
Approximation Techniques for Utilitarian
Mechanism Design

Patrick Briest
∗

Piotr Krysta
†

Berthold Vöcking
‡

ABSTRACT
This paper deals with the design of efficiently computable incentive
compatible, or truthful, mechanisms for combinatorial optimization
problems with multi-parameter agents. We focus on approximation
algorithms for NP-hard mechanism design problems. These al-
gorithms need to satisfy certain monotonicity properties to ensure
truthfulness. Since most of the known approximation techniques
do not fulfill these properties, we study alternative techniques.

Our first contribution is a quite general method to transform a
pseudopolynomial algorithm into a monotone FPTAS. This can be
applied to various problems like, e.g., knapsack, constrained short-
est path, or job scheduling with deadlines. For example, the mono-
tone FPTAS for the knapsack problem gives a very efficient, truth-
ful mechanism for single-minded multi-unit auctions. The best pre-
vious result for such auctions was a 2-approximation. In addition,
we present a monotone PTAS for the generalized assignment prob-
lem with any bounded number of parameters per agent.

The most efficient way to solve packing integer programs (PIPs)
is LP-based randomized rounding, which also is in general not
monotone. We show that primal-dual greedy algorithms achieve al-
most the same approximation ratios for PIPs as randomized round-
ing. The advantage is that these algorithms are inherently mono-
tone. This way, we can significantly improve the approximation
ratios of truthful mechanisms for various fundamental mechanism
design problems like single-minded combinatorial auctions (CAs),
unsplittable flow routing and multicast routing. Our approximation
algorithms can also be used for the winner determination in CAs
with general bidders specifying their bids through an oracle.

∗Dept. of Computer Science, Dortmund University, Germany.
patrick.briest@cs.uni-dortmund.de. Supported by
DFG grant Kr 2332/1-1 within Emmy Noether program.
†Dept. of Computer Science, Dortmund University, Germany.
piotr.krysta@cs.uni-dortmund.de. Supported by DFG
grant Kr 2332/1-1 within the Emmy Noether program.
‡Dept. of Computer Science, RWTH Aachen, Germany.
voecking@cs.rwth-aachen.de. Partially supported
by the EU within the 6th Framework Programme under contract
001907 (DELIS) and by DFG grant Vo 889/1-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05, May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Algorithms, Economics, Theory

Keywords
Mechanism design, approximation algorithms, combinatorial and
multi-unit auctions, primal-dual method, enumeration techniques

1. INTRODUCTION
Mechanism design deals with algorithmic problems in a game

theoretic setting in which the input data is not directly available
to the algorithm. Instead there are several agents each of which
knows only a part of the input. As such agents are capable of ma-
nipulating the algorithm by lying about their parts of the input data,
the algorithm should work in such a way that reporting the true in-
put data is a dominant strategy for all agents. Such algorithms are
called incentive compatible or truthful mechanisms. The study of
efficiently computable truthful mechanism for combinatorial opti-
mization problems was initiated by Nisan and Ronen [24] investi-
gating problems like shortest paths, minimum spanning trees, and
makespan scheduling. Such mechanisms have since been widely
studied for many problems, e.g., [1, 2, 3, 6, 21, 23].

In this paper, we consider the design of efficiently computable
truthful mechanisms for combinatorial optimization problems with
multi-parameter agents. The objective of these mechanisms is to
optimize the social benefit, i.e., to maximize either the sum of the
valuations or to minimize the sum of the costs over all agents. As
many relevant problems in this area are NP-hard, our focus lies on
approximation algorithms. Unfortunately, most of the known tech-
niques for devising approximation algorithms cannot be used for
mechanism design as they do not satisfy the required monotonicity
properties. Even the most basic techniques like the transformation
of a pseudopolynomial time algorithm into a fully polynomial time
approximation scheme (FPTAS), or the distinction of elements ac-
cording to the size of their parameters as often used in the design
of a polynomial time approximation scheme (PTAS) are not mono-
tone. Also more advanced techniques like randomized rounding for
packing integer programs (PIPs) cannot directly be used for mech-
anism design as also they are not monotone.

We study modifications and alternatives to these techniques that
behave in a monotone way with respect to the parameters of the
agents and, hence, are suitable for mechanism design. Before we
present these techniques and their applications, let us introduce the
concepts underlying utilitarian mechanism design in a formal way.

1.1 Technical background
A famous example of problems studied in the context of mech-

anism design is given by combinatorial auctions (CAs), in which a
single auctioneer wants to sell some collection of goods to a set
of potential buyers. To have some unified notation for a wider
class of problems, we will consider a utilitarian mechanism de-
sign (maximization) problem Π defined by a finite set of objects A,
a set of feasible outputs OΠ ⊆ An and a set of n agents. Each
agent declares a set of objects Si ⊆ A and a valuation function
vi : P(A) × An → R by which she values all possible outputs.
Given a vector S = (S1, . . . , Sn) of declarations we are interested
in output o∗ ∈ OΠ maximizing the objective function value, i.e.,
o∗ ∈ argmaxo∈OΠ

Pn
i=1 vi(Si, o). This objective is usually re-

ferred to as social welfare. In combinatorial auctions, an object a
corresponds to a subset of goods to be sold. Each agent declares all
the subsets she is interested in and the prices she would be willing
to pay. An output specifies the sets to be allocated to the agents.

We are going to deal with a limited type of agents called single–
minded that were introduced by Lehmann et al. [21]. Let R� ⊆ A2

be a reflexive and transitive relation on A, such that there exists a
special object ∅ ∈ A with ∅ � a for any a ∈ A to model the situ-
ation in which some agent does not contribute to the solution at all.
For a, b ∈ A we will denote (a, b) ∈ R� by a � b. (For some in-
tuition on � see an example about CAs below.) The single–minded
agent i declares a single object ai rather than a set of objects and
is fully defined by her type (ai, vi), with ai ∈ A and vi > 0. The
valuation function introduced earlier reduces to

vi(ai, o) =



vi, if ai � oi

0, else.

Agent i is called known if object ai is known to the mechanism
[23]. We will cover a more general situation and assume that this
is not the case and, thus, agents are unknown. Intuitively, each ai

corresponds to an object agent i offers to contribute to the solution,
vi describes her valuation of any output o that indeed selects ai. In
CAs, relation R� is set inclusion. An agent interested in set S will
obviously be satisfied by any S′ with S ⊆ S′. Note, that our agents
are not 1–parameter–agents as in [2], but are more general, since
any number of parameters can be hidden within an element a ∈ A,
e.g., for a networking problem each ai might describe an edge in-
cluding its incident vertices, its length and possibly further parame-
ters. For ease of notation we let (a, v) = ((a1, v1), . . . , (an, vn)),
(a−i, v−i) = ((a1, v1), . . . , (ai−1, vi−1), (ai+1, vi+1), . . . , (an,
vn)) and finally ((ai, vi), (a−i, v−i)) = (a, v).

