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Abstract

In a combinatorial exchange a set of indivisible productsdaded between buyers and sellers which
are interested in bundles (multi-sets of products). Altffoaombinatorial exchanges are a natural and
important generalization of combinatorial auctions, ttagiproximability has not been studied. We in-
vestigate the computational approximability of severalalayoals and show that the problems of surplus
maximization and volume maximization (subject to posisueplus) are inapproximable even with free
disposal and even if each agent’s bundle is of size at mosirBila® results based on communication
complexity are shown for agents with general valuation fioms.

In light of the negative results for surplus maximization @ansider a complementary goal of social
cost minimization and present tight approximation resigtseveral social cost minimization problems.
Considering the more general supply chain problem we piitaestocial cost minimization remains inap-
proximable even with bundles of siZeyet becomes polynomial time solvable for agents tradimglles
of size1l or 2. This yields a complete characterization of the approxiifitgtof supply chain and combi-
natorial exchange problems based on the size of traded ésindl

Finally, we point out that economic considerations preagytsocial cost approximation when agents
hold private information about their valuations that netedise elicited via some truthful mechanism.

1 Introduction

Following the emergence of the Internet as the world’s faxsinmarket place, much interest has been paid
to problems naturally arising in a context where large seatenomic problems need to be solved efficiently
by computers. Many of these problems’ essential difficaltan be captured by the class of (combinatorial)
auction problems, which have in turn received a lot of aitenfrom both practitioners and theoreticians
in computer science. A major drawback of this model of alositva, however, is the fact that it implicitly
assumes a monopolistic market structure. While practtisrhave therefore turned to more general (and
more complex) supply chain models, these have not beencsubje rigorous theoretical investigation.

In this paper we consider the computational aspects of auetdniial exchanges and their extension to general
supply chain formation problems. The combinatorial exgfeamodel is a generalization of combinatorial
auctions, which departs from the assumption that a monstpsiler holds a set of products which are of no
actual value to him. Instead, it is assumed that apart frarsét of buyers interested in purchasing bundles
of items from the auctioneer, he also has access to a numbellefs offering to supply different bundles of
products at a certain price. Thus, the problem we are factddigvto simultaneously run both a forward and
reverse auction, which should return a feasible trade tgpaireasonable profit margin for the auctioneer. In
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the more general supply chain model, we drop the assumgietreach trader is either a seller or a buyer,
but may in fact offer some bundle of products under the carrdihat he is supplied with a different bundle
and some appropriate side payment in return.

Combinatorial auctions have drawn much recent researemtaih (see for example the book by Cram-
ton, Shoham and Steinberg [5]), and their computationalcamimunication hardness are well understood.
Lehmann, O’Callaghan and Shoham [8] and Sandholm [17] Hae'1s that combinatorial auctions are hard
to approximate withinnin(m'/2-¢ n!=¢) for anye > 0, unless P-NP, wherem andn denote the numbers
of products and bidders, respectively. Nisan and Segaldée&gent communication lower bounds for combi-
natorial auctions. They show that if 2 buyers have genelabti@mns then exponential communication «ir)

is required to find an allocation with maximum surplus #ér¢-approximation). Additionally, Nisan [11]
shows that for buyers distinguishing the case that the surplusdsd the case that the surplusiisequires
exponential communication im, assuming thain!/2—¢ > n.

Clearly, all these hardness results carry to the combiiztexchange case, as has been observed before.
It turns out, however, that exchanges are even essentiahg mifficult than combinatorial auctions even

in quite restricted cases. On the other hand, they nevegbelllow a number of positive results when the
problem formulation is chosen carefully. We proceed by @nisg a formal problem definition before stating
our results in more detail.

1.1 Preliminaries

We first introduce formally the combinatorial exchange scen which most of the paper will be focused
on. At the end of the section, we briefly explain the more gaingmpply chain scenario. Assume that we
are given a set ohgents.4 = S U B, where the collectionss, B are disjoint sets osellersand buyers
respectively, with.A| = n. We are interested in trades that includdivisible productsi/, where|t/| = m.
Each sellei is offering a bundley; = (q}, ..., ¢") of products at some price € R . Buyer; is requesting
to buy the bundle;; € N™ at pricev; € Ri. By ¢f,q5 € N we refer to the number of copies of product
e € U offered by seller or requested by buyer, respectively. For agerit € A, her bundle is setif for all
ecl,q; €{0,1}.

A feasible tradel’ = (S, B), S C S andB C B, is a selection of sellers and buyers, such that
Y@= gforallect,
ieS jEB
i.e., the supply provided by sellers B is sufficient to satisfy the requests of all buyersBn Note, that

we assume free disposal here, i.e., supply and demand dcamettb match exactly. We say that trade
T = (S, B) hassurplus[volumé

sunl) = > v;— Y v vol(T) =) "> ¢t

JjEB €S ecl jeB

Thecombinatorial exchange surplus problésthe problem of finding a trade which maximizes the surplus.
Thecombinatorial exchange volume problesrthe problem of finding a trade which maximizes the volume,
subject to positive surplus. Bgombinatorial exchange positive surplus problera refer to the problem
variation in which we simply want to find any feasible tradehstrictly positive surplus.

Following [16], as another objective we define sueial costof tradeT” as

COS(T) = Z Uy + Z Vi,

j¢B i€S
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i.e., the cost is the sum of valuations of the trading seléard non-trading buyers. Note that for every
instance, the sum of the social cost and the surplus is auns@stT’) + sunT’) = >,z v;. Thus, atrade
maximizes the surplus if and only if it minimizes the sociatt We consider the problem of minimizing the
social cost subject to non-negative surplus, which we balcbmbinatorial exchange social cost problem
From a computational perspective, the social cost objedsvpreferable, because it allows us to derive
approximation algorithms and express their approximatadio in terms of a multiplicative factor, which is
generally difficult if we are faced with any mixed sign objeetand in fact turns out to be impossible in the
case of combinatorial exchanges.

A natural generalization of the combinatorial exchangeblem is obtained if we allow agents that are both
sellers and buyers simultaneously and confront our algworivith offers of the form “given bundlel | will
supply bundleB for an additional payment af”. Formally, in thesupply chain problenwve are given a setl

of n agents. Agent is represented b{{ o5 }ccu, vi,), whered;, € Z denotes the number of copies of product
e requested or supplied by agen{modelled asj, > 0 or §; < 0) andv, € R is the additional payment
offered or requested (modelled as > 0 or v, < 0). The objectives of surplus or volume maximization
generalize naturally to the supply chain scenario. Howeverneed to adapt the notion of social cost to fit
our generalized type of agents. We J&t = {k|v; > 0} and A~ = A\A*. Thus, AT is the set of agents
that have a positive utility for being included in the tradgents ind~ incur a cost when included for which
they need to be repaid. We can then naturally define the soasalbf a tradd” C A as

costT) = > w— >

keAT\(TNAT) keTnNA—

Finally, let us introduce some more notation that will coméandy. For a given instande= (S, 53, v) of the
combinatorial exchange problem we 184,(/) refer to the surplus maximizing trade. The trade computed
by some algorithmA on the same instance is denoted4g). Analogous notation is used in the context of
volume maximization or cost minimization, respectivelye\WseF to denote a family of instances which
satisfy some specified additional constraints (as maximiatlle size).

