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Abstract

In a combinatorial exchange a set of indivisible products istraded between buyers and sellers which
are interested in bundles (multi-sets of products). Although combinatorial exchanges are a natural and
important generalization of combinatorial auctions, their approximability has not been studied. We in-
vestigate the computational approximability of several social goals and show that the problems of surplus
maximization and volume maximization (subject to positivesurplus) are inapproximable even with free
disposal and even if each agent’s bundle is of size at most 3. Similar results based on communication
complexity are shown for agents with general valuation functions.

In light of the negative results for surplus maximization weconsider a complementary goal of social
cost minimization and present tight approximation resultsfor several social cost minimization problems.
Considering the more general supply chain problem we prove that social cost minimization remains inap-
proximable even with bundles of size3, yet becomes polynomial time solvable for agents trading bundles
of size1 or 2. This yields a complete characterization of the approximability of supply chain and combi-
natorial exchange problems based on the size of traded bundles.

Finally, we point out that economic considerations preventany social cost approximation when agents
hold private information about their valuations that needsto be elicited via some truthful mechanism.

1 Introduction

Following the emergence of the Internet as the world’s foremost market place, much interest has been paid
to problems naturally arising in a context where large scaleeconomic problems need to be solved efficiently
by computers. Many of these problems’ essential difficulties can be captured by the class of (combinatorial)
auction problems, which have in turn received a lot of attention from both practitioners and theoreticians
in computer science. A major drawback of this model of abstraction, however, is the fact that it implicitly
assumes a monopolistic market structure. While practitioners have therefore turned to more general (and
more complex) supply chain models, these have not been subject to a rigorous theoretical investigation.

In this paper we consider the computational aspects of combinatorial exchanges and their extension to general
supply chain formation problems. The combinatorial exchange model is a generalization of combinatorial
auctions, which departs from the assumption that a monopolist seller holds a set of products which are of no
actual value to him. Instead, it is assumed that apart from the set of buyers interested in purchasing bundles
of items from the auctioneer, he also has access to a number ofsellers offering to supply different bundles of
products at a certain price. Thus, the problem we are faced with is to simultaneously run both a forward and
reverse auction, which should return a feasible trade leaving a reasonable profit margin for the auctioneer. In
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the more general supply chain model, we drop the assumption that each trader is either a seller or a buyer,
but may in fact offer some bundle of products under the condition that he is supplied with a different bundle
and some appropriate side payment in return.

Combinatorial auctions have drawn much recent research attention (see for example the book by Cram-
ton, Shoham and Steinberg [5]), and their computational andcommunication hardness are well understood.
Lehmann, O’Callaghan and Shoham [8] and Sandholm [17] have shown that combinatorial auctions are hard
to approximate withinmin(m1/2−ε, n1−ε) for anyε > 0, unless P=NP, wherem andn denote the numbers
of products and bidders, respectively. Nisan and Segal [12]present communication lower bounds for combi-
natorial auctions. They show that if 2 buyers have general valuations then exponential communication (inm)
is required to find an allocation with maximum surplus (or21−ǫ-approximation). Additionally, Nisan [11]
shows that forn buyers distinguishing the case that the surplus is1 and the case that the surplus isn requires
exponential communication inm, assuming thatm1/2−ǫ > n.

Clearly, all these hardness results carry to the combinatorial exchange case, as has been observed before.
It turns out, however, that exchanges are even essentially more difficult than combinatorial auctions even
in quite restricted cases. On the other hand, they nevertheless allow a number of positive results when the
problem formulation is chosen carefully. We proceed by presenting a formal problem definition before stating
our results in more detail.

1.1 Preliminaries

We first introduce formally the combinatorial exchange scenario, which most of the paper will be focused
on. At the end of the section, we briefly explain the more general supply chain scenario. Assume that we
are given a set ofagentsA = S ∪ B, where the collectionsS, B are disjoint sets ofsellersand buyers,
respectively, with|A| = n. We are interested in trades that includeindivisibleproductsU , where|U| = m.
Each selleri is offering a bundleqi = (q1

i , . . . , q
m
i ) of products at some pricevi ∈ R+. Buyerj is requesting

to buy the bundleqj ∈ N
m at pricevj ∈ R+. By qe

i , q
e
j ∈ N we refer to the number of copies of product

e ∈ U offered by selleri or requested by buyerj, respectively. For agentk ∈ A, her bundle is asetif for all
e ∈ U , qe

k ∈ {0, 1}.

A feasible tradeT = (S,B), S ⊆ S andB ⊆ B, is a selection of sellers and buyers, such that
∑

i∈S

qe
i ≥

∑

j∈B

qe
j for all e ∈ U ,

i.e., the supply provided by sellers inS is sufficient to satisfy the requests of all buyers inB. Note, that
we assume free disposal here, i.e., supply and demand do not have to match exactly. We say that trade
T = (S,B) hassurplus[volume]

sur(T ) =
∑

j∈B

vj −
∑

i∈S

vi vol(T ) =
∑

e∈U

∑

j∈B

qe
j .

Thecombinatorial exchange surplus problemis the problem of finding a trade which maximizes the surplus.
Thecombinatorial exchange volume problemis the problem of finding a trade which maximizes the volume,
subject to positive surplus. Bycombinatorial exchange positive surplus problemwe refer to the problem
variation in which we simply want to find any feasible trade with strictly positive surplus.

Following [16], as another objective we define thesocial costof tradeT as

cost(T ) =
∑

j /∈B

vj +
∑

i∈S

vi,
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i.e., the cost is the sum of valuations of the trading sellersand non-trading buyers. Note that for every
instance, the sum of the social cost and the surplus is constant, cost(T ) + sur(T ) =

∑

j∈B vj . Thus, a trade
maximizes the surplus if and only if it minimizes the social cost. We consider the problem of minimizing the
social cost subject to non-negative surplus, which we call the combinatorial exchange social cost problem.
From a computational perspective, the social cost objective is preferable, because it allows us to derive
approximation algorithms and express their approximationratio in terms of a multiplicative factor, which is
generally difficult if we are faced with any mixed sign objective and in fact turns out to be impossible in the
case of combinatorial exchanges.

A natural generalization of the combinatorial exchange problem is obtained if we allow agents that are both
sellers and buyers simultaneously and confront our algorithm with offers of the form “given bundleA I will
supply bundleB for an additional payment ofx”. Formally, in thesupply chain problemwe are given a setA
of n agents. Agentk is represented by({δe

k}e∈U , vk), whereδe
k ∈ Z denotes the number of copies of product

e requested or supplied by agentk (modelled asδk ≥ 0 or δk < 0) andvk ∈ R is the additional payment
offered or requested (modelled asvk ≥ 0 or vk < 0). The objectives of surplus or volume maximization
generalize naturally to the supply chain scenario. However, we need to adapt the notion of social cost to fit
our generalized type of agents. We letA+ = {k | vk > 0} andA− = A\A+. Thus,A+ is the set of agents
that have a positive utility for being included in the trade,agents inA− incur a cost when included for which
they need to be repaid. We can then naturally define the socialcost of a tradeT ⊆ A as

cost(T ) =
∑

k∈A+\(T∩A+)

vk −
∑

k∈T∩A−

vk.