A mechanism M = (A, p) consists of an algorithm A computing
a solution A(a, v) ∈ OΠ and an n–tuple p(a, v) = (p1(a, v), . . . ,
pn(a, v)) ∈ R

n
+ of payments collected from the agents. If ai �

A(a, v)i we say that agent i is selected. By S(A(a, v)) = {i | ai �
A(a, v)i} we refer to the set of selected agents.

Agent i’s type is considered as her private knowledge. Conse-
quently, the types declared by agents may not necessarily match
their true types. To reflect this difference, let (a∗

i , v∗
i) refer to agent

i’s true type and (ai, vi) be the type she declares. But why do
agents lie about their types? Given an output o ∈ OΠ, we say that
agent i has utility ui(a, v) = vi(a

∗
i , o) − pi(a, v). Each agent’s

goal is to maximize her utility. To achieve this, she will try to ma-
nipulate the mechanism by declaring a false type if a gain in utility
can be expected. A mechanism is called truthful, or incentive com-
patible, if no agent i can gain by lying about her type, i.e., given
declarations (a−i, v−i) we have that ui((a

∗
i , v∗

i), (a−i, v−i)) ≥
ui((ai, vi), (a−i, v−i)) for any (ai, vi) 6= (a∗

i , v
∗
i).

A sufficient condition for truthfulness of approximate mecha-
nisms for single-minded CAs was first given by Lehmann et al. [21].

Their results can easily be adopted for our more general scenario.
We say that an algorithm A is monotone with respect to R� if

i ∈ S(A((ai, vi), (a−i, v−i))) ⇒ i ∈ S(A((a′
i, v

′
i), (a−i, v−i)))

for any a′
i � ai and v′

i ≥ vi. Intuitively, we require that a win-
ning declaration (ai, vi) remains winning if an object a′

i, smaller
according to R�, and a higher valuation v′

i are declared. If we fix
declarations (a−i, v−i) and object ai declared by i, we observe that
algorithm A defines a critical value θA

i , i.e., the minimum valuation
vi that makes (ai, vi) winning, i.e., i ∈ S(A((ai, vi), (a−i, v−i)))
for any vi > θA

i and i /∈ S(A((ai, vi), (a−i, v−i))) for any vi <
θA

i . The critical value payment scheme pA associated with algo-
rithm A is then defined by pA

i (a, v) = θA
i , if i ∈ S(A(a, v)), and

pA
i (a, v) = 0, otherwise. The critical value for any fixed agent i

can always be computed, e.g., by performing binary search on inter-
val [0, vi] and repeatedly running algorithm A to check whether i is
selected. Note, that mechanism MA = (A, pA) is normalized, i.e.,
agents that are not selected pay 0. We say that algorithm A is exact,
if for declarations (a, v) we have A(a, v)i = ai or A(a, v)i = ∅

for all i. In analogy to [21] we obtain the following result.

PROPOSITION 1. Let A be a monotone and exact algorithm for
some utilitarian problem Π and single–minded agents. Then mech-
anism MA = (A, pA) is truthful.

1.2 Our contributions
We study algorithmic techniques that help to design monotone

approximation algorithms for utilitarian mechanism design prob-
lems. In order to demonstrate the applicability and strength of
these techniques, we apply them to various well-known optimiza-
tion problems and show that they lead to significant improvements
on the previously known approximation ratios. For formal defini-
tions of the considered optimization problems see Sections 2–7.

Enumerative methods for designing approximation schemes.
The standard way to obtain FPTASs for optimization problems is to
round the coefficients of the objective function in such a way that
the modified optimization problem can be solved efficiently by a
pseudopolynomial algorithm. Unfortunately, this technique is non-
monotone as the degree of accuracy chosen by the rounding pro-
cedure depends on the outcome of the coefficients. Incentive com-
patible mechanisms cannot be based on such a method as agents
could have an incentive to manipulate the rounding procedure in
their favor by lying about their parameters [23].

We present an alternative rounding scheme that leads to mono-
tone FPTASs. In the description of this mechanism, we explicitly
distinguish between the specification of the mechanism and its ef-
ficient implementation. In the specification, we assume that the
mechanism enumerates over “all possible” degrees of accuracy and,
for each of these degrees, computes a solution that is optimal when
all coefficients are rounded with respect to this degree of accuracy.
This exhaustive enumeration method ensures that at least one of the
generated solutions satisfies the approximation ratio. The mecha-
nism selects one of these “good” solutions in a monotone way. Let
us remark that it cannot simply choose the best among the enu-
merated solutions as this would not be monotone. An important
property of the specification of the mechanism is that it is oblivious
to the actual outcome of the coefficients. This way, we can en-
sure monotonicity. An efficient implementation of the mechanism,
however, has to take into account the values of the coefficients. De-
pending on the size of the coefficients, it computes solutions only
with respect to those degrees of accuracy that can potentially be-
come the solution described by the specification.

Based on this enumerative method, we can present a transfor-
mation of a pseudopolynomial time algorithm into a monotone FP-

TAS. For example, we can derive a monotone FPTAS for the knap-
sack problem. This way, we obtain the first incentive compati-
ble FPTAS for multi–unit auctions. The best previous result for
this kind of auctions was a 2–approximation based on the greedy
method for the knapsack problem [23]. Other interesting applica-
tions are incentive compatible mechanisms for reverse auctions, the
constrained shortest path problem and the problem of job schedul-
ing with deadlines. We show that these mechanisms do not only
approximate the overall welfare but they are also frugal in the sense
that the overpayment in comparison to the corresponding VCG
mechanism can be made arbitrarily small. This shows that our
FPTAS based mechanisms truly approximate the VCG mechanism
both with respect to welfare and payment. More details about these
results can be found in Section 2 and 3.