1.2 Our Results

Although combinatorial exchanges model many interestiage scenarios and understanding their compu-
tational hardness is clearly an important problem, we at@ware of any paper that addresses this important
issue. The only result that we know of is the rather immediatiiction from combinatorial auctions to
exchanges without free disposal, presented by Sandholin[&B§ which shows that without free disposal
(i.e., if the total supply of each product must exactly matandemand), it is NP-complete to find a feasible
allocation and, thus, the combinatorial exchange surptablpm without free disposal cannot be approxi-
mated (Corollary 2.1 in [19]). This result heavily relies thie assumption of no free disposal. Is the problem
as hard when we allow for free disposal? What if severe @k&tris are imposed on the bundles of the agents?
We show that the combinatorial exchange surplus and volumémization problems are inapproximabje
even with free disposal, unledd = NP. They remain inapproximable even on instances in which each
agent’s bundle is a set of size at most 3, and when restritiiagsingle product (multi-unit exchange).

Our inapproximability result for bounded size sets is basada reduction to a family of combinatorial
exchange instances with sets of size at most 3 that has tbevifad) property. Once the quantity in which
each product is bought is decided, the packing and coveriolglgms defined by these quantities (finding

Inapproximable within any factor that is a polynomially comtable function of. andm, and even if we allow for an additive
term that is a polynomially computable functionofindm.



the trading buyers and sellers, respectively) are polyabtithe solvable. This implies that combinatorial
exchange has inherent hardness that does not come from ritheeba of packing and covering. Finally,
we prove that the problem remains inapproximable even whemestrict ourselves to instances with large
packing to covering factgri.e., in cases where there is a large gain from the optinsaletr and derive
complementary inapproximability results for exchangethwiub-exponential communication based on the
communication lower bounds of [11, 12].

Sandholm and Suri [18] present an anytime algorithm for doatbrial auctions which also extends to
combinatorial exchanges. Parkes et al. [13] have recerdggmted ICE, an iterative combinatorial exchange.
Our hardness results have implications for the worst cagerpgance of these algorithms and emphasize the
need for algorithms with provable performance guarantees.

We show that, focusing on the social cost objective rathan $urplus or trade volume maximization, such
algorithmic results can be obtained. More formally, white tsurplus objective turns out to be inapprox-
imable within any factor, we show that the social cost canfy@imated within a factor of{;, wherek

is the maximal size of any bundle and that this is essentiight when agents are bidding for sets (not for
multi-sets), as it is hard to gét — o(1))H,, approximation, unless NE DTIME(n®(°glegn)) " Similarly,

for the relevant case of a single type of product (multi-@xithange) we show that social cost minimization
is NP-hard yet there is an FPTAS.

In light of these positive results, we ask whether the moreegad supply chain social cost problem allows
approximate social cost minimization, as well. It turns that this is not the case and, in fact, social cost
minimization in the supply chain scenario is inapproxineatdven with bundles of size at mast This is
interesting, as it is the first formal result separating coratorial exchanges from the more general supply
chain scenario.

We then consider the special case in which agents are testric sets of sizé or 2. While this case is
polynomially solvable for combinatorial auctions, it wasknown whether this is true for combinatorial ex-
changes. We prove here that it holds, in fact, even for thelgughain scenario. Our algorithm works by
reducing the problem to a weightéematching problem through a number of transformations afickrmu-
lation in terms of the social cost objective. This also shtiwed our hardness result for supply chains with
sets of size} is tight.

Finally, although the computational problem of social am@timization is much easier than surplus maxi-
mization, we show that there is another problem that arigeswvirying to construct mechanisms with this
goal in mind, even when computation is not a problem at all.nvdee to consider the case that agents have
privately known values for their bundles and we need totelgs information from them. A classical result
by Myerson and Satterthwaite [10] shows that for bilatenadié, any mechanism that is truthful, individually
rational and budget-balanced must sometimes be inefficléns implies that a truthful, individually ratio-
nal and budget-balanced mechanism cannot always minitmizgedcial cost. We extend this result and show
that for any constanéx > 1, a-approximation for social cost is impossible. Circumvegtihe Myerson
and Satterthwaite impossibility result [10] for exchang@s been the subject of several papers. Parkes et
al. [14] enforce budget-balance as a hard constraint, aplbexpayment rules that are fairly efficient and
fairly truthful. On the other hand, Babaioff and Walsh [2hs@der the problem of supply chains and present
a truthful and budget-balanced mechanism with efficienciciwdepends on the size of the efficient trade.

The rest of the paper is organized as follows. Section 2 ptesrir inapproximability results for surplus and
volume maximization. Section 3 presents approximatioorittyns as well as inapproximability results for
social cost minimization. Section 4 considers the case efitsgwith sets of size at maat Finally, Section 5
shows that economic considerations prevent mechanisrhathive social cost approximation. Several of
the proofs have been moved to the Appendix due to space fiomsa
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2 Surplus and Volume Inapproximability

We start by showing a number of strong inapproximabilityuiessfor both surplus and volume maximiza-
tion in combinatorial exchanges. Section 2.1 derives tedol the single-minded setting under standard
complexity theoretic assumptions. Section 2.2 presentsagiresults for general agents in terms of commu-
nication complexity.

2.1 Computational Hardness

We show that both the combinatorial exchange surplus anthlproblems do not allow polynomial time
approximation algorithms with any reasonable approxiaraguarantee. This is formalized in the following
definition.

Definition 1 Leta, 8 : N x N — N be any polynomial-time computable functions. The combiiait

exchange surplus problem approximable(for family of instancesF) if for somec, G there exists a poly-
time approximation algorithmd, such thatsurn7gyd1)) < a(n,m) - sufA(I)) + B(n, m) holds on every
problem instanced (I € F). The combinatorial exchange surplus problemnapproximableif it is not

approximable.

Approximability in the volume maximization and social cosinimization case is defined analogously. We
are interested in a very natural restricted class of famitieinstances.