Finally, let us introduce some more notation that will come in handy. For a given instanceI = (S,B, v) of the
combinatorial exchange problem we letT ⋆

sur(I) refer to the surplus maximizing trade. The trade computed
by some algorithmA on the same instance is denoted asA(I). Analogous notation is used in the context of
volume maximization or cost minimization, respectively. We useF to denote a family of instances which
satisfy some specified additional constraints (as maximal bundle size).

1.2 Our Results

Although combinatorial exchanges model many interesting trade scenarios and understanding their compu-
tational hardness is clearly an important problem, we are not aware of any paper that addresses this important
issue. The only result that we know of is the rather immediatereduction from combinatorial auctions to
exchanges without free disposal, presented by Sandholm et al. [19], which shows that without free disposal
(i.e., if the total supply of each product must exactly matchthe demand), it is NP-complete to find a feasible
allocation and, thus, the combinatorial exchange surplus problem without free disposal cannot be approxi-
mated (Corollary 2.1 in [19]). This result heavily relies onthe assumption of no free disposal. Is the problem
as hard when we allow for free disposal? What if severe restrictions are imposed on the bundles of the agents?
We show that the combinatorial exchange surplus and volume maximization problems are inapproximable1,
even with free disposal, unlessP = NP . They remain inapproximable even on instances in which each
agent’s bundle is a set of size at most 3, and when restrictingto a single product (multi-unit exchange).

Our inapproximability result for bounded size sets is basedon a reduction to a family of combinatorial
exchange instances with sets of size at most 3 that has the following property. Once the quantity in which
each product is bought is decided, the packing and covering problems defined by these quantities (finding

1Inapproximable within any factor that is a polynomially computable function ofn andm, and even if we allow for an additive
term that is a polynomially computable function ofn andm.
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the trading buyers and sellers, respectively) are polynomial time solvable. This implies that combinatorial
exchange has inherent hardness that does not come from the hardness of packing and covering. Finally,
we prove that the problem remains inapproximable even when we restrict ourselves to instances with large
packing to covering factor, i.e., in cases where there is a large gain from the optimal trade, and derive
complementary inapproximability results for exchanges with sub-exponential communication based on the
communication lower bounds of [11, 12].

Sandholm and Suri [18] present an anytime algorithm for combinatorial auctions which also extends to
combinatorial exchanges. Parkes et al. [13] have recently presented ICE, an iterative combinatorial exchange.
Our hardness results have implications for the worst case performance of these algorithms and emphasize the
need for algorithms with provable performance guarantees.

We show that, focusing on the social cost objective rather than surplus or trade volume maximization, such
algorithmic results can be obtained. More formally, while the surplus objective turns out to be inapprox-
imable within any factor, we show that the social cost can be approximated within a factor ofHk, wherek
is the maximal size of any bundle and that this is essentiallytight when agents are bidding for sets (not for
multi-sets), as it is hard to get(1 − o(1))Hm approximation, unless NP⊆ DTIME(nO(log log n)). Similarly,
for the relevant case of a single type of product (multi-unitexchange) we show that social cost minimization
is NP-hard yet there is an FPTAS.

In light of these positive results, we ask whether the more general supply chain social cost problem allows
approximate social cost minimization, as well. It turns outthat this is not the case and, in fact, social cost
minimization in the supply chain scenario is inapproximable, even with bundles of size at most3. This is
interesting, as it is the first formal result separating combinatorial exchanges from the more general supply
chain scenario.

We then consider the special case in which agents are restricted to sets of size1 or 2. While this case is
polynomially solvable for combinatorial auctions, it was unknown whether this is true for combinatorial ex-
changes. We prove here that it holds, in fact, even for the supply chain scenario. Our algorithm works by
reducing the problem to a weightedb-matching problem through a number of transformations and reformu-
lation in terms of the social cost objective. This also showsthat our hardness result for supply chains with
sets of size3 is tight.

Finally, although the computational problem of social costminimization is much easier than surplus maxi-
mization, we show that there is another problem that arises when trying to construct mechanisms with this
goal in mind, even when computation is not a problem at all. Wemove to consider the case that agents have
privately known values for their bundles and we need to elicit this information from them. A classical result
by Myerson and Satterthwaite [10] shows that for bilateral trade, any mechanism that is truthful, individually
rational and budget-balanced must sometimes be inefficient. This implies that a truthful, individually ratio-
nal and budget-balanced mechanism cannot always minimize the social cost. We extend this result and show
that for any constantα ≥ 1, α-approximation for social cost is impossible. Circumventing the Myerson
and Satterthwaite impossibility result [10] for exchangeshas been the subject of several papers. Parkes et
al. [14] enforce budget-balance as a hard constraint, and explore payment rules that are fairly efficient and
fairly truthful. On the other hand, Babaioff and Walsh [2] consider the problem of supply chains and present
a truthful and budget-balanced mechanism with efficiency which depends on the size of the efficient trade.

The rest of the paper is organized as follows. Section 2 presents our inapproximability results for surplus and
volume maximization. Section 3 presents approximation algorithms as well as inapproximability results for
social cost minimization. Section 4 considers the case of agents with sets of size at most2. Finally, Section 5
shows that economic considerations prevent mechanisms that achieve social cost approximation. Several of
the proofs have been moved to the Appendix due to space limitations.
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2 Surplus and Volume Inapproximability

We start by showing a number of strong inapproximability results for both surplus and volume maximiza-
tion in combinatorial exchanges. Section 2.1 derives results for the single-minded setting under standard
complexity theoretic assumptions. Section 2.2 presents similar results for general agents in terms of commu-
nication complexity.

2.1 Computational Hardness

We show that both the combinatorial exchange surplus and volume problems do not allow polynomial time
approximation algorithms with any reasonable approximation guarantee. This is formalized in the following
definition.

Definition 1 Let α, β : N × N → N be any polynomial-time computable functions. The combinatorial
exchange surplus problem isapproximable(for family of instancesF) if for someα, β there exists a poly-
time approximation algorithmA, such thatsur(T ⋆

sur(I)) ≤ α(n,m) · sur(A(I)) + β(n,m) holds on every
problem instanceI (I ∈ F). The combinatorial exchange surplus problem isinapproximableif it is not
approximable.

Approximability in the volume maximization and social costminimization case is defined analogously. We
are interested in a very natural restricted class of families of instances.

Definition 2 The family of instancesF is rational, if all valuesvi are rational numbers.F is scalableif it is
closed under scaling of agents’ valuations, i.e., if instance I = (S,B, v) ∈ F thenI ′ = (S,B, γ · v) ∈ F
for any rationalγ > 0.

It turns out that for the families of instances defined above inapproximability can be derived from the fact
that detecting any trade with positive surplus or volume is hard in itself. The proof of Lemma 1 is found in
Appendix A.1.

Lemma 1 If the combinatorial exchange positive surplus problem fora rational and scalable familyF is
NP-hard then the combinatorial exchange surplus (volume) problem for the familyF is inapproximable,
unlessP = NP .