One of the most fundamental techniques in devising PTASs for
assignment problems like the multiple knapsack problem or the
general assignment problem is to partition the set elements into
different groups according to the size of their parameters and to
apply different methods to the elements in different groups. This
explicit grouping of elements according to the size of their parame-
ters is inherently non–monotone. We propose an alternative way to
group elements based on another enumerative method. Using this
approach we can guarantee that the most valuable among the ele-
ments contained in the optimal solution are also contained in one
of the enumerated solutions. This is the key argument which en-
ables us to achieve approximation factors arbitrarily close to one,
i.e., we get a monotone PTAS for the general assignment problem
and, hence, also for the less general multiple knapsack problem,
provided that the number of resources is bounded by a constant.
Thus, we obtain very efficient truthful mechanism for optimization
problems in which agents come with any bounded number of se-
cret parameters. More details about these results can be found in
Section 4.

Primal-dual algorithms for routing problems and combinato-
rial auctions. The unsplittable flow problem is a widely accepted
model for routing in networks. This problem falls into the class of
packing integer programs (PIPs)1. The most general approach to
approximately solve this kind of problems is randomized round-
ing [27, 28, 31]. Unfortunately, also this method is not mono-
tone. We show that primal-dual algorithms can achieve essentially
the same approximation ratios for these problems as randomized
rounding. Our primal–dual algorithms, however, have two advan-
tages: they are significantly faster and they are monotone. Based
on the primal–dual method, we can devise the first combinatorial
approximation algorithms that solve the unsplittable flow problem
in polynomial time within constant factors, provided that the ca-
pacities are sufficiently large. As this algorithm is monotone with
respect to valuations and demands, it also yields the first truthful
mechanism for routing in general networks maximizing the net-
work utilization up to constant factors. The best previously known
mechanisms could only guarantee approximation ratios logarith-
mic in the size of the network [3, 6]. We can obtain this result not
only for pairwise communication, corresponding to the allocation
of paths, but also for communication in groups, corresponding to
the allocation of multicast trees. More details appear in Section 5.

The primal–dual method enables us also to improve on the best

1A PIP, cf. [31], is an integer linear program of a form max{c · x :
Ax ≤ b, x ∈ {0, 1}q}, where p, q ∈ N, c ∈ R

q
≥0, A ∈ [0, 1]p×q ,

b ∈ [1,∞)p. We could also assume that x ∈ Z
q
≥0. A (0,1)-PIP is

a PIP where A ∈ {0, 1}p×q . A column-restricted PIP, cf. [19], is
a PIP in which each column of A may only assume two values, 0
and some other value in (0, 1].

results known for multi–unit combinatorial auctions (CAs). We
first use our full primal–dual machinery to design a primal–dual
approximation algorithm for the winner determination problem in
multi–unit CAs with general bidders given by oracles. This algo-
rithm has best possible approximation ratio which improves on the
best known ratio of combinatorial methods for the problem – see
Section 6 for details. We show that this general algorithm is truthful
for the case of multi–unit CAs with unknown single–minded bid-
ders. Our approximation factor is again constant if the supply of
the goods is high enough, whereas the previous known bounds are
logarithmic [3, 6]. A constant–approximation mechanism based on
LP randomized rounding is known in this setting, but it only works
for known bidders and is truthful only in a probabilistic sense [1].
The primal–dual method has been used in context of mechanism
design to obtain cost-sharing mechanisms for some covering prob-
lems, e.g., [16, 17]. Our results on truthful primal–dual mecha-
nisms for CAs appear in Section 7.

2. MAKING AN FPTAS MONOTONE
A well known technique to construct FPTASs for a variety of

weakly NP-hard utilitarian optimization problems is based upon
the idea of scaling the numbers included in the input and then
applying some optimal algorithm with pseudopolynomial running
time. This approach, however, leads to approximation algorithms
that are not monotone and, thus, not suitable for mechanism design.
We will present a way to construct FPTASs that avoids this problem
and leads to monotone algorithms. We will assume maximization
problems, but our argumentation also applies to minimization.

We start by giving a modified definition of the notion of bitonic-
ity due to Mu’alem and Nisan [23]. Given a function f : A → R,
a monotone algorithm A is called bitonic w.r.t. f if for any agent i:

1. If i ∈ S(A(a, v)) then f(A((a′
i, v

′
i), (a−i, v−i))) ≥

f(A(a, v)) for any a′
i � ai and vi ≤ v′

i.

2. If i /∈ S(A(a, v)) then f(A((a′
i, v

′
i), (a−i, v−i))) ≥

f(A(a, v)) for any ai � a′
i and v′

i ≤ vi.

Now let Π be some utilitarian (maximization) problem as defined
in Section 1.1 and let AΠ be an optimal algorithm for Π with pseu-
dopolynomial running time poly(n, V), where V = maxi vi de-
notes the largest declared valuation. Assume that AΠ is monotone
with respect to R� and bitonic with respect to the social welfare
w(A(a, v)) =

P

i∈S(A(a,v)) vi. (For any optimal algorithm both
assumptions are w.l.o.g. if we can assure that possible ties are bro-
ken according to some fixed ordering based on the sets of selected
agents.) Given declarations (a, v), let Opt(a, v) denote an optimal
solution to Π on this instance and w(Opt(a, v)) the corresponding
social welfare. Assume that V is a lower bound on w(Opt(a, v)).
We use AΠ to define algorithm Ak

Π in Fig. 1. Ak
Π works by scal-

ing agents’ valuations and then applying AΠ to compute an exact
solution on the modified declarations. We define v′′′

i = v′′
i /αk to

invert Ak
Π’s scaling procedure without respect to the applied round-

ing and let wk(Ak
Π(a, v)) =

P

i∈S(Ak
Π

(a,v)) v′′′
i be the computed

solution’s value based on these modified valuations.

LEMMA 1. Let ε > 0, k ∈ N, (a, v) be a vector of declara-
tions and V = maxi vi. Then algorithm Ak

Π has running time
poly(n, ε−1). If 2k ≤ V ≤ 2k+1 then Ak

Π computes a (1 − ε)–
approximation to w(Opt(a, v)). Furthermore, A is monotone and
bitonic with respect to function wk.

PROOF. After line 3, no declaration with value higher than 2k+1

exists. Hence, all declarations are scaled to range {0, . . . , b 2n
ε
c}

Algorithm Ak
Π

1 αk := n
ε·2k ;

2 for i = 1, . . . , n do
3 v′

i := min{vi, 2
k+1};

4 v′′
i := bαk · v′

ic;
5 return AΠ(a, v′′);

Figure 1: The building block for monotone FPTAS.

in line 4 and running time follows from the fact that AΠ is pseu-
dopolynomial algorithm for Π. The approximation ratio can be
shown as for the well known FPTAS for the Knapsack Problem.
Let S denote the solution returned by Ak

Π, Opt an optimal solu-
tion. In line 3 no declarations are changed and, defining v′′′

i as
above, it can be observed that vi − v′′′

i ≤ α−1
k . By 2k ≤ w(Opt)

we have w(Opt) − wk(Opt) ≤ nα−1
k ≤ ε · w(Opt), and finally

w(S) ≥ wk(S) ≥ wk(Opt) ≥ (1 − ε) · w(Opt)

as claimed. Monotonicity and bitonicity with respect to wk are a
direct consequence of the fact that AΠ is monotone and bitonic with
respect to αkwk and that rounding of the declared valuations can
be seen as an application of a monotone function.