Definition 2 The family of instance$ is rational if all valueswv; are rational numbersF is scalabléf it is
closed under scaling of agents’ valuations, i.e., if ins@ah = (S, B,v) € F thenI’ = (S,B,v-v) € F
for any rationaly > 0.

It turns out that for the families of instances defined abaapproximability can be derived from the fact
that detecting any trade with positive surplus or volumeasdhn itself. The proof of Lemma 1 is found in
Appendix A.1.

Lemma 1 If the combinatorial exchange positive surplus problemdaational and scalable familyF is
NP-hard then the combinatorial exchange surplus (volumeblpm for the familyF is inapproximable,
unlessP = NP.

Theorem 1 The combinatorial exchange surplus (volume) problem igppmaximable, unles® = NP. It
remains inapproximable unleg3 = N P for the following families of instances:

e instances with only setgj{ € {0,1}) of size atmost 3} "__,, ¢;; < 3 for every agent).

e instances with only one type of product (multi-unit excleiig| = 1).

Theorem 1 follows from Lemmas 2 and 3. The proof of Lemma Jr&ghtforward and omitted due to space
limitations.



Lemma 2 The combinatorial exchange positive surplus problem ferfimily F of instances with only sets
(¢;, € {0,1} Vk € A, e € U) of size at most 3)C ., q;. < 3 Vk € A) is NP-hard.

Proof: We show a reduction from the set packing problem, which isdmto be NP-hard [7] even for sets
of size at mos8. Let an unweighted set packing instarge ..., S,, C U, || = m, be given and assume
that|S;| < 3 for all j. We ask whether a collectioR C {1,...,n} of sets withS; N S; = @ forall i, j € P
and{J;cp Si = U exists.

We construct an instance of the combinatorial exchangel@mlon the extended ground dét = ¢/ U
{€j71, €j72, €j73 |] = 1, e ,’I’L}.

Depending on its size we define a number of buyers for each;sdf S; has size 1 and consists of some
single element, we define buyersi, js with g5, = qu =1, q?; = 0 else andv;, = 2(2m + 3n + 1).

If S; has size 2 and consists of elemeaisandes, we define buyersi, j» with ¢;' = ¢5> = qu =1,

qj-i' = 0 else andv;, = 3(2m + 3n + 1). If S; has size 3 and consists of elementse; andes, we define

3 buyersyy, jz ands With 5} = ¢ = ¢ = 1,472 = 4% = 42" = 1.5} = 4% = 47" = 1,5 = 0
else andv;, = 3(2m + 3n + 1). Thus, the union of buyers belonging to a singleSetequests 2 copies of
each element in the set. Additionally, each of them requeslistinct item from the set of associated items
{ejn, €2, €53}

For ease of notation léf = {eo,...,e,—1}. We define sellers indexed by= 1,...,n, Wherequ =1if
jed{i,i+1 mod n}, qu = 0 else. Sellei’s valuation is given as; = 2(2m + 3n). Additionally, we have

a sellerj for each sef; with ¢ = ¢;* = 1, ¢§ = 0 for all othere € U’ andv; = 2(2m +3n), if | 5;] = 1

or|Sj| = 2,¢"" = ¢;"* = ¢;* =1, ¢5 = 0 for all othere € U’ andv; = 3(2m + 3n), if |S;| = 3.

Now let P be a packing, such thiy,_, S; = U. We letP = P, U P, U P3, whereP;, contains all sets of size
k from P. By selecting all buyerg; with j € P, all sellers; and sellergi supplying products; ;, j € P, we
obtain a feasible trade with surplus

do2:2@m+3n+1)+ ) 2-3@m+3n+1)+ > 3-3(2m+3n+1)
JjeP; JEP JjEP3
— Y 2@2m+3n)— > 3(2m+3n) — U] - 2(2m + 3n)
JEPIUP, JjEP3
= (4’P1’ + 6‘P2’ + 9]P3\)(2m +3n + 1) — (2‘2/[’ + 2’P1 U PQ’ + 3]P3\)(2m + 3n)
= (2’2/{‘ + 2‘P1 U Pg‘ +3‘P3D >0

where we use the fact thatP; | + 4| P2| + 6| P3| = 2|U|. Thus, we have shown that there exists a trade with
positive revenue whenever the desired packing exists. Werte by arguing that any trade with positive
revenue implies the existence of a corresponding packing.

Consider an arbitrary trade = (S, B) and assume that sellersSrsupply a total number of products, while
buyers request only a total numbertok s of products. Observe that in our instance every seller @sarg
a price of exacthy2m + 3n for each product she supplies. Similarly, buyers offer dya&mn + 3n + 1 per
product they request. Hence, we can bound the surplus frateT by

t(2m+3n+1) —s(2m+3n) <t—(2m +3n) <0,

where we use the fact that> ¢ + 1 and obviouslyt < || = 2m + 3n.

Thus, in any trade with positive revenue sellers supply #xdbe number of products requested by the
selected buyers. It is straightforward to argue that thiglies the following two properties of the returned
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trade. First, whenever some buygicorresponding to sef; is selected for the trade, then this is true for all
buyers corresponding to that set. Secondly, the trade mciside all productsy, . .., e,_1. This, however,
implies that selecting sets; corresponding to selected buygrsyields the desired packing. O

Lemma 3 The combinatorial exchange positive surplus problem ferfamily 7 of instances with only a
single type of good (multi-unit exchange problem) is NPdhar

Finally, we prove inapproximability even in the cases whbiege are relatively large gains from the trade.

Definition 3 For instancel we define th@acking to covering factof (1) as the maximal value of
> iep+ Ui/ D jes+ v; over all surplus maximizing tradegy (1) = (S*, B*).

We prove inapproximability with a packing to covering factorresponding to the set packing lower bound.

Theorem 2 There exists a function(n,m) = Q(min{n'~¢,m!/?2=¢}) such that the combinatorial ex-
change surplus (volume) problem is inapproximable for tmify 7 of instances which satisfy(/) >
v(n,m) VI € F, unless P=NP.

2.2 Communication Lower Bounds

We next consider the problem of achieving approximatiorheodombinatorial exchange surplus (volume)
problem when agents have general valuations (buyers arsimgie-minded). We show that the two goals
cannot be approximated unless exponential communicationis used. The inapproximability results hold
even in the case of a single seller holding a set, and buyat$ilve general monotone valuations over sets
(not multi-sets).

Let G = (1,...,1) be the bundle with one item of each product. Assume that biyss a monotone
valuation functiorw; : 2™ — R . As we assume that a single seller offéfsthe goal of a communication
protocol P is to find a partition of the items to the buyers such that thglaa (volume) is maximized.
Similar to Definition 1 we define inapproximability of a commication protocol in Appendix A.2 (with, 3
using onlym as their argument). Based on a result from Nisan and SeggiMd2how the following.