Theorem 1 The combinatorial exchange surplus (volume) problem is inapproximable, unlessP = NP . It
remains inapproximable unlessP = NP for the following families of instancesF :

• instances with only sets (qe
k ∈ {0, 1}) of size at most 3 (

∑

e∈U qe
k ≤ 3 for every agentk).

• instances with only one type of product (multi-unit exchange, |U| = 1).

Theorem 1 follows from Lemmas 2 and 3. The proof of Lemma 3 is straightforward and omitted due to space
limitations.
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Lemma 2 The combinatorial exchange positive surplus problem for the familyF of instances with only sets
(qe

k ∈ {0, 1} ∀k ∈ A, e ∈ U) of size at most 3 (
∑

e∈U qe
k ≤ 3 ∀k ∈ A) is NP-hard.

Proof: We show a reduction from the set packing problem, which is known to be NP-hard [7] even for sets
of size at most3. Let an unweighted set packing instanceS1, . . . , Sn ⊆ U , |U| = m, be given and assume
that |Sj | ≤ 3 for all j. We ask whether a collectionP ⊆ {1, . . . , n} of sets withSi ∩ Sj = ∅ for all i, j ∈ P
and

⋃

i∈P Si = U exists.

We construct an instance of the combinatorial exchange problem on the extended ground setU ′ = U ∪
{ej,1, ej,2, ej,3 | j = 1, . . . , n}.

Depending on its size we define a number of buyers for each setSj. If Sj has size 1 and consists of some
single elemente, we define buyersj1, j2 with qe

ji
= q

ej,i

ji
= 1, qe′

ji
= 0 else andvji

= 2(2m + 3n + 1).

If Sj has size 2 and consists of elementse1 ande2, we define buyersj1, j2 with qe1

ji
= qe2

ji
= q

ej,i

ji
= 1,

qe′
ji

= 0 else andvji
= 3(2m + 3n + 1). If Sj has size 3 and consists of elementse1, e2 ande3, we define

3 buyersj1, j2 andj3 with qe1

j1
= qe2

j1
= q

ej,1

j1
= 1, qe2

j2
= qe3

j2
= q

ej,2

j2
= 1, qe1

j3
= qe3

j3
= q

ej,3

j3
= 1, qe′

ji
= 0

else andvji
= 3(2m + 3n + 1). Thus, the union of buyers belonging to a single setSj requests 2 copies of

each element in the set. Additionally, each of them requestsa distinct item from the set of associated items
{ej,1, ej,2, ej,3}.

For ease of notation letU = {e0, . . . , en−1}. We define sellers indexed byi = 1, . . . , n, whereq
ej

i = 1 if
j ∈ {i, i+1 mod n}, q

ej

i = 0 else. Selleri’s valuation is given asvi = 2(2m+3n). Additionally, we have
a sellerj for each setSj with q

ej,1

j = q
ej,2

j = 1, qe
j = 0 for all othere ∈ U ′ andvj = 2(2m+3n), if |Sj| = 1

or |Sj | = 2, q
ej,1

j = q
ej,2

j = q
ej,3

j = 1, qe
j = 0 for all othere ∈ U ′ andvj = 3(2m + 3n), if |Sj| = 3.

Now letP be a packing, such that
⋃

i∈P Si = U . We letP = P1∪P2∪P3, wherePk contains all sets of size
k from P . By selecting all buyersji with j ∈ P , all sellersi and sellersj supplying productsej,k, j ∈ P , we
obtain a feasible trade with surplus

∑

j∈P1

2 · 2(2m + 3n + 1) +
∑

j∈P2

2 · 3(2m + 3n + 1) +
∑

j∈P3

3 · 3(2m + 3n + 1)

−
∑

j∈P1∪P2

2(2m + 3n) −
∑

j∈P3

3(2m + 3n) − |U| · 2(2m + 3n)

= (4|P1| + 6|P2| + 9|P3|)(2m + 3n + 1) − (2|U| + 2|P1 ∪ P2| + 3|P3|)(2m + 3n)

= (2|U| + 2|P1 ∪ P2| + 3|P3|) > 0

where we use the fact that2|P1| + 4|P2| + 6|P3| = 2|U|. Thus, we have shown that there exists a trade with
positive revenue whenever the desired packing exists. We continue by arguing that any trade with positive
revenue implies the existence of a corresponding packing.

Consider an arbitrary tradeT = (S,B) and assume that sellers inS supply a total numbers of products, while
buyers request only a total number oft < s of products. Observe that in our instance every seller charges
a price of exactly2m + 3n for each product she supplies. Similarly, buyers offer exactly 2m + 3n + 1 per
product they request. Hence, we can bound the surplus from tradeT by

t(2m + 3n + 1) − s(2m + 3n) ≤ t − (2m + 3n) < 0,

where we use the fact thats ≥ t + 1 and obviouslyt < |U ′| = 2m + 3n.

Thus, in any trade with positive revenue sellers supply exactly the number of products requested by the
selected buyers. It is straightforward to argue that this implies the following two properties of the returned
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trade. First, whenever some buyerji corresponding to setSj is selected for the trade, then this is true for all
buyers corresponding to that set. Secondly, the trade must include all productse0, . . . , en−1. This, however,
implies that selecting setsSj corresponding to selected buyersji yields the desired packing. �

Lemma 3 The combinatorial exchange positive surplus problem for the familyF of instances with only a
single type of good (multi-unit exchange problem) is NP-hard.

Finally, we prove inapproximability even in the cases wherethere are relatively large gains from the trade.

Definition 3 For instanceI we define thepacking to covering factorf(I) as the maximal value of
∑

i∈B∗ vi/
∑

j∈S∗ vj over all surplus maximizing tradesT ⋆
sur(I) = (S∗, B∗).

We prove inapproximability with a packing to covering factor corresponding to the set packing lower bound.

Theorem 2 There exists a functionγ(n,m) = Ω(min{n1−ε,m1/2−ε}) such that the combinatorial ex-
change surplus (volume) problem is inapproximable for the family F of instances which satisfyf(I) ≥
γ(n,m) ∀I ∈ F , unless P=NP.

2.2 Communication Lower Bounds

We next consider the problem of achieving approximation to the combinatorial exchange surplus (volume)
problem when agents have general valuations (buyers are notsingle-minded). We show that the two goals
cannot be approximated unless exponential communication in m is used. The inapproximability results hold
even in the case of a single seller holding a set, and buyers that have general monotone valuations over sets
(not multi-sets).

Let G = (1, . . . , 1) be the bundle with one item of each product. Assume that buyeri has a monotone
valuation functionvi : 2m → R+. As we assume that a single seller offersG, the goal of a communication
protocol P is to find a partition of the items to the buyers such that the surplus (volume) is maximized.
Similar to Definition 1 we define inapproximability of a communication protocol in Appendix A.2 (withα, β
using onlym as their argument). Based on a result from Nisan and Segal [12] we show the following.

Theorem 3 The combinatorial exchange surplus (volume) problem is notapproximable in less than
(

m
m/2

)

bits. This holds even with only a single seller and two buyerswhich have valuations over sets.