The main step towards a monotone FPTAS consists of combin-
ing the algorithms we just defined by a generalization of the toolkit
presented by Mu’alem and Nisan in [23]. Given an indexed set
S = {Ai | 0 ≤ i < `} of algorithms for problem Π and an indexed
set F = {fi | 0 ≤ i < `} of functions with fi : An → R and ` ∈
N∪{∞}, the MAX–operator is defined by MAX(S, F)(a, v) =
argmax{fi(Ai(a, v)) |Ai ∈ S and fi ∈ F}, where possible ties
are broken according to index i. We assume that for given decla-
rations (a, v) the maximum is indeed taken, i.e., there exists index
i, such that fi(Ai(a, v)) = maxj fj(Aj(a, v)). This ensures that
the MAX–operator is well defined for infinite sets of algorithms.

LEMMA 2. Let S and F be defined as above. If each algorithm
Ai is monotone and bitonic with respect to function fi, then algo-
rithm MAX(S, F) is monotone.

PROOF. Assume MAX(S, F) is not monotone. Then there ex-
ists an agent i and declarations (ai, vi), (a′

i, v
′
i) with a′

i � ai and
vi ≤ v′

i, such that (ai, vi) results in being selected and (a′
i, v

′
i)

does not. For any k let Ak(ai, vi) denote the solution returned
by Ak. With agent i declaring (ai, vi), let Aj be the algorithm
computing the solution with maximum value fj(Aj(ai, vi)), for-
mally fj(Aj(ai, vi)) ≥ fk(Ak(ai, vi)) for 0 ≤ k < `. From the
bitonicity of Aj it follows that fj(Aj(a

′
i, v

′
i)) ≥ fj(Aj(ai, vi)).

With agent i declaring (a′
i, v

′
i), let Al be the algorithm resulting

in a solution with maximum value. As before we observe that
fl(Al(a

′
i, v

′
i)) ≥ fk(Ak(a′

i, v
′
i)) for 0 ≤ k < `, fl(Al(ai, vi)) ≥

fl(Al(a
′
i, v

′
i)) and, thus,

fj(Aj(ai, vi)) = fj(Aj(a
′
i, v

′
i))

= fl(Al(ai, vi)) = fl(Al(a
′
i, v

′
i)).

If j = l, then Aj is not monotone, thus j 6= l. We now look at
our tie breaking rule. Since Aj is given preference when agent i
declares (ai, vi), we have j < l. Analogously, declaring (a′

i, v
′
i)

implies l < j, a contradiction.

There are two main differences between the above lemma and the
corresponding result in [23]. First, we cover our generalized defi-
nition of bitonicity and allow application of the MAX–operator to

arbitrary functions rather than just the obtained social welfare. Ac-
tually, we do not even require that the same function is evaluated for
every algorithm. Second, we explicitly allow the application to in-
finite sets of algorithms, which will be required for our FPTAS. We
now let SΠ = {Ak

Π | 0 ≤ k < ∞} and FΠ = {wk | 0 ≤ k < ∞}.

LEMMA 3. For any ε > 0, MAX(SΠ, FΠ) is monotone and
has approximation ratio (1 − ε).

PROOF. Monotonicity follows from Lemmas 1 and 2. For the
approximation, consider declarations (a, v) and let V = maxi vi.
Define l, such that 2l ≤ V < 2l+1. From the proof of Lemma 1 we
know that wl(A

l
Π(a, v)) ≥ (1−ε)·w(Opt(a, v)). Since for any k,

w(Ak
Π(a, v)) ≥ wk(Ak

Π(a, v)), we get MAX(SΠ, FΠ)(a, v) ≥
wl(A

l
Π(a, v)) ≥ (1 − ε) · w(Opt(a, v)).

Algorithm AFPTAS
Π

1 V := maxi vi, Best := (∅, . . . , ∅), best := 0;
2 for j = 0, . . . , log((1 − ε)−1n) + 1 do
3 k := dlog(V)e − j;
4 if wk(Ak

Π(a, v)) > best then
5 Best := Ak

Π(a, v);
6 best := wk(Ak

Π(a, v));
7 return Best;

Figure 2: Our monotone FPTAS.

MAX(SΠ, FΠ) fully specifies the output of our monotone ap-
proximation scheme. Apart from this specification, we now need to
describe some implementation that guarantees polynomial running
time. The design of MAX(SΠ, FΠ) was focused on the require-
ment of maintaining monotonicity. It was crucial to ensure that the
applied rounding steps do not depend on the actual input. For the
remainder of this section, however, these issues can be neglected.
The behavior of any final polynomial time algorithm may well de-
pend on the input in a (seemingly) non–monotone way, as long as
it implements the defined specification. To obtain polynomial run-
ning time we have to limit the number of algorithms Ak

Π that can
potentially maximize fk(Ak

Π(a, v)) by taking a closer look at the
declarations (a, v). Theorem 1 shows that AFPTAS

Π in Figure 2 is
the desired polynomial time implementation.

THEOREM 1. Let Π be a utilitarian mechanism design problem
among single–minded agents, AΠ monotone pseudopolynomial al-
gorithm for Π with running time poly(n, V), where V = maxi vi,
and assume that V ≤ w(Opt(a, v)) for declaration (a, v). Then
AFPTAS

Π is a monotone FPTAS for Π.

PROOF. We show that AFPTAS
Π = MAX(SΠ, FΠ). Let l =

dlog(V)e and consider algorithm Ak
Π for some k > l. By Sk we

refer to the set of agents selected by Ak
Π. It follows that

wk(Ak
Π(a, v)) =

X

i∈Sk

jn · vi

ε · 2k

k

≤
X

i∈Sk

jn · vi

ε · 2l

k

≤
X

i∈Sl

jn · vi

ε · 2l

k

= wl(A
l
Π(a, v)),

since Al
Π computes optimal solutions w.r.t. wl. In case of equal-

ity our tie breaking rule ensures that the solution computed by the
algorithm with smallest index is given preference. Thus, all al-
gorithms Ak

Π, k > l, can be ignored. Now assume that k <
log(V)−log((1−ε)−1n)−1. As a consequence, wk(Ak

Π(a, v)) ≤
n · 2k+1 < (1 − ε) · V ≤ (1 − ε) · w(Opt(a, v)) and, thus, Ak

Π

cannot return the solution with maximum value.

