently, we cannot use this casediepehat easily. However, we will modify our
approach to fit this situation as well.

First, we point out that underestimating the length af the cited proof does not influence the proof’s
correctness: In this case the gap’s relative length ineseaach step as well. However, the length of the series
sufficient to show the contradiction increases accordinGlgnsequentially, we assume for the construction
of the input instance that the relative length increasestlxhy ¢’ each iteration. Request will still be of
length2~%. We start by issuing requests andr; in exactly the same way as we do in the cited proof. As
« grows large algorithm4 has to perform a broadcast of length at leg&t - (1/2 + ¢) - |ro| in order to
answerr(as otherwise the competitive ratio dfwould bew(1/2 - (2 — £')¥) = w((2 — £)®) which can
easily be seen by omitting request Hence, we choose sufficiently large and obtain with probability/2
a broadcast that ends + ') - |ro| time units after the middle of requesf. We assume in the following
such a broadcast is performed by algoritdmand compensate for this assumption with an additional facto

14

1/2 in the expected cost of algorithtd. When algorithmA gets aware of requesi it decides either to
continue the current broadcast or to abort it. This decidimes not need to be deterministically done but one
of the two alternatives has a probability of at leag2. We assume the algorithm to select this alternative,
compensate for that assumption with an additional fatt@r and construct request accordingly for this
case (by following the construction rules of the cited pyodfow, we can argue again that—for sufficiently
largea—the probability to perform a broadcast of length at lda&t- (1/2 +¢’) - |r1| has to be at least/2.

It follows that we can iterate this construction. In doingose observes that with probability at leésf4)"

the relative length of the gap has increased to at least in the ¢-th iteration and we can compensate for
this in the competitive ratio with a factdil /4)*. Replacingt by 1/(2¢') = O(1) shows that with constant
probability—remember that does not depend am—the gap'’s relative length has increased fa after a
constant number of iterations. We conclude that this yialdempetitive ratio ofv((2 — ¢)®). This is the
contradiction we are looking for and completes this proof. O

Theorem 6 Let E);, denote the energy consumption of algorit@NLINE-MM on any sequence of re-
quests of varying length betweéandc/ for some fixed > 1, Fp pr the value of an optimal offline solution
on the same sequence. It holds that

Eyn < (46 — l)a - Eopr.

Proof: Let By,..., B, denote the sequences of broadcasts sent by algoritkmNn®@-MM on any given
sequence of requests. We first observe that every requedtt, d, m) completely contains some sequence
B; including message:. To see this, note, that when requestrrives at timet, the algorithm sets =
min{7,d—¢/2} (or p, respectively) and, thus, eventually there will be a seqe@f broadcasts starting after
timet, finishing before timel and containingn. We shall say that requesis assigned to group;. Assume
now that eaclB; consists of broadcasts féy different messages and &} refer to the corresponding energy
consumption. It clearly holds that

P <2kz > a—1

1T (2 e .

By R; we refer to the set of requests assigned to the respectiup gfdoroadcast®s;. If the first broadcast
in group B; starts at time;, then requests iR; are posed between times— (¢ — 1/2)¢ andt; and, thus, are
contained in the interval; = [t; — (¢ — 1/2)¢,t; + c¢f]. We note that,; > t; + ¢/2.

Let us now split up the groupB; and define- = [4¢ — 2] and

By, = {Bk, Biyr, Biyor, - - -}

fork =1,...,r. Let B; be the most expensive set of groups sent by algorithmiQe-Mm among these.
The overall energy consumptidti,;»; of our algorithm is then bounded by

Eyum < Z ke (2R -
MM =T 7 7 .
BiEBj

On the other hand, for ang;, B, € B; with i < k it holds thatt;, — (c — 1/2)¢ > t; + (¢ — 1/2)¢ and,
thus, the corresponding intervals andZ; do not intersect. LeEopr denote the energy consumption of
an optimal offline strategy on the given input. It is strafghtvard to argue thaEp pr is lower bounded by

15

the energy needed to service requests linked to groufs anly and that inside each interva) at leastk;
broadcasts need to be sent. Hence, we can write that

Forrz 3 k(g m)

B;eB;

This immediately yields that
Eyu < (4c—1)" - Eopr,

which finishes the proof. d

A.1 Proof of Theorem 7

Theorem 7 The competitive ratio of any (randomized) online algoritcapable of speed-up is at least

w((y —e)®) fory = (5+5v5)/(5+3v5) > 1.38 and any= > 0. If all requests are of identical length the
competitive ratio is at leas®(1.09%).