Moreover, even if there is a large gain from trade the problemremains inapproximable. Based on a lower
bound of Nisan [11] we prove that whenf(I) ≥ n andn < m1/2−ǫ, any approximation requires exponential
communication inm .

Theorem 4 The combinatorial exchange surplus (volume) problem for the family of instances with packing
to covering factor at leastn is not approximable with less thanem/(2n2)−5log n bits. The lower bound holds
for randomized and nondeterministic protocols.
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3 Approximating Social Cost

3.1 The Combinatorial Exchange Social Cost Problem

In the following section we present an algorithm that achieves a logarithmic approximation ratio for the
objective of minimizing social cost of the trade. We additionally present a matching lower bound for the
case without multi-sets. Our algorithm is based on the well known greedy approximation algorithm for the
multi-set multi-cover problem [15]. For the remainder of this section, letki =

∑

e∈U qe
i for all i ∈ S,B and

definek = maxi ki.

1. Let∆e =
∑

j∈B qe
j for all productse ∈ U .

2. Apply the greedy approximation algorithm to the following multi-set multi-cover problem:

min.
∑

i∈S

vixi +
∑

j∈B

vjyj

s.t.
∑

i∈S

qe
i xi +

∑

j∈B

qe
jyj ≥ ∆e ∀e ∈ U

xi, yj ∈ {0, 1}

3. LetS = {i |xi = 1}, B = {j | yj = 0}. If
∑

j∈B vj ≥
∑

i∈S vi return tradeT = (S,B),
else returnT = (∅, ∅).

Figure 1: Approximating optimal social cost by algorithm COVER.

It is known that the greedy approximation algorithm approximates the covering integer program (CIP) in
Figure 1 withinHk, whereHk denotes thek’th harmonic number. Essentially, Theorem 5 follows from the
observation that this CIP is an exact formulation of the problem of finding a trade of minimal social cost. We
briefly mention that the greedy approximation algorithm we apply is inherently monotone and, thus, yields
a truthful exchange mechanism if combined with an appropriate (critical value based) payment scheme.
However, we point out in Section 5 that there are other reasons that prevent us from obtaining reasonable
truthful mechanisms.

Theorem 5 AlgorithmCOVER is aHk-approximation algorithm for the combinatorial exchange social cost
problem.

Proof: Consider the problem of social cost minimization in combinatorial exchanges. We can write this
problem as the following integer linear program, where variablesxi, xj indicate which sellers and buyers are
selected for the trade and constraints (2) ensure feasibility of the trade:

min.
∑

j∈B

vj(1 − xj) +
∑

i∈S

vixi (1)

s.t.
∑

i∈S

qe
i xi ≥

∑

j∈B

qe
jxj ∀e ∈ U (2)

xi, xj ∈ {0, 1} (3)
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Defining∆e =
∑

j∈B qe
j as in the algorithm we can rewrite

∑

j∈B qe
jxj as∆e −

∑

j∈B qe
j (1 − xj). Thus,

constraints (2) become
∑

i∈S

qe
i xi ≥ ∆e −

∑

j∈B

qe
j(1 − xj).

Substituting new variableyj for 1 − xj for all buyersj ∈ B we obtain exactly the covering integer program
defined in algorithm COVER.

Let nowT = (S,B) as in the algorithm. By the fact that the greedy algorithm formulti-set multi-covering
[15] has approximation ratioHk we immediately obtain that cost(T ) ≤ Hk · cost(T ⋆

cost(I)). However,
it might be the case that tradeT has negative surplus. We fix this problem by returning the empty trade
whenever surplus is indeed negative. Obviously, this does not violate our approximation guarantee, since in
this case the social cost of the empty trade is below the cost of the trade that we have originally computed.�

The following theorem states that the approximation ratio of algorithm COVER is essentially best possible,
as parameterk is trivially upper bounded by the numberm of distinct goods whenever we do not allow
multi-sets. The proof of Theorem 6 is found in Appendix B.1.

Theorem 6 The combinatorial exchange social cost problem cannot be approximated in polynomial time
better than within(1 − o(1)) ln m, unless NP⊆ DTIME(nO(log log n)). 2

We finally mention that algorithm COVER can in fact be viewed as a generic reduction of social cost mini-
mization in combinatorial exchanges to social cost minimization in reverse combinatorial auctions. Loosely
speaking, we first allocate to all buyers in the exchange scenario their desired bundles at their offered price
and then run a reverse auction algorithm considering all exchange participants as sellers. If one of the original
sellers is selected, we buy her offered bundle. If one of the original buyers is selected, we buy the previously
allocated bundle back from her. Setting demand for every product as done above, we ensure that the auction
algorithm achieves sufficient supply for all buyers not returning their bundles.

3.2 The Multi-Unit Exchange Social Cost Problem

We briefly consider the special case of multi-unit exchanges, in which all sellers and buyers want to trade
a number of copies of the same good. By Theorem 1 we are unlikely to achieve in polynomial time any
approximation ratio for surplus or volume maximization. Thus, we again reformulate the problem in terms
of a covering problem and aim to minimize social cost. Algorithm MINKNAPSACK (see Appendix B.2)
is based on the dynamic programming based FPTAS for the min-knapsack (or reverse multi-unit auction)
problem. For a monotone version of the algorithm tailored toour setting see [3]. Similar to the proof of
Theorem 6 a simple reduction to the partition problem (whichis known to be NP-hard [7]) yields optimality
of our algorithm’s approximation guarantee.

Theorem 7 Algorithm M INKNAPSACK is an FPTAS for the combinatorial exchange social cost problem.
Furthermore, social cost minimization in multi-unit exchanges is NP-hard.

2Note that we can replace this assumption byP 6= NP if we relax the lower bound toΩ(ln m) by [1].
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3.3 The Supply Chain Social Cost Problem

The objectives of surplus or volume maximization generalize naturally to the supply chain scenario. Thus,
all the hardness results presented in Section 2.1 hold for this more general model, as well. However, we show
that the situation is even worse and that for the supply chainscenario even (approximate) social cost mini-
mization is out of reach. Theorem 8 states that no polynomialtime algorithm can achieve any approximation
guarantee for the supply chain social cost problem.

Theorem 8 The supply chain social cost problem is inapproximable, unless P=NP.

Proof: We show a reduction from the decision version of the set packing problem, which is known to be
NP-hard [7]. Let setsS1, . . . , Sn over ground setU , |U| = m, and integerr be given. We want to decide
whether there existr non-intersecting sets. Towards a contradiction, assume that we are given an algorithm
A for supply chain social cost minimization, such that

cost(T ⋆
cost(I)) ≤ α(n,m) · cost(A(I)) + β(n,m)

holds on every problem instanceI. We define our supply chain social cost instance over ground setU ∪{e∗}
as follows. For each setSj we create a corresponding agentj who requests setSj, supplies one copy ofe∗

and has valuationvj = −1, formally δe
j = 1 if e ∈ Sj, δe

j = −1 if e = e∗ andδe
j = 0 else. Additionally, we

define agentn + 1 who suppliesU (i.e., δe
n+1 = −1 for all e ∈ U), requestsr copies ofe∗ (δe∗

n+1 = r) and
offers to payvn+1 = α(n,m)r + β(n,m)+ 1. Thus, agents corresponding to sets from the packing instance
form setA−, agentn + 1 forms setA+.