We mention that, with a few small modifications, the described
techniques can also be applied to minimization problems. Let us
now give a list of problems that our technique can be applied to
and briefly compare to previous results about monotone algorithms.
Afterwards, we discuss the consequences for incentive compatible
mechanisms.

Forward multi–unit auctions. A single auctioneer wants to sell
m identical items to a set of n possible buyers (or bidders). Each
single–minded bidder specifies the number of items she is inter-
ested in and a price that she is willing to pay. Elements in our gen-
eral notation correspond to the requested and allocated numbers of
items. Relation R� describes that bidder i requesting qi items will
be satisfied also by any larger number of items. Previously the best
monotone algorithm ([23]) was 2–approximate. We obtain the first
monotone FPTAS for multi–unit auctions among unknown single–
minded bidders with running time O(n3ε−1 log((1 − ε)−1n)).

Reverse multi–unit auctions. Here a single buyer wants to buy m
identical items from a set of n possible suppliers. Non–monotone
approximation algorithms for these auctions and more complex
agents have been presented by Kothari et al. [20]. Their algorithm
is only approximately truthful, and in particular, a possible devia-
tion of a single bidder might be very high. We obtain an FPTAS in
analogy to forward multi–unit auctions with identical running time.

Job scheduling with deadlines (JSD). Each agent i presents a job
with running time ti, deadline di and a price vi she is willing to
pay if her job is processed by deadline di. Element ai is defined as
ai = (ti, di). Output for agent i can be seen as a time slot that is
reserved for processing i’s job. For two elements ai = (ti, di) and
a′

i = (t′i, d
′
i) we have that ai � a′

i if ti ≤ t′i and di ≥ d′
i. A pseu-

dopolynomial algorithm can be obtained by dynamic programming
based on ideas of Sahni [30]. The resulting FPTAS has running
time O(n3ε−1 log((1 − ε)−1n))). As in the case of multi–unit
auctions a minimization variant to which our technique also ap-
plies is known in the literature as scheduling to minimize tardiness.

Constrained shortest path (CSP). Given a graph G = (V, E),
u, w ∈ V , each edge having length l(e) and cost v(e), and a num-
ber L > 0, we want to find a minimum cost path from u to w of
length at most L. An element consists of an edge and its length. For
two elements a1 = (e1, l1) and a2 = (e2, l2) we have that a1 � a2

if e1 = e2 and l1 ≤ l2. FPTASs for this problem, which cannot be
shown to be monotone, were given by Hassin [15] and Phillips [26].
The approach of Phillips can be modified to obtain a pseudopolyno-
mial algorithm we need to apply our technique. We obtain an FP-
TAS with running time O(mn2ε−1 log(n2ε−1) log((1− ε)−1n)),
where |V | = n and |E| = m.

Constrained minimum spanning tree (CMST). Given a graph
G = (V, E), each edge of length l(e) and cost v(e), and a number
L > 0, we want to find a minimum cost spanning tree for G of
length at most L. Again, an element consists of an edge and its
length. Relation R� is defined as before. Marathe et al. [22] give
a pseudopolynomial algorithm for the case of treewidth-bounded
graphs and a constant number of terminals, with running time de-
pending on L. Running this algorithm for all values {0, . . . , |E| ·
vmax} of our objective (cost) while minimizing the other objective
(length) gives the algorithm we need to apply our technique.

Proposition 1 says that algorithms to be embedded in truthful
mechanisms need to be monotone and exact. We have only argued

about the monotonicity so far. We will now consider the exact-
ness. Exactness is not an issue with forward and reverse multi-unit
auctions, CSP, and CMST problems. In these cases exactness of
our FPTAS follows from the obvious exactness of the pseudopoly-
nomial algorithms used. Hence, our FPTASs can be embedded
in truthful mechanisms for the respective problems and unknown
single–minded agents. In the case of JSD, however, the solution
returned by the dynamic programming approach is exact only with
respect to the running times ti but not with respect to deadlines
di, that is, a job might be finished before its deadline. Thus, the
resulting FPTAS ensures truthfulness only if we assume that dead-
lines are known to the mechanism. In many application contexts
the following workaround can solve the problem. For each job, the
mechanism defines an additional release time. A job is returned to
an agent at its release instead of its completion time. By setting the
release time of each served job to its declared deadline, we obtain
truthfulness also with respect to the deadlines.

3. FRUGALITY CONSIDERATIONS
We will now compare the payments of our approximate mech-

anisms from Section 2 to those of a normalized VCG mechanism
for the same problems, which is a well established way of mea-
suring approximate mechanisms’ payment behavior [1, 7, 32]. We
assume minimization problems, but our arguments apply also to
maximization. Since a VCG mechanism is based on an optimal
(monotone) algorithm Opt, we note that VCG payments are in fact
the critical value payment scheme pOpt defined by Opt. We com-
pare the VCG mechanism MOpt = (Opt, pOpt) and a mechanism
MA = (A, pA) based on approximation algorithm A. We fix an
agent i and start by comparing her critical values θOpt

i and θA
i in

algorithms Opt and A. Opt(a, v | ¬i) denotes an optimal solution
assuming agent i must not be selected.

LEMMA 4. Let Opt be an exact algorithm for Π and let A be
monotone approximation algorithm for Π with approximation ratio
(1 + ε). Then the following inequality holds for all declarations ai

and (a−i, v−i):

θOpt
i −

ε

1 + ε
· w(Opt(a, v | ¬i))

≤ θA
i ≤ θOpt

i + ε · w(Opt(a, v | ¬i)).

The idea of the proof is illustrated in Figure 3. Outside the depicted
interval around θOpt

i agent i must be treated in algorithm A as in
Opt in order to obtain the required approximation ratio. Using the
above lemma we are able to derive a bound on the total payment
made by our approximate mechanism, denoted by pA(S(A)), in
comparison to pOpt(S(Opt)), i.e., the total payment of the VCG
mechanism.

THEOREM 2. Let MOpt and MA be the mechanisms defined
above. Fix some arbitrary declaration vector (a, v) and let Opt =
Opt(a, v) and A = A(a, v) denote the computed outputs. Then
the following holds:

1

1 + ε
pOpt(S(Opt)) −

ε

1 + ε
|S(Opt)|w(Opt) ≤ pA(S(A))

≤ (1 + ε) pOpt(S(Opt)) + ε (|S(A)| + 1) w(Opt) .