For the sake of clarity, we split up the proof of this theorertwitwo parts. In the first one we prove the
lower bound ofuv((y — €)®) for anye > 0, while the bound of2(1.09) will be shown in the second part.

A.1.1 Lower boundw((y — ¢)®) for arbitrary requests

We will start by showing this bound for deterministic algbms. Similarly to the proof of Theorem 4 we
assume there is an algoriththat has a competitive ratio of at mas{(~y — ¢)*) for a constant > 0 and
construct a sequendey, Ry, ... of input instances that leads to a contradiction. Agairtaimse?; consists
of requestsy, rq,...,r;. Let¢ := (1 ++/5)/2 denote the golden section. We issue requgstith length1
at time0. Generally, request; ; is issued with length™*! := ((3 — v/5)/(v/5 — 1))i*! when¢~! parts of
request-; have passed. We already argued in the cited proof that trevimetof algorithmA is identical on
instanceR; and onR; 1 up to the release time of request_; as the algorithm is online.

Next, we will limit the energy of an optimal schedule for iasteR,, from above. We answer the last
request with a broadcasts that covers the whole request.fithices cost af —(~1)"_ As each request_;
is issued aftep—! parts of request; have passed, we can answer each remaining reguegth a broadcast
that has lengtly—! - /. Therefore, the cosdpt,, of an optimal schedule for instandg, sums up to at most

Opt,, < q}[)—(a—l)”+1§(¢.w—i)a—l
=0
_ G-\ 1B ((f—_é)a_l> -1
Ao\ (1—V5)°‘_1
())

(AT L e
3((3\/5_))3¢ Ln,

Hence, the cost of an optimal schedule is dominated by thieofdke very last request. Consequently, in
order to obtain a competitive ratio 6f((y — €)®) the length of each broadcast of algorithtnon instance
R, must not be be beloWy — &)1 - " = (v + &) -y = (¢! +£”) - ™ for some properly chosen
constantg’,e” > 0. In particular, this holds for the broadcast answering estyy, .

Let us have a look at request. At its beginning there aré - ' time units not used to answer this
broadcast for somé > 0. Remember, that this period of time is calledya@p and § denotes its relative
length. Note, that = 0 is possible. Due to our argumentation, the broadcast travensr; has to be
of length at least¢~! + ¢”) - ¢*. Therefore, this theorem would be proved if we showed shexceeds
1 — ¢~ — £” on instanceR,, for a finiten. To this end, we will show that the relative lengttof the gap
increases with every newly added request. Figure 4 dephidssituation. When the algorithm becomes
aware of request; ., at its release time it essentially has two choices of acgither it aborts the currently
performed broadcast or it continues this broadcast unslsubmitted completely. If the algorithm decides
to abort the broadcast the new broadcast has to be finishied déeadline of request. As there are at most
(1 — ¢~1) -4 time units of request; left, this decision results in a competitive ratio of

. a—1 3—/5 a—1l a—1
1 [=@ 1 o1 1 (145 e
g(m) (5) =Q(¢%) = w(7?).

= | ==
3 1—1+\/5 3

Hence, aborting the currently performed broadéasiat answers request is no option and we henceforth
assume that algorithm does not abort it when;, ; is issued. Nevertheless, it can change the speed at which
b is submitted. As we want to show that the gap’s relative lemgtreases, decreasing the broadcast speed
is in our interest. Therefore, we assume that the algorittreases the speed. We will delimit this speed
from above to show that the relative length of the gap of retjue; has increased at least by a constant
amount—compared to the relative length of the gap of reqyest

- G+
— w
= e |
—
5| |
-_
¢—1 . wz‘+1 E ,,,,,,, ‘
—
_ > § -t J

Figure 4: The relative length of the gap increases when adding request.

As broadcasb cannot be finished beforg™! + § 4 ¢” parts of request; have passed, at leagt +
e"/(¢~! + § + £”) parts of broadcasi remain for submission when request; is issued. In order to
submit them in time a speed of§ +¢")/((¢~* +5+¢") - t) is necessary that yields an energy consumption

of . .
1\ S+e" N\
E(t) = <¥> ' <¢>—1 +6+e"> '

Even when pessimistically ignoring the energy consumeduhdt point energy=(¢) must not exceed the
energy consumed by request 1, i. e.,7p~(tD(@=1) by more than a factofl /(¢! + ”))*~! in order to

17

stick to the claimed competitive ratio. Doing some algelerseals
1! 4+ \° 1 1 *!
— . e — < . -
() (Fe) <)

- (54—6”) ((54—5”)((]5_1 +E//)
a—1 . Z+1
-t ot +0+¢" v ¢t 4o0+e"