Now assume that there arer non-intersecting setsS ′ ⊆ {1, . . . ,m} and consider tradeT = S ′ ∪ {n + 1}.
This trade is feasible, since agents inS ′ request a subset of the goods inU , which are supplied by agentn+1.
On the other hand, agents inS ′ supplyr copies of producte∗ as requested byn + 1. Furthermore, tradeT
has social costr. Now observe that the empty trade hast costvn+1 = α(n,m)r +β(n,m)+1. Thus, if there
existr non intersecting sets algorithmA must return a non-empty trade.

Assume then that in every selectionS ′ of at leastr sets there are sets with a non-empty intersection. We
claim that no feasible trade other than the empty trade exists. To see this, note that every non-empty trade
must contain agentn + 1, as no other agent can supply products fromU . Furthermore, no feasible trade can
select agents corresponding to intersecting sets, since agentn+1 supplies only a single copy of each product
in U . Finally, every feasible trade must contain at leastr of the agents1, . . . ,m, since we need a supply of at
leastr copies of producte∗ in order to select agentn + 1. Hence, no feasible non-empty trade exists under
the above assumption. �

A natural question to ask is whether similar hardness can be shown for supply chain instances with bounded
size bundles, where we define the size of agentj’s bundle as

∑

e |δ
e
j |. Theorem 9 states that the problem is

inapproximable even with bundles of size3.

Theorem 9 The supply chain social cost problem with bundles of size at most3 is inapproximable, unless
P=NP.

We omit the formal proof, which is based on a reduction of set packing with sets of size3 and the fact that we
can transform the problem instances constructed in the proof of Theorem 8 into instances with only bounded
size bundles, see Figure 2. This hardness result is tight, aswe will see in the following section that bundles
of size2 allow exact polynomial time algorithms.
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Figure 2: Gadgets for the proof of Theorem 9 for agents with sets of bounded size. Agents are depicted
as rounded triangles, supplied and requested products as shaded or non-shaded ellipses, respectively. Agent
n + 1 from the proof of Theorem 8 is simulated by the agents in the box to the left, each of which has
valuation(2α(n,m)r + β(n,m) + 1)/(m + r). Agent j corresponding to setSj is simulated by the two
agents depicted in the box to the right, both with valuation−1. Again, every feasible non-empty trade must
contain agents corresponding to at leastr non-intersecting sets.

4 Supply Chains with Sets of Size 2

It is well known that combinatorial auctions become solvable in polynomial time when the participating
bidders are restricted to bid on sets of size at most2, since in this case the problem can be formulated in
terms of a weighted matching problem. For combinatorial exchanges or even supply chains, on the other
hand, it is not immediate whether the problem reduces to matching in this case. As we shall see, the social
cost objective turns out to be the key in obtaining such a problem formulation.

Theorem 10 The supply chain surplus problem with sets of size1 and2 can be solved in polynomial time.

Theorem 10 is a direct consequence of Lemmas 4, 5 and 6, which describe the reduction of the supply chain
surplus problem to weightedb-matching.

Lemma 4 The supply chain surplus problem with bundles of size at mostk reduces to the combinatorial
exchange surplus problem with bundles of size at mostk.

Proof: Let an instance of the supply chain surplus problem with agentsA be given and letα =
∑

k∈A+ vk+1,
thus, sur(T ⋆) < α.

Consider agentk ∈ A and letSk = {e ∈ U | δe
k < 0}, Bk = {e ∈ U | δe

k > 0} denote the sets of
products offered and requested, respectively. Assume thatagentk is both offering and requesting products,
i.e, |Sk|, |Bk| ≥ 1. We define a new productek, sellersk and buyerbk corresponding to agentk as follows.
Sellersk supplies productek and the products supplied byk at priceα, formally qek

sk
= 1, qe

sk
= −δe

k for all
e ∈ Sk andvsk

= α. Buyerbk requests productek and the products requested byk at priceα + vk, formally
qek

bk
= 1, qe

bk
= δe

k for all e ∈ Bk andvsk
= α + vk.

Consider any solution to the resulting instance of the combinatorial exchange surplus problem. If buyerbk is
selected for the trade, then so is sellersk, since no other agent can supply productek. If sellersk is selected,
then so is buyerbk, since otherwise surplus is bounded by sur(T ⋆) − α < 0. Finally, observe that bundle
sizes have not increased. �
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Lemma 5 The combinatorial exchange surplus problem with sets of size 1 and2 reduces to the combinato-
rial exchange surplus problem with sets of size2.

Proof: First, for each buyer with a set of size1, define a new product requested by this buyer and supplied
by a newly defined seller at no cost. This leaves us with a problem instance in which each buyer has a set of
size2 and sellers have sets of size1 or 2. For each seller with a set of size1 now simply define a new product
which she supplies at no additional cost. �

Lemma 6 The combinatorial exchange surplus problem with sets of size2 can be solved in polynomial time.

Proof: Let an instance of the combinatorial exchange surplus problem with sellersS and buyersB with sets
of size2 be given. Using that surplus maximization is equivalent to minimization of social cost, we formulate
the problem as an ILP as in Figure 1. Let∆e = |{j ∈ B | qe

j = 1}| as before,Γe = |{j ∈ S | qe
j = 1}| and

V =
∑

i∈S vi +
∑

j∈B vj . Definingλi = 1 − xi andµj = 1 − yj we obtain
∑

i∈S

vixi +
∑

j∈B

vjyj = V −
∑

i∈S

viλi −
∑

j∈B

vjµj

and can rewrite the ILP as:

max.
∑

i∈S

viλi +
∑

j∈B

vjµj (4)

s.t.
∑

i∈S

qe
i λi +

∑

j∈B

qe
jµj ≤ Γe ∀e ∈ U (5)

λi, µj ∈ {0, 1} (6)

Now observe that the above is the ILP formulation of the maximum weightedb-matching problem with
weightsvi, vj on the edges and degree constraintsΓe for verticese ∈ U , which is known to be solvable in
polynomial time [4]. �

5 Non-Existence of Mechanisms for Social Cost Approximation

In this section we discuss the existence of truthful mechanisms for the combinatorial exchange problem. A
mechanism consists of some algorithmA that outputs a tradeT = (S,B) and additional payments(pi)i∈S ,
(qj)j∈B determining the payments given to sellers and collected from buyers, respectively. For ease of
notation we denote input asv = (v1, . . . , v|S|) andw = (w1, . . . , w|B|). Trade and payments are referred to
asA(v,w), p(v,w) andq(v,w), respectively. For both sellers and buyersi ∈ B,S we denote byi ∈ A(v,w)
the situation thati is selected for the trade. A mechanism isnormalizedand satisfiesvoluntary participation
(VP), if selected buyers never pay more than their declared valuation, selected sellers are never paid less than
their valuation and payments to and from non-selected agents are 0. Furthermore, a mechanism isbudget-
balanced(BB) if the sum of payments is always non-negative (

∑

i∈S pi ≤
∑

j∈B qj), α-approximatecost-
efficientif it computes trades that areα-approximate with respect to social cost andtruthful if it is a dominant
strategy for every agent to declare their true valuations. Aclassical result by Myerson and Satterthwaite [10]
shows that no truthful1-approximately cost-efficient mechanism can satisfy both (VP) and (BB). This result
extends to approximately cost-efficient mechanisms. The proof of Theorem 11 is found in Appendix C.