We note that, since the number of selected agents is obviously
bounded by the total number of agents n and pOpt(Opt) ≥ w(Opt),
we can derive something similar to an approximation ratio for the
payments made by mechanism MA.

1+ε
___ε i))w(Opt(a,v | i))ε w(Opt(a,v |

θOpt
i

,v−iw(Opt((a i ,.),(a−i) | i))

,v−i(1+ε) w(Opt((a i ,.),(a−i)))

,v−iw(Opt((a i ,.),(a−i)))

vi

Figure 3: Range for the critical values of algorithm A.

COROLLARY 1. Using the same notation as above for any truth-
ful (1 + ε)-approximation mechanism MA it holds that

1 −
ε

1 + ε
(n + 2) ≤

pA(S(A))

pOpt(S(Opt))
≤ 1 + ε(n + 2).

Thus, given an FPTAS for any minimization problem from Section
2, it is also FPTAS with respect to the total VCG payment.

The second claim above follows since we can choose the differ-
ence in payment to be any polynomially small fraction of the VCG
payments by choosing ε appropriately. Hence, if A is an FPTAS
with respect to the underlying minimization problem, then A can
also be viewed as an FPTAS with respect to total VCG payment if
combined with the associated critical value payment scheme.

A modified version of these results applies to maximization. The
difference is, however, that we cannot derive an approximation ra-
tio since now payment is not guaranteed to be any polynomial frac-
tion of the obtained social welfare. Hence, the last step of our above
discussion will fail here and we can only bound the difference in
payment by a polynomial fraction of social welfare.

4. A TRUTHFUL PTAS FOR THE GAP
We will show how to construct a monotone PTAS for the gener-

alized assignment problem (GAP) with a constant number of bins
using the technique of partial enumeration. It has been shown by
Chekuri and Khanna [9] that no FPTAS is possible for this prob-
lem even if we do not require monotonicity. For the GAP we are
given a set of n objects with associated values vi and m bins that
objects can be put into, each having w.l.o.g. capacity 1. A ma-
trix P = (pij) describes the space 0 < pij ≤ 1 that object i
occupies if put into bin j. We are interested in a feasible assign-
ment ϕ : [n] → ([m] ∪ {0}), where [n] = {1, . . . , n}, with
P

i:ϕ(i)=j pij ≤ 1 for j ∈ [m], that maximizes
P

i:ϕ(i)6=0 vi. Now
let ϕ be a partial assignment of k ≤ n of the objects and assume
that in bin j a capacity of βj is left unused. We define algorithm
GAPϕ based on this partial assignment. For all objects that are not
yet assigned we round their sizes in bin j to multiplicities of βj/n2,
i.e., pij = dpijn

2/βje · (βj/n2). We then compute an optimal as-
signment of these remaining objects based on their rounded sizes
by using a simple dynamic programming approach.

LEMMA 5. Algorithm GAPϕ is monotone and bitonic with re-
spect to social welfare.

Algorithm Greedy-1:
1 T := ∅; K := {1, . . . , k};
2 forall e ∈ E do ye := 1/be;
3 repeat
4 forall i ∈ K do Si := argmin

˘
P

e∈S ye

˛

˛ S ∈ Si

¯

;

5 j := argmax

(

ci

di

P

e∈Si
ye

˛

˛

˛

˛

˛

i ∈ K

)

;

6 T := T ∪ {Sj}; K := K \ {j};

7 forall e ∈ Sj do ye := ye ·
`

eB−1m
´qSj

(e)/(be−1)
;

8 until
P

e∈E beye ≥ eB−1m or K = ∅;
9 return T .

Figure 4: Truthful mechanism for network (multicast) routing.
e ≈ 2.718 is Euler number.

We let w(GAPϕ(I)) refer to the objective function value obtained
by GAPϕ on instance I and define

GAPk(I) = argmax{w(GAPϕ(I)) |ϕ ∈ Φk},

where Φk is the set of assignments of at most k objects.

THEOREM 3. For any k ∈ N, algorithm GAPk has running
time O(k · mk+1 · n2m+k+1) and we have that w(GAPk(I)) ≥
(1 − m

k+1
) · w(Opt(I)). GAPk defines a truthful PTAS for GAP

with a constant number of bins.

To see this, consider the optimal assignment opt for a given prob-
lem instance and let opt be the partial assignment of the k objects
with largest value that are mapped to any bin by opt. Round all
other objects’ sizes as done by GAPopt. Observe, that in bin j the
total error due to rounding is at most βj/n, i.e., the total rounded
size of objects in bin j is ≤ 1+βj/n. If, however, the total rounded
size of objects is larger than βj , then there is an object with rounded
size at least βj/n in bin j. Removing this object from each bin
gives a feasible assignment w.r.t. rounded sizes and defines a lower
bound on the objective value obtained by GAPopt. Since each of
the (at most m) removed objects decreases the objective value by at
most w(Opt(I))/(k + 1) the approximation ratio follows. Our ar-
gument on the MAX–operator from Section 2 gives monotonicity
of GAPk, and exactness needed for Proposition 1 is obvious.

5. TRUTHFUL MECHANISMS FOR NET-
WORK (MULTICAST) ROUTING

In the unsplittable flow problem (UFP), we are given an undi-
rected graph G = (V, E), |E| = m, |V | = n, with edge capacities
be, e ∈ E, and a set K of k ≥ 1 commodities described by terminal
pairs (si, ti) ∈ V × V and a demand di and a value ci. Like most
of the previous work on UFP, we assume that maxi di ≤ mine be.
W.l.o.g., let di ∈ [0, 1] for each i ∈ K = {1, . . . , k}, and be ≥ 1
for all e ∈ E. Let B = mine{be}. This is a B-bounded UFP [5].
A feasible solution is a subset K ′ ⊆ K and a single flow si-ti-path
for each commodity i ∈ K ′ such that the capacities are not ex-
ceeded. The goal is to maximize the total value of the commodities
in K′. A generalization is allocating bandwidth for multicast com-
munication, where commodities are defined by sets of terminals
that should be connected in form of a multicast tree.