Theorem 3 The combinatorial exchange surplus (volume) problem isapproximable in less tha(1m"}2)
bits. This holds even with only a single seller and two buydrich have valuations over sets.

Moreover, even if there is a large gain from trade the problemains inapproximable. Based on a lower
bound of Nisan [11] we prove that wheitl) > n andn < m!/?=¢, any approximation requires exponential
communication inmn .

Theorem 4 The combinatorial exchange surplus (volume) problem ferfémily of instances with packing
to covering factor at least is not approximable with less thaff/ (2n*)=5log n hits. The lower bound holds
for randomized and nondeterministic protocols.



3 Approximating Social Cost

3.1 The Combinatorial Exchange Social Cost Problem

In the following section we present an algorithm that acksea logarithmic approximation ratio for the
objective of minimizing social cost of the trade. We addiitly present a matching lower bound for the
case without multi-sets. Our algorithm is based on the watkn greedy approximation algorithm for the
multi-set multi-cover problem [15]. For the remainder otBection, let; = 3" ., 5 foralli € S, B and
definek = max; k;.

1. LetA, = ZjeB q; for all productse € U.

2. Apply the greedy approximation algorithm to the follogrimulti-set multi-cover problem|.
min. Z’ini + Zvjyj
€S jeB
s.t. Z qix; + Z qjy; > Ne Yeel
i€S jeB
Ty Yj c {O, 1}

3. LetS ={i|z; =1}, B={jly; =0} If 3 ,cpvj > > cqvi return tradel” = (S, B),
else returril” = (0, ).

Figure 1. Approximating optimal social cost by algorithnoZ=R.

It is known that the greedy approximation algorithm appneies the covering integer program (CIP) in
Figure 1 within H;, where H;, denotes theé’'th harmonic number. Essentially, Theorem 5 follows frora th

observation that this CIP is an exact formulation of the f@obof finding a trade of minimal social cost. We

briefly mention that the greedy approximation algorithm welg is inherently monotone and, thus, yields
a truthful exchange mechanism if combined with an appropr{aritical value based) payment scheme.
However, we point out in Section 5 that there are other reasioat prevent us from obtaining reasonable
truthful mechanisms.

Theorem 5 Algorithm CoVER is a Hi-approximation algorithm for the combinatorial exchangeisl cost
problem.

Proof: Consider the problem of social cost minimization in combinal exchanges. We can write this
problem as the following integer linear program, whereaflesz;, =; indicate which sellers and buyers are
selected for the trade and constraints (2) ensure fedgibflithe trade:

min. Z’Uj(l — l‘j) + Z’Uil'i Q)
JjeEB €S
s.t. quzl > quxj Ye e U 2
ies jeB
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Defining A, = 3,5 ¢5 as in the algorithm we can rewrife’; . ¢jz; asA. — 3,5 ¢5(1 — z;). Thus,

constraints (2) become

D diwi > A=) qi(l-ay).

€S jeB
Substituting new variablg; for 1 — z; for all buyers; € B we obtain exactly the covering integer program
defined in algorithm ©VER.

Let nowT = (5, B) as in the algorithm. By the fact that the greedy algorithmrfnti-set multi-covering
[15] has approximation ratidf,, we immediately obtain that cqdt) < Hj - cos(Tyg{!)). However,
it might be the case that tradeé has negative surplus. We fix this problem by returning the tgrimade
whenever surplus is indeed negative. Obviously, this do¢siolate our approximation guarantee, since in
this case the social cost of the empty trade is below the ¢dlsedrade that we have originally computéd.

The following theorem states that the approximation rafialgorithm CovER is essentially best possible,
as parametek is trivially upper bounded by the numbet of distinct goods whenever we do not allow
multi-sets. The proof of Theorem 6 is found in Appendix B.1.

Theorem 6 The combinatorial exchange social cost problem cannot hEagimated in polynomial time
better than within(1 — o(1)) In m, unless NPC DTIME(n®(loglogn)y 2

We finally mention that algorithm QVER can in fact be viewed as a generic reduction of social cost-min
mization in combinatorial exchanges to social cost minatian in reverse combinatorial auctions. Loosely
speaking, we first allocate to all buyers in the exchangeas@eitheir desired bundles at their offered price
and then run a reverse auction algorithm considering ahamge participants as sellers. If one of the original
sellers is selected, we buy her offered bundle. If one of tigiral buyers is selected, we buy the previously
allocated bundle back from her. Setting demand for evergdyirbas done above, we ensure that the auction
algorithm achieves sufficient supply for all buyers not raiing their bundles.

3.2 The Multi-Unit Exchange Social Cost Problem

We briefly consider the special case of multi-unit exchangesvhich all sellers and buyers want to trade
a number of copies of the same good. By Theorem 1 we are upnlikehchieve in polynomial time any
approximation ratio for surplus or volume maximization. ushwe again reformulate the problem in terms
of a covering problem and aim to minimize social cost. Algon MINKNAPSACK (see Appendix B.2)
is based on the dynamic programming based FPTAS for the mapdack (or reverse multi-unit auction)
problem. For a monotone version of the algorithm tailoreadwo setting see [3]. Similar to the proof of
Theorem 6 a simple reduction to the partition problem (whgcknown to be NP-hard [7]) yields optimality
of our algorithm’s approximation guarantee.

Theorem 7 Algorithm MINKNAPSACK is an FPTAS for the combinatorial exchange social cost @bl
Furthermore, social cost minimization in multi-unit exciges is NP-hard.

Note that we can replace this assumptionfby: N P if we relax the lower bound t€(In m) by [1].



3.3 The Supply Chain Social Cost Problem

The objectives of surplus or volume maximization geneeahaturally to the supply chain scenario. Thus,
all the hardness results presented in Section 2.1 hold fonthre general model, as well. However, we show
that the situation is even worse and that for the supply che@mario even (approximate) social cost mini-
mization is out of reach. Theorem 8 states that no polynotimed algorithm can achieve any approximation
guarantee for the supply chain social cost problem.

Theorem 8 The supply chain social cost problem is inapproximableesslP=NP.

Proof: We show a reduction from the decision version of the set mackroblem, which is known to be
NP-hard [7]. Let sets,...,S, over ground set/, |l{| = m, and integer- be given. We want to decide
whether there exist non-intersecting sets. Towards a contradiction, assuateath are given an algorithm
A for supply chain social cost minimization, such that

cos{(T¢ost!)) < a(n,m) - COS(A(I)) + B(n, m)

holds on every problem instande We define our supply chain social cost instance over groatid s/ {e*}

as follows. For each set; we create a corresponding aggniho requests sef;, supplies one copy af*
and has valuatiom; = —1, formally 67 = 1if e € 55, 67 = —1if e = €* andd; = 0 else. Additionally, we
define agent. + 1 who supplied/ (i.e.,d;, ., = —1 for all e € i), requests- copies ofe* (5211 = r)and
offers to payv,,+1 = a(n,m)r + B(n, m) + 1. Thus, agents corresponding to sets from the packing iostan
form setA~, agentn + 1 forms setd ™.