Theorem 11 Fix someα ≥ 1. LetM = (A, p, q) be a truthful andα-approximately cost-efficient combina-
torial exchange mechanism satisfying VP. ThenM is not budget-balanced.
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A Proofs from Section 2

A.1 Proofs from Section 2.1

Lemma 1 If the combinatorial exchange positive surplus problem fora rational and scalable familyF is
NP-hard then the combinatorial exchange surplus (volume) problem for the familyF is inapproximable,
unlessP = NP .

Proof: The hardness of the volume problem is immediate, as we require a trade with positive surplus. We
next consider the surplus maximization problem. Assume that for someα, β there exists a poly-time approx-
imation algorithmA for the combinatorial exchange surplus problem such that

sur(T ⋆
sur(I)) ≤ α(n,m) · sur(A(I)) + β(n,m)

holds on every problem instanceI ∈ F with n agents. Given instanceI in which agenti has valuevi we
let r = 1/2ℓ, whereℓ denotes the maximum number of bits used to encode any valuation in I. We define
instanceI ′ to beI after multiplying eachvi by (1 + β(n))r−1 (observe that the number of agents inI ′ is
still n and the number of products is stillm, thus we defineβ = β(n,m) andα = α(n,m)). We denote
OPT = sur(T ⋆

sur(I)) andOPT ′ = sur(T ⋆
sur(I

′)). Note thatOPT ′ = (1 + β)r−1OPT , thusOPT = 0 if
and only ifOPT ′ = 0. We applyA on I ′ and by our assumption

OPT ′ ≤ α · sur(A(I ′)) + β.

To conclude the proof we show that ifsur(A(I ′)) = 0 thenOPT = 0 and ifsur(A(I ′)) > 0 thenOPT > 0.
This contradicts the hardness of deciding ifOPT is positive or0 (unlessP = NP ).

As OPT ′ ≥ sur(A(I ′)) ≥ 0, if OPT ′ = OPT = 0 thensur(A(I ′)) = 0. On the other hand, ifOPT > 0
thenOpt ≥ r and, thus,OPT ′ = (1 + β)r−1OPT ≥ 1 + β. We conclude that ifOPT > 0 then

α · sur(A(I ′)) + β ≥ OPT ′ = (1 + β)OPT ≥ OPT + β

or equivalentlyα · sur(A(I ′)) ≥ OPT > 0, thus,sur(A(I ′)) > 0. �

Lemma 3 The combinatorial exchange positive surplus problem for the familyF of instances with only a
single type of good (multi-unit exchange problem) is NP-hard.

Proof: We use a simple reduction from the knapsack problem, which isknown to be NP-hard [7]. Given
n objects with weightsw1, . . . , wn and integral utilitiesu1, . . . , un we want to decide whether there is a
selection of objects with total utilityu and weight at mostW .

For each objecti our multi-unit exchange instance has a buyeri requestingri = wi copies of the traded item
and valuationvi = ui. A single seller suppliess1 = W copies of the item at priceu−1. Clearly, there exists
a trade with positive surplus if and only if the desired selection of objects exists. �

As deciding if the packing to covering factor is1 or someγ > 1 is equivalent to solving the combinatorial
exchanges positive surplus problem, using Lemma 1 we derivethe following.

Lemma 7 If for a rational and scalable familyF it is NP-hard to decide whether the packing to covering
factor is at most1 or at leastγ(n,m) for γ(m,n) > 1, then the combinatorial exchange surplus (volume)
problem for the familyF of instances withf(I) ≥ γ(n,m) is inapproximable, unlessP = NP .
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Lemma 8 There exists a functionγ(n,m) = Ω(min{n1−ε,m1/2−ε}) such that for combinatorial exchange
with n agents andm products it is NP-hard to decide whether the packing to covering factor is at most1 or
at leastγ(n,m).

Proof: Consider the set packing problem withn setsS1, . . . , Sn over some ground set of sizem. For
functionsa(n,m) andb(n,m) we defineS≤a(n,m) andS≥b(n,m) as the families of instances with optimal
packings of size at mosta(n,m) or at leastb(n,m), respectively. It is known that there exist polyno-
mial time computable functionsa(n,m), b(n,m) with b(n,m) = γ(n,m) · a(n,m) for someγ(n,m) =
Ω(min{n1−ε,m1/2−ε}), such that given instanceI ∈ S≤a(n,m) ∪ S≥b(n,m) it is NP-hard to decide whether
I ∈ S≤a(n,m) or I ∈ S≥b(n,m).

We encode every set as a buyer requesting the respective set at price1 in the exchange scenario. Furthermore,
we have a single seller supplying the complete ground set at price a(n,m). Clearly, the packing to covering
factor of the resulting CE instance is at most 1 ifI ∈ S≤a(n,m) andb(n,m)/a(n,m) = γ(n,m) whenever
I ∈ S≥b(n,m). �

Theorem 2 is a direct result from Lemma 7 and Lemma 8.

A.2 Proofs from Section 2.2

We next prove a communication lower bounds for combinatorial exchange surplus and volume problems,
we present inapproximability results under sub-exponential communication. The lower bounds are obtained
in Yao’s standard model of communication complexity. Our first lower bound is based on a lower bound
of Nisan and Segal [12] for combinatorial auctions (with a single seller that has no value for the products
she holds). Nisan and Segal show that in the combinatorial auctions problem with general valuations, any
protocol that always finds the optimal allocation communicates at least

( m
m/2

)

bits. We show that for com-

binatorial exchange this implies that achievingany approximation to the surplus requires
( m
m/2

)

bits. This
holds even with only two buyers and a single seller. This is incontrast to the combinatorial auctions case,
for which a trivial n-approximation exists, whenn is the number of buyers, as all items can be assigned to
the buyer with the highest valuation for the bundle of all items. We formally define inapproximability for the
communication model. Inapproximability means that we needexponential communication inm if we would
like the protocol to always get an approximate solution. Ourresults hold even for a single seller offering
a set of items and buyers that have valuations for sets (not multi-sets). For communication protocolP , let
sur(P (I)) be the surplus of the trade chosen byP on instanceI.

Definition 4 The combinatorial exchange surplus problem isapproximablein t bits if for someα, β : N → N

there exists a communication protocolP that uses at mostt bits, such thatsur(T ⋆
sur(I)) ≤ α(m)·sur(P (I))+

β(m) holds on every problem instanceI.

Similar proof to the one of Lemma 1 shows the following.

Lemma 9 If the combinatorial exchange positive surplus problem fora rational and scalable familyF is
non approximable int bits the combinatorial exchange surplus (volume) problem for the familyF is not
approximable int bits.