By increasinga the root in the inequality above convergesit@nd we see that the gap increases with
each newly issued request(if + ”)(¢~! 4+ ¢")/(¢~ + 6 +£”) > 4 holds for allé. This is equivalent to
(€M2+€"¢~1 > §2. As soon ag exceedd —¢~! —<” by a constant amount the theorem is shown. Therefore,
we assume this not to happen and transform inequality alntwés’)? +c"¢=1 > (1 — ¢~ —£")2. Finally,

this gives rise to

oLk 207 3V -5
2— ¢! 5V5+5
Sinces” = 471 — ¢~ + £’ holds, this inequality is fulfilled for eackl > 0. Therefore, the gap’s relative
length increases each step by a constant amount and, censlggexceeds — ¢! — " after a finite number
of steps. Hence, a competitive ratio of less thHR“) leads to a contradiction and the lower bound is proven
for deterministic algorithms.
Therefore, we merely need to extend its proof to hold for cemided algorithms as well. To this end we
assume that there is an algorithinthat achieves a competitive ratio 6f(y —)*) for a constant > 0
and use exactly the same input instances as in the detetimwvission. The algorithm has to use at least
(v~! + ¢ parts of the last request with probability at least ~ - (y~! + &')® as otherwise it could not
achieve the claimed competitive ratio. As this holds forremstanceR; it holds with probability at least
(1 —~-(y~! + &))"+ for each requesty, rq, ..., r, of instanceR,,. As the lengthn of the series that
suffices to obtain a contradiction depends onlysegnde’ but notc, this probability converges tb asa
increases. Hence, the claims follows directly from the l&total probability.

gL

A.1.2 Lower bound(1.09%) for requests of identical length

It remains to show the claimed lower boundid®9* for randomized algorithms. As randomized algorithms
tend to be “hard to control”, we will use Yao’s minimax priptg [13] for the sake of bounding the com-
petitive ratio of any online algorithm from below. This thlem allows us to look at deterministic online
algorithm only, so that we do not have to bother with randatnan at all. However, in order to show a lower
bound we have to fix an input distributidR, compute the expected caB} ;, it causes when presented to
an optimal offline algorithm and, finally, bound the cds,, of an optimal deterministic online algorithm
A from below that is aware dR. The last part is the most difficult one. Then, the ralig,,/Eoy; is a
lower bound for the competitive ratio of any randomized malalgorithm. We point out that th deterministic
algorithm A is aware ofR but does not know the actual choice of the random bits.

First of all, we have to specify the input distributidd. The key idea to show the lower bound is to
“force” the algorithmA to make a mistake before it knows which input instance it wasrg Hence, we
define the following two input instances. Instargeconsists of one request at tifavith deadlinel. For a
givent € [0, 1]—that we will specify later on—we obtaiR, from R; by adding a request with release time
t and deadlind + t. Observe that both requests have the lerigthext, we specify the input distribution
‘R by saying that instanc&; is chosen with probability — p and instanceRs otherwise. We will fixp
appropriately later on. As we are about to compare the eggeztist induced by an online algorithm to the
expected cost induced by an optimal algorithm&rwe will compute the cost of an optimal schedule for
R in the following lemma.

18

Lemma 4 The expected costp pr of an optimal broadcast schedule @&sum up to

2\l Y31
(1—p)+2'p'<1—+t> if ¢t > Va1

Eopr = all _
(1—p)+p- (ﬁ) otherwise.

In the first case the optimal solution consists of two broate®, (1 + ¢)/2] and [(1 + ¢)/2,1 + t]. In the
latter case there is just one broadcastl].

Proof: Obviously, the single request of instanBe can be answered by a broadcfistl] with cost1. Since
this instance is chosen with probability— p it yields a addend — p to the expected cost.

There are two possibilities to answer the two requests daite R,: Either by one broadcast that
answers both requests simultaneously, or by one broadwmastaéh request. Due to the given release times
and deadlines the optimal broadcast that answers bdthlis Therefore, its cost i§1/(1 — ¢))*~!. On
the other hand, as a consequence of Lemma 1 it is not hard thatethe two broadcash, (1 + t)/2] and
[(1+1¢)/2,1] consume the least energy among all schedules that answeqnests by using two broadcasts
within [0,1 + ¢]. In this case, the cost sums up(®y/(1 + ¢t))*~!. Hence, we see that two broadcasts are
cheaper if and only if > (“v/2 —1)/(“v/2 + 1) holds. Either way, the cost induced B is weighted
with p in the expected cost 2. This shows the lemma. 0

Now we can complete the proof of Theorem 7. As we are intentbngse Yao’s minimax principle
it is time to specify the parameters &f entirely. We use the above defined probability distributionthe
instances?; and R, and use the parameters= /2 — 1 andp := ((1 +t)/2)* 1.