Now assume that there arenon-intersecting setS’ C {1,...,m} and consider trad& = S’ U {n + 1}.
This trade is feasible, since agentsSthrequest a subset of the goodg4nwhich are supplied by agent+ 1.
On the other hand, agents & supplyr copies of product* as requested by + 1. Furthermore, trad&
has social cost. Now observe that the empty trade hast egst; = a(n, m)r + S(n, m)+ 1. Thus, if there
existr non intersecting sets algoritha must return a non-empty trade.

Assume then that in every selectidh of at leastr sets there are sets with a non-empty intersection. We
claim that no feasible trade other than the empty trade £xiBb see this, note that every non-empty trade
must contain agent + 1, as no other agent can supply products fégdm~urthermore, no feasible trade can
select agents corresponding to intersecting sets, siramdag- 1 supplies only a single copy of each product

in . Finally, every feasible trade must contain at least the agentd, ..., m, since we need a supply of at
leastr copies of product* in order to select agent + 1. Hence, no feasible non-empty trade exists under
the above assumption. d

A natural question to ask is whether similar hardness carmbers for supply chain instances with bounded
size bundles, where we define the size of agénbundle as) __[65|. Theorem 9 states that the problem is
inapproximable even with bundles of size

Theorem 9 The supply chain social cost problem with bundles of sizecat fhis inapproximable, unless
P=NP.

We omit the formal proof, which is based on a reduction of sekmg with sets of siz& and the fact that we
can transform the problem instances constructed in thef pfotheorem 8 into instances with only bounded
size bundles, see Figure 2. This hardness result is tighteasill see in the following section that bundles
of size2 allow exact polynomial time algorithms.
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Figure 2: Gadgets for the proof of Theorem 9 for agents witls & bounded size. Agents are depicted
as rounded triangles, supplied and requested productsadedlor non-shaded ellipses, respectively. Agent
n + 1 from the proof of Theorem 8 is simulated by the agents in the toothe left, each of which has
valuation (2a(n, m)r + B(n,m) + 1)/(m + r). Agent;j corresponding to sef; is simulated by the two
agents depicted in the box to the right, both with valuatian Again, every feasible non-empty trade must
contain agents corresponding to at leasbn-intersecting sets.

4 Supply Chains with Sets of Size 2

It is well known that combinatorial auctions become solealnl polynomial time when the participating
bidders are restricted to bid on sets of size at n2psince in this case the problem can be formulated in
terms of a weighted matching problem. For combinatorialhexges or even supply chains, on the other
hand, it is not immediate whether the problem reduces tomragan this case. As we shall see, the social
cost objective turns out to be the key in obtaining such alprodormulation.

Theorem 10 The supply chain surplus problem with sets of gizad2 can be solved in polynomial time.

Theorem 10 is a direct consequence of Lemmas 4, 5 and 6, wagtdride the reduction of the supply chain
surplus problem to weightegmatching.

Lemma 4 The supply chain surplus problem with bundles of size at gstluces to the combinatorial
exchange surplus problem with bundles of size at rhost

Proof: Let an instance of the supply chain surplus problem with gdroe given and letr = >, _ 1+ vp+1,
thus, suf7™) < a.

Consider agent € A and letS, = {e € U|6; < 0}, By = {e € U|J;, > 0} denote the sets of
products offered and requested, respectively. Assumeatieitk is both offering and requesting products,
i.e,|Sk|,|Bx| > 1. We define a new produet, sellers; and buyer;, corresponding to ageritas follows.
Sellersy, supplies product;, and the products supplied fiyat pricec, formally ¢ik = 1, g5, = —d;; for all

e € S; andv,, = a. Buyerb, requests produet; and the products requested byt pricea + vy, formally
q,r =1, g5, = of forall e € By, andv,, = a + vy

Consider any solution to the resulting instance of the comlorial exchange surplus problem. If buygris
selected for the trade, then so is selgy since no other agent can supply prodegct If seller s, is selected,
then so is buyeby, since otherwise surplus is bounded by(§ur) — « < 0. Finally, observe that bundle
sizes have not increased. O
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Lemma 5 The combinatorial exchange surplus problem with sets eflsand 2 reduces to the combinato-
rial exchange surplus problem with sets of size

Proof: First, for each buyer with a set of size define a hew product requested by this buyer and supplied
by a newly defined seller at no cost. This leaves us with a prabihstance in which each buyer has a set of
size2 and sellers have sets of siz@r 2. For each seller with a set of sizenow simply define a new product
which she supplies at no additional cost. d

Lemma 6 The combinatorial exchange surplus problem with sets ef2stan be solved in polynomial time.

Proof: Let an instance of the combinatorial exchange surplus prohtith sellersS and buyerd3 with sets
of size2 be given. Using that surplus maximization is equivalent isimization of social cost, we formulate
the problem as an ILP as in Figure 1. L&t = [{j € B|qj = 1}| as beforel'. = |{j € S|q¢§ = 1}| and
V=23 ics Vi + X jepvs- DefiningA; = 1 — z; andu; = 1 — y; we obtain

Zvixi + Zvjyj =V - Zvi)\i — Z’Ujuj

i€S jen i€S jeB
and can rewrite the ILP as:
max. Z vi)\i + Z Vj g (4)
€S jeEB
st Y gN+ Y ¢uy<Te VYeel (5)
i€S jen

Now observe that the above is the ILP formulation of the maxmmweightedb-matching problem with
weightsv;, v; on the edges and degree constraintdor verticese € U, which is known to be solvable in
polynomial time [4]. d

5 Non-Existence of Mechanisms for Social Cost Approximatio

In this section we discuss the existence of truthful medmasifor the combinatorial exchange problem. A
mechanism consists of some algorithfithat outputs a tradé& = (.S, B) and additional payment®;);cs,
(gj);jen determining the payments given to sellers and collecteth fomyers, respectively. For ease of
notation we denote input as= (v, ..., v|s) andw = (wy,...,wz). Trade and payments are referred to
asA(v,w), p(v, w) andg(v, w), respectively. For both sellers and buyérs 5, S we denote by € A(v,w)

the situation that is selected for the trade. A mechanistm@malizedand satisfiesoluntary participation
(VP), if selected buyers never pay more than their declasdabtion, selected sellers are never paid less than
their valuation and payments to and from non-selected agaet0. Furthermore, a mechanisnbigiget-
balanced(BB) if the sum of payments is always non-negatiy€, ( ¢ p; < ZjeB q;), c-approximatecost-
efficientif it computes trades that areapproximate with respect to social cost andhful if it is a dominant
strategy for every agent to declare their true valuationslasical result by Myerson and Satterthwaite [10]
shows that no truthful-approximately cost-efficient mechanism can satisfy b¥)(@nd (BB). This result
extends to approximately cost-efficient mechanisms. Theff Theorem 11 is found in Appendix C.