15



Let G = (1, . . . , 1) be the bundle with one item of each product. Assume that buyeri has a monotone
valuation functionvi : 2m → {0, 1}. Such a valuation is called a 0/1 valuation, as the value of any bundle
is either 0 or 1. Buyeri’s valuation of bundleSi ⊆ G is vi(Si) ∈ {0, 1}. For combinatorial auctions with a
supplyG, the optimal allocation problem is the problem of finding a partition of G to S andSc = G \S that
maximizesv1(S) + v2(S

c).

Theorem 12 ([12]) Every protocol that finds the optimal allocation for every pair of 0/1 valuationsv1, v2

such thatv1(G) = v2(G) = 1, must use at least
( m
m/2

)

bits of total communication in the worst case.

We derive the following for the combinatorial exchange problem.

Lemma 10 Consider a combinatorial exchange with a single seller offering G for the price of 1, and two
buyers with0/1 valuationsv1, v2 such thatv1(G) = v2(G) = 1. Every protocol for the combinatorial
exchange positive surplus problem must use at least

( m
m/2

)

bits of total communication in the worst case.

Proof: We use the straightforward reduction from the optimal allocation problem for combinatorial auctions,
to the problem of revenue maximization in combinatorial exchange. Given a pair of 0/1 valuationsv1, v2 such
thatv1(G) = v2(G) = 1, we consider the combinatorial exchange problem with a single seller offeringG for
the price of 1, and two buyers with valuationsv1, v2. Clearly, there is a positive revenue exchange if and only
if there is an allocation of value2 for the optimal allocation problem. As the later requires communication
of at least

( m
m/2

)

bits in the worst case (by Theorem 12), so does the former. �

A direct corollary of the above lemma and Lemma 9 is the following.

Theorem 3The combinatorial exchange surplus (volume) problem is notapproximable in less than
( m
m/2

)

bits. This holds even with only a single seller and two buyers.

Note that the theorem holds with or without free disposal.

We next strengthen the result and show that even if there is a very large gain from trade that can be realized,
no approximation can be obtained unless exponential communication is used. We use a reduction that is
based on the following result by Nisan [11] for combinatorial auctions withn agents andm items.

Theorem 13 (Derived from the proof of Theorem 3 in [11]) Anyn-agent protocol for CA that always dis-
tinguishes the case that the surplus is1 and the case that the surplus isn requiresem/(2n2)−5log n bits of
communication. The lower bound holds for randomized and nondeterministic protocols. It also holds even if
all buyers have 0/1 valuations.

In particular, as long asn < m1/2−ǫ, the communication complexity is exponential inm. Thus we show
that if we only consider instances for whichf(I) ≥ n (andn < m1/2−ǫ), the communication complexity of
any approximation is exponential inm.

From Theorem 13 we derive the following for the combinatorial exchange problem.

Lemma 11 Anyn-agent protocol for the combinatorial exchange positive surplus problem for the family of
instances with packing to covering factorf(I) ≥ n requiresem/(2n2)−5log n bits of communication. The
lower bound holds for randomized and nondeterministic protocols.
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Proof: The proof of Nisan [11] for the above theorem shows thatem/(2n2)−5log n bits of communication are
required to decide if the surplus is 1 orn in combinatorial auctions with buyers having 0/1 valuations. Given
such an instance of combinatorial auctions, we construct and instance of combinatorial exchange by keeping
the same set of buyers and adding a seller with the setG = (1, . . . , 1) and value of 1. Clearly for such
an instancef(I) ≥ n and any positive value trade trivially corresponds to a solution for the combinatorial
auctions with valuen. �

A direct corollary of the above lemma and Lemma 9 is the following.

Theorem 14 The combinatorial exchange surplus (volume) problem for the family of instances with packing
to covering factorf(I) ≥ n is not approximable with less thanem/(2n2)−5log n bits. The lower bound holds
for randomized and nondeterministic protocols.

Corollary 1 For anyǫ > 0, the combinatorial exchange surplus (volume) problem withpacking to covering
factor f(I) ≥ n whenn < m1/2−ǫ is not approximable by a protocol that uses sub-exponentialcommunica-
tion in m.

Note that even iff(I) is infinity the surplus (volume) problem cannot be approximated better than CA can
be approximated, as combinatorial auctions reduce to combinatorial exchange with a single seller selling G
for 0.

B Proofs from Section 3

B.1 Proofs from Section 3.1

Theorem 6 The combinatorial exchange social cost problem cannot be approximated in polynomial time
better than within(1 − o(1)) ln m, unless NP⊆ DTIME(nO(log log n)). 3

Proof: It is known that the set cover problem cannot be approximatedbelow a threshold of(1−o(1)) ln m (m
being the size of the ground set) in polynomial time, unless NP⊆ DTIME(nO(log log n)) [6]. Let S1, . . . , Sn

be a collection of subsets ofU = {1, . . . ,m}. The set cover problem asks for a selection of as few as possible
of the subsets coveringU .

Assume now that we are given algorithmA with approximation ratioα for social cost minimization in
combinatorial exchanges. We show that this implies anα-approximation for set cover, as well. Consider the
following combinatorial exchange instance. For eachSi we have a selleri with qe

i = 1 if e ∈ Si (qe
i = 0

else) andvi = 1. Additionally, there is a single buyer withqb = (1, . . . , 1) andvb = (α+1)n, i.e., buyerb is
offering to buy the whole ground setU at price(α + 1) times the number of subsets in the set cover instance.

We assume w.l.o.g. thatU can be covered by selecting all the subsets. Thus, selectingbuyerb and all the
sellers defines a feasible trade of social costn. On the other hand, not selecting buyerb results in the empty
trade and causes cost(α + 1)n. Thus, the approximation ratio of algorithmA guarantees that a non-empty
trade must be returned.

3Note that we can replace this assumption byP 6= NP if we relax the lower bound toΩ(ln m) by [1].
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However, there is a one-to-one correspondence between non-empty trades and feasible covers of ground set
U . Thus, if we denote byopt the cost of the minimum cover ofU , this is also the social cost of the optimal
trade. It follows that the trade returned byA has social cost at mostα · opt and we obtain a cover of identical
cost.

Hence, everyα-approximate algorithm for social cost minimization immediately yields the same approxima-
tion ratio for set cover and the known hardness results for set cover can be applied. �

B.2 M INKNAPSACK Algorithm missing from Section 3.2

1. Let∆ =
∑

j∈B qj.

2. Apply the dynamic programming based FPTAS to the following min-knapsack problem:

min.
∑

i∈S

vixi +
∑

j∈B

vjyj

s.t.
∑

i∈S

qixi +
∑

j∈B

qjyj ≥ ∆

xi, yj ∈ {0, 1}

3. LetS = {i |xi = 1}, B = {j | yj = 0}. If
∑

j∈B vj ≥
∑

i∈S vi return tradeT = (S,B),
else returnT = (∅, ∅).

Figure 3: Approximating social cost in multi-unit exchanges by algorithm MINKNAPSACK.