Let Si be the set of all si-ti-paths in G, and S =
Sk

i=1 Si. Given
S ∈ Si, let qS(e) = di if e ∈ S, and qS(e) = 0 otherwise. We
will refer to a path S ∈ S also as a set; note that S ⊆ E. The UFP

problem is modeled as the following integer linear program (ILP):

max
Pk

i=1 ci ·
“

P

S∈Si
xS

”

(1)

s.t.
P

S:S∈S,e∈S qS(e)xS ≤ be ∀e ∈ E (2)
P

S∈Si
xS ≤ 1 ∀i ∈ {1, . . . , k} (3)

xS ∈ {0, 1} ∀S ∈ S. (4)

The linear programming (LP) relaxation is the same linear program
with constraints (4) replaced with xS ≥ 0 for all S ∈ S . The
corresponding dual linear program is then:

min
P

e∈E beye +
Pk

i=1 zi (5)

s.t. zi +
P

e∈S qS(e)ye ≥ ci ∀i ∈ {1, . . . , k} ∀S ∈ Si(6)

zi, ye ≥ 0 ∀i ∈ {1, . . . , k} ∀e ∈ E. (7)

Based on these LPs, we specify in Figure 4 our primal-dual mech-
anism for routing, called Greedy-1. The proof of Theorem 4 below
is in Section 5.1. Greedy-1 ensures feasibility by using ye’s: if an
added set exceeded the capacity be of some e ∈ E, then this would
imply the stopping condition already in the previous iteration.

THEOREM 4. Greedy-1 outputs a feasible solution, and it is a
(eγB

B−1
(m)1/(B−1))-approximation algorithm if there is a polyno-

mial time algorithm that finds a γ-approximate set Si in line 4.

In case of UFP we take γ = 1, as the shortest si-ti-path com-
putation finds set Si in line 4 of Greedy-1. For multicast routing,
this problem corresponds to the NP-hard Steiner tree problem, for
which we can take γ = 1.55 [29]. As our algorithms are monotone
in demands and valuations as required in Proposition 1 (see Lemma
9 and Section 5.1), they can be used as truthful mechanisms in the
form of auctions for allocating network resources. The commodi-
ties correspond to bidders, the terminal nodes of bidders are known,
but the bidders might lie about their demands and valuations. Our
mechanisms can be used to sell bandwidth for unicast communica-
tion in networks. In the multicast routing the set of terminals for
each bidder is known but the demands and valuations are unknown.

COROLLARY 2. Given any ε > 0, B ≥ 1 + ε, Greedy-1 is
a truthful O(m1/(B−1))-approximation mechanism for UFP (uni-
cast routing) as well as for the multicast routing problem, where
the demands and valuations of the bidders are unknown.

Awerbuch et al. [3] gave randomized online truthful mechanisms
for uni- and multicast routing, obtaining an expected O(log(µm))-
approximation if B = Ω(log m), where µ is the ratio of the largest
to smallest valuation. Their approximation holds in fact w.r.t. the
revenue of the auctioneer, but they assume known demands. Bar-
tal et al. [6] give a truthful O(B · (m/θ)1/(B−2))-approximation
mechanism for UFP with unknown valuations and demands, where
θ = mini{di}. Our ratio does not depend on θ. A monotone
version of an algorithm of Azar and Regev [5] is a truthful O(B ·

n
1

B−1)-approximation for UFP. Note, that our ratio is O(1) when
B = Θ(log n), whereas the previous ratios were only O(log n).

If we do not insist on truthfulness, we are able to further im-
prove the approximation ratios in Corollary 2. This requires a slight
change in Greedy-1 and adequate changes in the previous analysis.

THEOREM 5. There is a simple greedy primal-dual O(m
1

bB+1c)-
approximation algorithm for UFP (unicast routing), for the multi-
cast routing, as well as for the column-restricted PIPs.

Randomized rounding achieves a O(d1/(B−1))-approximation
for UFP [8], with d an upper bound on the length of the routing

paths, e.g., d = |V |. LP-based rounding gives an O(m
1

bB+1c)-
approximation for column-restricted PIPs [19]. Theorem 5 gives a
very simple combinatorial algorithm with comparable ratios.

5.1 Analysis
Approximation ratio, correctness. Our analysis is partly inspired
by [12]. Given (not necessarily feasible) dual variables (y, z), and
S ∈ Si ⊆ S , let fy,z(S) = cS/(zi +

P

e∈S qS(e)ye). Let

d1(y) =
P

e∈E beye, d2(z) =
Pk

i=1 zi; d(y, z) = d1(y)+d2(z).
We now specify, for the analysis, how are the dual variables han-

dled. Let (y`−1, z`−1) be the dual variables and p`−1 be the value
of the primal solution at the beginning of `th iteration of Greedy-1.
The initial values are z0

i = 0 for each i ∈ K, y0
e = 1/be for each

e ∈ E, and the primal variables are set to xS = 0 for each S ∈ S .
Let Sj ∈ Sj be the set found in line 5 in `th iteration of Greedy-

1. Line 6 updates primal variables: xSj := xSj + 1, p` :=

p`−1 + cj ; z-variables are modified in line 6: z`
j := z`−1

j + cj .

Each commodity is considered at most once, thus each z`−1
i ∈

{0, ci} in any iteration `. y’s are updated in line 7: y`
e := y`−1

e ·

(eB−1m)
qSj

(e)/(be−1) for each e ∈ Sj ; qSj (e) = dj if e ∈ Sj .
Suppose we are still at iteration ` and set Sj was selected. Let

(y, z) = (y`−1, z`−1) and define

f(y, z) = max{fy,z(S) : S ∈ S and ∃j′ s.t. S ∈ Sj′ , zj′ = 0}.

If we denote f ′(y, z) = fy,z(Sj), then since each Si found in
line 4 was a γ-approximation, we have 1/f(y, z) ≤ 1/f ′(y, z) ≤
γ/f(y, z). Then, the following is a straightforward observation.

LEMMA 6. Let (y, z) be the current dual variables at iteration
` of Greedy-1. Then vector (γ ·f ′(y, z)·y, z) is a feasible fractional
solution to the dual linear program.

For simplicity, d1(y
`), d2(z

`), f(y`, z`) and f ′(y`, z`) are de-
noted by d1(`), d2(`), f(`) and f ′(`), respectively. The algorithm
stops at the first iteration t s.t. d1(t) ≥ eB−1m. If Greedy-1 stops
and

P

e∈E beye ≥ eB−1m is false, then this means that Greedy-1
has chosen at leat one set from each commodity, and thus the solu-
tion found is optimal. From now on, we analyze the approximation
of Greedy-1, when it stops with condition

P

e∈E beye ≥ eB−1m.