Theorem 11 Fix somex > 1. Let M = (A, p, q) be a truthful andx-approximately cost-efficient combina-
torial exchange mechanism satisfying VP. Théns not budget-balanced.

12
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A Proofs from Section 2

A.1 Proofs from Section 2.1

Lemma 1 If the combinatorial exchange positive surplus problemdoational and scalable familyF is
NP-hard then the combinatorial exchange surplus (volumeblpm for the familyF is inapproximable,
unlessP = NP.

Proof: The hardness of the volume problem is immediate, as we ee@uirade with positive surplus. We
next consider the surplus maximization problem. Assumefthiaomeq, 3 there exists a poly-time approx-
imation algorithmA for the combinatorial exchange surplus problem such that

sur(T3ur(1)) < a(n,m) - sur(A(I)) + B(n, m)

holds on every problem instandec F with n agents. Given instanckin which agent has valuey; we
letr = 1/2¢, where/ denotes the maximum number of bits used to encode any vatuitil. We define
instancel’ to be I after multiplying eachy; by (1 + 3(n))r~! (observe that the number of agentsIins

still » and the number of products is stilt, thus we defing? = 3(n,m) anda = a(n,m)). We denote
OPT = sur(Tgy(I)) andOPT’ = sur(Tye(I")). Note thatOPT’ = (1 + B)r~*OPT, thusOPT = 0 if

and only ifOPT’" = 0. We applyA on I’ and by our assumption

OPT' < o -sur(A(I") + 3.

To conclude the proof we show thatsifir A(I')) = 0thenOPT = 0 and ifsur(A(I")) > 0 thenOPT > 0.
This contradicts the hardness of decidin@iPT is positive or0 (unlessP = N P).

As OPT' > sur(A(I')) > 0, if OPT" = OPT = 0 thensur(A(I')) = 0. On the other hand, OPT > 0
thenOpt > r and, thusOPT’ = (1 + 3)r~'OPT > 1 + 3. We conclude that i PT > 0 then

a-sur(A(I')) + 3> OPT" = (1+ 3)OPT > OPT + 3
or equivalentlya - sur(A(I")) > OPT > 0, thus,sur(A(I’)) > 0. O

Lemma 3 The combinatorial exchange positive surplus problem ferfdmily 7 of instances with only a
single type of good (multi-unit exchange problem) is NRdhar

Proof: We use a simple reduction from the knapsack problem, whidmasvn to be NP-hard [7]. Given
n objects with weightsuy, ..., w, and integral utilitiesuy, ..., u, we want to decide whether there is a
selection of objects with total utility, and weight at mosiV.

For each object our multi-unit exchange instance has a buyerquesting-; = w; copies of the traded item
and valuatiory; = u;. A single seller supplies; = W copies of the item at price — 1. Clearly, there exists
a trade with positive surplus if and only if the desired skterof objects exists. O

As deciding if the packing to covering factor isor somey > 1 is equivalent to solving the combinatorial
exchanges positive surplus problem, using Lemma 1 we d#réséollowing.

Lemma 7 If for a rational and scalable familyF it is NP-hard to decide whether the packing to covering
factor is at mostl or at leasty(n, m) for v(m,n) > 1, then the combinatorial exchange surplus (volume)
problem for the familyF of instances withf (7) > ~(n,m) is inapproximable, unles® = N P.
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Lemma 8 There exists a function(n, m) = Q(min{n'~¢, m'/2-¢}) such that for combinatorial exchange
with n agents andn products it is NP-hard to decide whether the packing to dogefactor is at most or
at leasty(n,m).

Proof: Consider the set packing problem withsets Sy, ..., S, over some ground set of size. For
functionsa(n, m) andb(n, m) we defineS< ,, 1n) aNd Sy, ) @s the families of instances with optimal
packings of size at most(n, m) or at leastb(n, m), respectively. It is known that there exist polyno-
mial time computable functiong(n,m), b(n, m) with b(n,m) = y(n,m) - a(n, m) for some~y(n,m) =
Q(min{n'~¢, m!/27¢}), such that given instancB € S« ;) U S>p(n,m) it is NP-hard to decide whether
Ie Sga(n,m) orl e Szb(n,m)-

We encode every set as a buyer requesting the respectivigosied in the exchange scenario. Furthermore,
we have a single seller supplying the complete ground seic @(n, m). Clearly, the packing to covering
factor of the resulting CE instance is at most Y i€ S<,, ) andb(n,m)/a(n, m) = v(n, m) whenever
Ie SZb(%m)' O

Theorem 2 is a direct result from Lemma 7 and Lemma 8.

A.2 Proofs from Section 2.2

We next prove a communication lower bounds for combinat@i@hange surplus and volume problems,
we present inapproximability results under sub-expoégtmmunication. The lower bounds are obtained
in Yao’s standard model of communication complexity. Oustflower bound is based on a lower bound
of Nisan and Segal [12] for combinatorial auctions (with agé seller that has no value for the products
she holds). Nisan and Segal show that in the combinatoridicns problem with general valuations, any
protocol that always finds the optimal allocation commutgsaat Ieas(m%) bits. We show that for com-

binatorial exchange this implies that achieviaigy approximation to the surplus requirégb%) bits. This
holds even with only two buyers and a single seller. This isdntrast to the combinatorial auctions case,
for which a trivial n-approximation exists, when is the number of buyers, as all items can be assigned to
the buyer with the highest valuation for the bundle of aliite We formally define inapproximability for the
communication model. Inapproximability means that we negqubnential communication im if we would

like the protocol to always get an approximate solution. @gsults hold even for a single seller offering

a set of items and buyers that have valuations for sets (ntit-setis). For communication protocat, let
sur(P(I)) be the surplus of the trade chosenByn instancel.

Definition 4 The combinatorial exchange surplus problerapproximablen ¢ bits if for somey, 5 : N — N
there exists a communication protod®that uses at mostbits, such thasur74,(1)) < a(m)-sufP(I))+
(B(m) holds on every problem instande

Similar proof to the one of Lemma 1 shows the following.