According to Lemma 4, for allk > 2 an optimal broadcast schedule consists of two (identicaiigd)
broadcasts and yields cost of

T+e\o ! 1+ 4\t 2 \o!
1—(—= 9. ([—— Y < 3.
(59 2 (%) (i

Let us apply Yao’s minimax principle and have a closer look.afhe deterministic online algorithr
used in it does know the input distributid®. In particular it knows the value @f However, it is unaware of
the choice of the random bits, i. e., the choice betwReandRs. This holds up to time as it can distinguish
these two instances by then. Due to the convexity of the costibn the optimal algorithm does change its
transmission speed only at timeHence, we can assume without loss of generality that tharithign A is
acting according to the scheme shown in Figure 5.

Choosing’ < t does not result in an optimal algorithm since the intef#at] is not used in instanc&;
as well as inR, although using it is not prohibited by any deadline. Accoglly, we obtain a better solution
by redefiningt, ., := (t +t')/2. Hence, we assumé > t in the following.

We will adjust the parameter$ andt” such that the expected cost is minimal and bound this cost fro
below. In this way, we obtain the optimal online algorithnn 1@ as well as a lower bound on its cost. For
this purpose, we first focus on finding the optiniafor givent'.

As the choice oft” is only affecting Step 2a, we assume for the moment thahooses this kind of
schedule. Thus, instandg, was presented and answered by two broadcasts. Up tottemportion of
1 — t/t’ of the first request has already been answered. Hence, timabsipeed for the intervdt,t”] is
exactly(1 —¢/t')/(t" — t). Consequently, the functiondefined by

)=t (2 a+(t” t) St AR ! "
N 7 7t [

represents the cost induced by the two broadcasts. It iglstierward to verify that this is minimal for
th = ((2t + 1)t/ —t — t2)/(2t' — t) and yields cost ofi, () = (t + (2t' —t))/(t')*. Now, that we know

19

1. Start broadcago, t'] and perform it up to time.

2. If there is a new request at timereevaluate the situation and choose the more favor-
able of the following two strategies:

a Continue the current broadcast changing its speed angydiuch that it end
at timet”. Subsequently, perform another broadcast until tiet.

[72)

b Abort the current broadcast and start a new one, that aadvadih requests i
multaneously within their deadlines.

3. If there is no new request at timechange the speed of the current broadcast such that
it finishes at timel.

Figure 5: Scheme of an optimal algorithm for input distribntR.

a—1
the optimal choice fot” we can focus on finding the optimél Step 2b results in cost (%) + (ﬁ)

«

-(1—t). Since the condition of Stebis fulfilled with probability 1 — p

_1
and Stefs in costt- (1) + (=2
and the one of Step with probability p, we have gathered all information needed to make up a caonect
betweent’ and the expected cost. Therefore, the cost induced by theecbbtimet’ is denoted by the
function ¢ that is defined by

c(t') := cost(Step 1) + p- min{cost(Step 2a), cost(Step2 b)}

= ¢t <%>a+(1—p) (i:é)a'(l—t)+p'min{<2—%)a,(%)a_l}.

Evaluating the min-term in the definition of this functionght prove a little bit tricky. However, let us
recall that we are interested in finding a lower bound on tmepetitive ratio of an arbitrary online algorithm.
Hence, a lower bound on the minimal valuefolvill suffice. It holds that

£\ “ 1\t t
2 T < P St < - 1-a = Cq
t L—t 2—(1—t) =
To obtain a lower bound on this term we define the two helpimgtionsc; andc, by
N e (N raoy ()
a(t) =t (t’) +(1—p) <1—t (1—1)

1\“ t*
andey(t') = t'<y> +p<2_§> :

As all addends ir are positive—we already reasoned tHas bounded below by—we obtain:

') > a(t) ift>ecq
C
| ea(t') otherwise.

It is not difficult to verify that these functions, andc, take their minimal value atl + (*/IT—p —1) -
t)/(*v/T—p)and - (t+ “Va/(p- (a—1)), respectively. Using = ((1 +¢)/2)*~! and doing some
algebra suffices to verify that the cast! .) of the algorithmA is bounded below by2(1.09%) holds. We
conclude that an application of Yao’s Theorem finishes tlefoof this theorem as Lemma 4 states that the
expected optimal cost 6R is constant.

20