C Proofs from Section 5

In this section we discuss the existence of truthful mechanisms for the combinatorial exchange problem. A
mechanism consist of some algorithmA that outputs a tradeT = (S,B) and additional payments(pi)i∈S ,
(qj)j∈B determining the payments given to sellers and collected from buyers, respectively. For ease of
notation we denote input asv = (v1, . . . , v|S|) andw = (w1, . . . , w|B|). Trade and payments are referred to
asA(v,w), p(v,w) andq(v,w), respectively. For both sellers and buyersi ∈ B,S we denote byi ∈ A(v,w)
the situation thati is selected for the trade. We are interested in mechanisms with the following properties:

• Voluntary Participation (VP):For all sellersi ∈ S, buyersj ∈ B we have thatpi ≥ vi andqj ≤ wj,
respectively.

• Normalization:Payments to and from sellers and buyers that are not selectedfor the trade are0, i.e.,
pi(v,w) = qj(v,w) = 0 wheneveri, j /∈ A(v,w).

• Budget-Balance (BB):Let T = (S,B) be the computed trade. It holds that
∑

i∈S pi ≤
∑

j∈B qj.
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• α-approximate Cost-Efficiency:The trade computed by algorithmA is anα-approximation w.r.t. so-
cial cost.

• Truthfulness:For all sellers and buyers letv∗i , w∗
j denote theirtrue valuations. Theutility of selleri

declaring valuationvi to the mechanism is defined as

ui(vi) = pi((vi, v−i), w) − v∗i

if i ∈ S andui(vi) = 0 else. Analogously, buyerj has utilityuj(vj) = v∗j −qj(v, (wj , w−j)) if j ∈ B,
uj(vj) = 0 else. A mechanism(A, p, q) is truthful, if

ui(v
∗
i ) ≥ ui(vi) ∀ vi 6= v∗i and uj(w

∗
j ) ≥ uj(wj) ∀ wj 6= w∗

j

holds for all sellersi ∈ S and buyersj ∈ B.

A classical result by Myerson and Satterthwaite [10] shows that no truthful1-approximately cost-efficient
mechanism can satisfy both (VP) and (BB). In the remainder ofthis section, we extend this result to general
α-approximate cost-efficiency.

Theorem 11Fix someα ≥ 1. LetM = (A, p, q) be a truthful andα-approximately cost-efficient combina-
torial exchange mechanism satisfying VP. ThenM is not budget-balanced.

The theorem follows from the characterization of truthful combinatorial auctions in [9], which generalizes
naturally to the exchange scenario.

C.1 Characterization of Truthfulness

Definition 5 AlgorithmA for combinatorial exchanges is said to bemonotone, if

• i ∈ A((vi, v−i), w) implies thati ∈ A((v′i, v−i), w) for anyv′i ≤ vi for every selleri.

• j ∈ A(v, (wj , w−j)) implies thatj ∈ A(v, (w′
j , w−j)) for anyw′

j ≥ wj for every buyerj.

The following is a straightforward observation.

Lemma 12 Let A be a monotone algorithm for combinatorial exchanges. Then for each selleri ∈ S and
for each buyerj ∈ B there existcritical valuesθi andθj (independent ofvi andwj, respectively), such that

• i ∈ A((vi, v−i), w) iff vi ≤ (<)θi.

• j ∈ A(v, (wj , w−j)) iff wj ≥ (>)θj .

Theorem 15 extends the characterization of truthful auctions in the known single-minded case to the exchange
scenario.

Theorem 15 A normalized mechanismM = (A, p, q) satisfying (VP) for combinatorial exchanges is truth-
ful if and only if algorithmA is monotone andp, q are based on critical values.
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Proof: “⇐”: Consider mechanismM = (A, p, q), whereA is monotone algorithm andp, q the corresponding
critical value payment schemes. Fix selleri with true valuationv∗i and consider the casesi ∈ A((v∗i , v−i), w)
andi /∈ A((v∗i , v−i), w), respectively.

If i ∈ A((v∗i , v−i), w), then selleri is paid her critical valueθi and has utilityθi − v∗i ≥ (>)0. Declaring
vi 6= v∗i , the utility remains unchanged for anyvi ≤ (<)θi and is0 for anyvi > (≥)θi. If i /∈ A((v∗i , v−i), w),
then we have thatv∗i > (≥)θi and selleri’s utility is 0. Declaringvi 6= v∗i , the utility remains unchanged for
anyvi > (≥)θi and isθi − v∗i < (≤)0 for anyvi ≤ (<)θi. Similar arguments apply to buyers, as well.

“⇒”: ConsiderM = (A, p, q) and assume that algorithmA is not monotone w.r.t. to some selleri. Thus,
there exist valuationsv1

i < v2
i , such thati /∈ A((v1

i , v−i), w) andi ∈ A((v2
i , v−i), w). By the (VP) condition

we know thatpi((v
2
i , v−i), w) ≥ v2

i . Assume that selleri’s true valuation isv1
i . It follows that

ui(v
2
i ) = pi((v

2
i , v−i), w) − v1

i ≥ v2
i − v1

i > 0 = ui(v
1
i ),

and, thus,M is not a truthful mechanism. A similar argument applies ifA is not monotone w.r.t. some buyer.

Finally, assume thatA is monotone, butp is not based on its critical values. Fix again selleri, let the
declaration of all other buyers and sellers be given andpi 6= θi. First observe thatpi < θi is impossible due
to the (VP) condition, since for declarations betweenpi andθi selleri would be selected for the trade but
paid less than her actual declaration. Let thenθi < pi. If seller i has true valuationθi < v∗i < pi, then she
has utility ui(v

∗
i ) = 0 when truthfully declaringv∗i , but can increase it toui(vi) = pi − v∗i > 0 with any

false declarationvi ≤ (<)θi. It follows thatM is not a truthful mechanism. Again buyers can be treated
analogously. �

We consider the situation that we have just one seller and onebuyer interested in trading a single good. Let
us assume thatM = (A, p, q) is truthful α-approximately cost-efficient mechanism. Let us denote thebid of
the seller byv, the buyer’s bid byw. By Lemma 12 (Appendix C)A defines critical valuesθs(w) andθb(v),
such that both participants are selected for the trade whenever v ≤ θs(w) andw ≥ θb(v). Furthermore, in
this case the critical values are exactly the prices at whichthe good is traded.

Lemma 13 LetA beα-approximately cost-efficient monotone algorithm for combinatorial exchanges. Con-
sider a single seller and buyer trading one good as describedabove and letθs(w), θb(v) be their critical
values defined byA. It holds thatθs(w) ≥ α−1 · w andθb(v) ≤ α · v.

Proof: The mechanism always returns either no trade or the trade that selects both the seller and buyer
resulting in total costw or v, respectively. Since our mechanism isα-approximately cost efficient, we know
that it must choose the second alternative wheneverw > α · v. Rearranging forv andw, respectively, yields
the claim. �

This basically concludes the proof of Theorem 11. Fix any declarationsv and w with w > α2v. Then
θb(v) − θs(w) ≤ α · v − α−1 · w < 0, and, thus, the mechanism is not budget-balanced.
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