Lemma 9 If the combinatorial exchange positive surplus problemdaational and scalable familyF is
non approximable irt bits the combinatorial exchange surplus (volume) problemtlie family F is not
approximable int bits.
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Let G = (1,...,1) be the bundle with one item of each product. Assume that biyes a monotone
valuation functionv; : 2™ — {0,1}. Such a valuation is called a 0/1 valuation, as the value phandle
is either 0 or 1. Buyef’s valuation of bundleS; C G is v;(.S;) € {0, 1}. For combinatorial auctions with a
supplyG, the optimal allocation problem is the problem of finding atitian of G to S andS¢ = G\ S that
maximizesv; (S) + v2(S°).

Theorem 12 ([12]) Every protocol that finds the optimal allocation for everyirpaf 0/1 valuationsvy, vo
such thaty; (G) = v2(G) = 1, must use at Ieas(tm"}Q) bits of total communication in the worst case.

We derive the following for the combinatorial exchange [eof.

Lemma 10 Consider a combinatorial exchange with a single sellerroffe GG for the price of 1, and two
buyers with0/1 valuationswvy, ve such thatv; (G) = v2(G) = 1. Every protocol for the combinatorial
exchange positive surplus problem must use at I(enﬁg) bits of total communication in the worst case.

Proof: We use the straightforward reduction from the optimal at@n problem for combinatorial auctions,
to the problem of revenue maximization in combinatoriallextge. Given a pair of 0/1 valuations, v5 such
thatv, (G) = v2(G) = 1, we consider the combinatorial exchange problem with dsiseller offeringG for

the price of 1, and two buyers with valuations v-. Clearly, there is a positive revenue exchange if and only
if there is an allocation of valu2 for the optimal allocation problem. As the later requiresncounication

of at Ieast(m%) bits in the worst case (by Theorem 12), so does the former. O

A direct corollary of the above lemma and Lemma 9 is the follayv

Theorem 3 The combinatorial exchange surplus (volume) problem isapgtroximable in less thaﬁm";z)
bits. This holds even with only a single seller and two buyers

Note that the theorem holds with or without free disposal.

We next strengthen the result and show that even if there ésyalarge gain from trade that can be realized,
no approximation can be obtained unless exponential conwmaion is used. We use a reduction that is
based on the following result by Nisan [11] for combinatbaactions withn agents andn items.

Theorem 13 (Derived from the proof of Theorem 3 in [11]) Anyn-agent protocol for CA that always dis-
tinguishes the case that the surpluslignd the case that the surplus isrequirese™/ (2n*)=5leg n pjts of
communication. The lower bound holds for randomized andletamministic protocols. It also holds even if
all buyers have 0/1 valuations.

In particular, as long as < m!/?~¢, the communication complexity is exponentialin Thus we show
that if we only consider instances for whighi/) > n (andn < m!/?2=€), the communication complexity of
any approximation is exponential in.

From Theorem 13 we derive the following for the combinatiogiechange problem.

Lemma 11 Anyn-agent protocol for the combinatorial exchange positivepkis problem for the family of
instances with packing to covering factft/) > n requirese™/ (2n*)=5log n pjts of communication. The
lower bound holds for randomized and nondeterministicqarots.
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Proof: The proof of Nisan [11] for the above theorem shows #at(2n*)—5log n hits of communication are
required to decide if the surplus is 1 @iin combinatorial auctions with buyers having 0/1 valuasio®iven
such an instance of combinatorial auctions, we construtiresitance of combinatorial exchange by keeping

the same set of buyers and adding a seller with theGset (1,...,1) and value of 1. Clearly for such
an instancef (1) > n and any positive value trade trivially corresponds to a tmtufor the combinatorial
auctions with value. 0

A direct corollary of the above lemma and Lemma 9 is the follayy

Theorem 14 The combinatorial exchange surplus (volume) problem ferfémily of instances with packing
to covering factorf(I) > n is not approximable with less thaf/ (2n*)=5log n hits. The lower bound holds
for randomized and nondeterministic protocols.

Corollary 1 For anye > 0, the combinatorial exchange surplus (volume) problem pidttking to covering
factor f(I) > n whenn < m!/?=¢ is not approximable by a protocol that uses sub-exponeantisimunica-
tion inm.

Note that even iff (1) is infinity the surplus (volume) problem cannot be approxedabetter than CA can
be approximated, as combinatorial auctions reduce to quaidrial exchange with a single seller selling G
for 0.

B Proofs from Section 3

B.1 Proofs from Section 3.1

Theorem 6 The combinatorial exchange social cost problem cannot cmated in polynomial time
better than within(1 — o(1)) Inm, unless NRC DTIME(n®(loglogn)y 3

Proof: It is known that the set cover problem cannot be approximbétolv a threshold ofl —o(1)) Inm (m
being the size of the ground set) in polynomial time, unleBSINDTIME (nC(loglogn)y [6]. Let Sy,..., S,

be a collection of subsets&f = {1, ..., m}. The set cover problem asks for a selection of as few as pgessib
of the subsets coveririd.

Assume now that we are given algorithr with approximation ratioa for social cost minimization in
combinatorial exchanges. We show that this impliesreapproximation for set cover, as well. Consider the
following combinatorial exchange instance. For e&glwe have a sellei with ¢f = 1if e € S; (¢f = 0
else) andy; = 1. Additionally, there is a single buyer witg = (1,...,1) andv, = (a+ 1)n, i.e., buyem is
offering to buy the whole ground sitat price(a + 1) times the number of subsets in the set cover instance.

We assume w.l.o.g. that can be covered by selecting all the subsets. Thus, selcutiyperb and all the
sellers defines a feasible trade of social egasDn the other hand, not selecting buyeresults in the empty
trade and causes cdst + 1)n. Thus, the approximation ratio of algorithrh guarantees that a non-empty
trade must be returned.

®Note that we can replace this assumptionfby: N P if we relax the lower bound t€(In m) by [1].
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However, there is a one-to-one correspondence betweeemety trades and feasible covers of ground set
U. Thus, if we denote bypt the cost of the minimum cover éf, this is also the social cost of the optimal
trade. It follows that the trade returned HByhas social cost at most- opt and we obtain a cover of identical
cost.

Hence, everyv-approximate algorithm for social cost minimization immegdly yields the same approxima-
tion ratio for set cover and the known hardness results foc@eer can be applied. O

B.2 MINKNAPSACK Algorithm missing from Section 3.2

2. Apply the dynamic programming based FPTAS to the follainin-knapsack problem:
min. Z’ini + Z’ijj
€S jeB

s.t. Z q;T; + Z q;Y; > A

= jeB
Ti, Yj S {O, 1}

3. LetS = {i|z; =1}, B={jly; = 0}. f 3 ,cpvj = > ,cqvi return tradel’ = (S, B),
else returril” = (0, 0).

Figure 3: Approximating social cost in multi-unit exchasd®y algorithm MNKNAPSACK.

C Proofs from Section 5

In this section we discuss the existence of truthful medmasifor the combinatorial exchange problem. A
mechanism consist of some algorithinthat outputs a trad& = (S, B) and additional payment®;);cs,
(gj);jes determining the payments given to sellers and collecteth fbmyers, respectively. For ease of
notation we denote input as= (vy,...,v|s) andw = (wy,...,wz|). Trade and payments are referred to
asA(v,w), p(v,w) andq(v, w), respectively. For both sellers and buyers B, S we denote by € A(v, w)
the situation that is selected for the trade. We are interested in mechanisthsé following properties:

¢ Voluntary Participation (VP)For all sellersi € S, buyers;j € B we have thap; > v; andg; < wj,
respectively.

e Normalization: Payments to and from sellers and buyers that are not selfmtéite trade aré), i.e.,
pi(v, w) = ¢;(v,w) = 0 whenever, j ¢ A(v,w).

e Budget-Balance (BB):etT = (S, B) be the computed trade. It holds thal,c s pi < > ;e qj-
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e a-approximate Cost-Efficiencyfhe trade computed by algorithd is ana-approximation w.r.t. so-
cial cost.

e Truthfulness:For all sellers and buyers lef, w; denote theitrue valuations. Theutility of seller:
declaring valuation; to the mechanism is defined as

u;i(vi) = pi(vi, v—i), w) — v}

if i € S andu;(v;) = 0 else. Analogously, buyerhas utilityu;(v;) = v; —g;(v, (wj, w—;)) if j € B,
u;j(v;) = 0 else. A mechanismA, p, ¢) is truthful, if

ui(v;) > ui(vi) Vv AFv; and ui(w;) > uj(w;) Voow; # wj
holds for all sellers € S and buyerg € B.
A classical result by Myerson and Satterthwaite [10] shadwet ho truthfull-approximately cost-efficient

mechanism can satisfy both (VP) and (BB). In the remaind¢hisfsection, we extend this result to general
«-approximate cost-efficiency.

Theorem 11Fix somex > 1. Let M = (A, p, q) be a truthful andx-approximately cost-efficient combina-
torial exchange mechanism satisfying VP. Théns not budget-balanced.

The theorem follows from the characterization of truthfohwbinatorial auctions in [9], which generalizes
naturally to the exchange scenario.

C.1 Characterization of Truthfulness

Definition 5 Algorithm A for combinatorial exchanges is said to benotone if
o i € A((vi,v—;),w) implies thati € A((v},v_;), w) for anyv] < v, for every seller.
o j € A(v, (wj, w-j;)) implies thatj € A(v, (w}, w—;)) for anyw’; > w; for every buyer;.

The following is a straightforward observation.

Lemma 12 Let A be a monotone algorithm for combinatorial exchanges. Toemré#ch selleri € S and
for each buyerj € B there existritical valuesd; and6; (independent of; andw;, respectively), such that

e | € A((’Ui,v_i),w) iff v; < (<)HZ

e j € A(’U, (wj,w_j)) iff wj > (>)9j.

Theorem 15 extends the characterization of truthful anstio the known single-minded case to the exchange
scenario.

Theorem 15 A normalized mechanis®l = (A, p, ¢) satisfying (VP) for combinatorial exchanges is truth-
ful if and only if algorithmA is monotone ang, ¢ are based on critical values.
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Proof: “<": Consider mechanism/ = (A4, p, q), whereA is monotone algorithm ang ¢ the corresponding
critical value payment schemes. Fix sellevith true valuatior; and consider the cases A((v},v_;),w)
andi ¢ A((v},v_;),w), respectively.

If i € A((v},v—;),w), then selleri is paid her critical valu#; and has utilityd; — v} > (>)0. Declaring
v; # v, the utility remains unchanged for any < (<)6; and is0 for anywv; > (>)6;. If i ¢ A((v},v_;),w),
then we have that! > (>)6; and seller’s utility is 0. Declaringu; # v, the utility remains unchanged for
anyv; > (>)6; and isf; — v} < (<)0 for anyv; < (<)6;. Similar arguments apply to buyers, as well.

“=": ConsiderM = (A,p,q) and assume that algorithrh is not monotone w.r.t. to some sellerThus,
there exist valuations! < v2, such that ¢ A((v},v_;),w) andi € A((v?,v_;),w). By the (VP) condition
we know thatp;((vZ,v_;), w) > vZ. Assume that sellei's true valuation is}. It follows that

ul(vzz) = pi((”?vv—i)vw) - Uil > Uiz - Uil >0= ui(vl)>

)
and, thus M is not a truthful mechanism. A similar argument applied i not monotone w.r.t. some buyer.

Finally, assume thatl is monotone, bup is not based on its critical values. Fix again sellgiet the
declaration of all other buyers and sellers be given@gng 6;. First observe thap; < 6, is impossible due

to the (VP) condition, since for declarations betwegrandg; selleri would be selected for the trade but
paid less than her actual declaration. Let ther< p;. If selleri has true valuatiod; < v} < p;, then she
has utility u;(v}) = 0 when truthfully declaring?, but can increase it ta;(v;) = p; — v} > 0 with any
false declarationy; < (<)6;. It follows that M is not a truthful mechanism. Again buyers can be treated

analogously. d

We consider the situation that we have just one seller anduoyper interested in trading a single good. Let
us assume that/ = (A, p, q) is truthful a-approximately cost-efficient mechanism. Let us denotéttief
the seller by, the buyer’s bid byw. By Lemma 12 (Appendix C) defines critical value8,(w) andfy(v),
such that both participants are selected for the trade wieeme< 6;(w) andw > 60,(v). Furthermore, in
this case the critical values are exactly the prices at wthielgood is traded.

Lemma 13 Let A be a-approximately cost-efficient monotone algorithm for coratorial exchanges. Con-
sider a single seller and buyer trading one good as descriftgave and let;(w), 0,(v) be their critical
values defined byl. It holds thatf,(w) > o~ - w andfy(v) < a - v.

Proof: The mechanism always returns either no trade or the tradesttlacts both the seller and buyer
resulting in total costv or v, respectively. Since our mechanismisapproximately cost efficient, we know
that it must choose the second alternative whenever a - v. Rearranging fow andw, respectively, yields
the claim. O

This basically concludes the proof of Theorem 11. Fix anylatationsv andw with w > o?v. Then
Oy(v) — 05(w) < a-v—a~!-w <0, and, thus, the mechanism is not budget-balanced.

20