LEMMA 7. Let d be the value of an optimal fractional solution
to the dual LP, and T be the solution output by Greedy-1, then

d
P

S∈T cS
≤ eγ

B

B − 1
(m)1/(B−1).

PROOF. For any iteration ` ≥ 1 of Greedy-1, let S` ∈ Si`
be

the set selected in `th iteration, i.e., set Sj ∈ Sj from line 5, i` = j.

Let ∆e = (be − 1)

„

“

eB−1m
”1/(be−1)

− 1

«

,

and ∆ = (B − 1)

„

“

eB−1m
”1/(B−1)

− 1

«

.

For any iteration ` ≥ 1 we have that

d1(`) =
X

e∈E

bey
`
e =

X

e∈E

bey
`−1
e

„

1 +
∆e

be − 1

«qS`
(e)

≤
X

e∈E

bey
`−1
e

„

1 + qS`
(e)

∆e

be − 1

«

,

where the last inequality follows from the fact that function f(x) =
(1+a)x is convex, f(0) = 1, f(1) = 1+a, and so f(x) ≤ 1+ax
for any x ∈ [0, 1]; recall, that by our assumption, qS`

(e) ∈ [0, 1].

We observe, that since B ≥ 1 and m ≥ 1, function g(x) =

x
“

`

eB−1m
´1/x

− 1
”

is non-increasing when x ≥ 0; note, that

limx→0+ g(x) = +∞. This follows by simple calculus, omitted
here. Thus, we have ∆e ≤ ∆, for each e. We can further write

d1(`) ≤
X

e∈E

bey
`−1
e

„

1 +
qS`

(e)∆

be − 1

«

=
X

e∈E

bey
`−1
e +

∆
X

e∈S`

be

be − 1
qS`

(e)y`−1
e ≤

X

e∈E

bey
`−1
e +

∆B

B − 1

X

e∈S`

qS`
(e)y`−1

e

= d1(`−1)+
∆BcS`

(B − 1)f ′(` − 1)
= d1(`−1)+

∆B

B − 1

p` − p`−1

f ′(` − 1)
,

thus

d1(`) ≤ d1(0) +
∆B

B − 1

X̀

j=1

pj − pj−1

f ′(j − 1)
.

By Lemma 6, (γ · f ′(j − 1) · yj−1, zj−1) is a feasible fractional
dual solution. We can therefore write that d ≤ γ ·f ′(j−1) ·d1(j−

1) + d2(j − 1) which then gives f ′(j − 1) ≥ d−d2(j−1)
γd1(j−1)

.

If there exists an iteration, say j, such that d2(j − 1) ≥ d
c

,
where c = γB

B−1
(e(m)1/(B−1) − 1) + 1, then, since B ≥ 1,

γ ≥ 1, c ≤ eγB
B−1

(m)1/(B−1), we already have a eγB
B−1

(m)1/(B−1)-

approximate solution at that iteration. (Note, that eγB
B−1

(m)1/(B−1)

is the final ratio we want to show in Theorem 4.) This can be seen as
follows: d2(j − 1) corresponds to the sum of the values of the sets
selected from each commodity that has been inspected in the first
j − 1 iterations. Otherwise, d2(j − 1) < d

c
for all iterations of the

algorithm, and we have 1/f ′(j−1) ≤ γd1(j−1)
d−d2(j−1)

≤ c
c−1

γd1(j−1)
d

.
We can now continue upper-bounding the value of d1(`):

d1(`) ≤ d1(0) +
∆B

B − 1

X̀

j=1

pj − pj−1

f ′(j − 1)

≤ d1(0) +
ρ

d

X̀

j=1

(pj − pj−1)d1(j − 1),

where ρ = cγ∆B
(c−1)(B−1)

. Let now h(·) be defined by the following
recurrence: h(0) = d1(0), and

h(`) = h(0) +
ρ

d

X̀

j=1

(pj − pj−1)h(j − 1).

Then we can easily observe, that d1(`) ≤ h(`) for all `, and

h(`) = h(` − 1) +
ρ

d
(p` − p`−1)h(` − 1) =

h(` − 1)
“

1 +
ρ

d
(p` − p`−1)

”

≤ h(` − 1) · e
ρ
d
(p`−p`−1),

where we used the fact that 1 + x ≤ ex for x ≥ 0. By using
h(0) = m, the last recurrence implies:

d1(`) ≤ h(`) ≤ meρp`/d,

and since d1(t) ≥ eB−1m, we obtain finally eB−1m ≤ meρpt/d,
and so d

pt
≤ ρ

B−1
= cγ∆B

(c−1)(B−1)2
= c = γB

B−1
(e(m)1/(B−1) −

1) + 1 ≤ eγB
B−1

(m)1/(B−1).

LEMMA 8. The solution T output by Greedy-1 is feasible.

PROOF. Let us consider an execution of Greedy-1, and suppose,
that the current solution is feasible so far. Let S be the first set
that violates the feasibility when added to the current solution in
iteration, say, `. This means there is an element e ∈ S such that
if E is a family of all sets that contain e and have been added to
the solution before set S, then

P

S′∈E qS′(e) ≤ be and qS(e) +
P

S′∈E qS′(e) > be. Since each qS(e) ∈ [0, 1], this means that
P

S′∈E qS′(e) > be − 1. Now, we can lower bound the product of
be and the dual variable for e in the previous iteration ` − 1 by:

be · y`−1
e = be · y

0
e ·

„

1 +
∆e

be − 1

«

P

S′∈E qS′ (e)

=

„

1 +
∆e

be − 1

«

P

S′∈E qS′ (e)

>

„

1 +
∆e

be − 1

«be−1

= eB−1m.

By the stopping condition of Greedy-1, this implies that the previ-
ous iteration `−1 was in fact the last iteration of the algorithm, and
so set S was not added to the solution.

PROOF. (of Theorem 4) Lemma 8 implies feasibility of the out-
put solution. We now argue about the approximation ratio of the
overall algorithm. By Lemma 7, and using the weak LP duality,
the approximation ratio of Greedy-1 is at most: eγB

B−1
(m)1/(B−1).

The number of iterations of our algorithm is at most the number
of commodities, since each commodity is considered at most once.
This finishes the proof of Theorem 4.

Truthfulness. We assume that commodities correspond to bidders,
that the terminal nodes of bidders are known, but the bidders might
lie about their demands and valuations. More formally, given bid-
der i ∈ K, her type is (ai, vi) = (di, ci), and the terminals si, ti

are known to the mechanism. Relation � is defined just as ≤. Sim-
ilarly, in the multicast routing we assume that the set of terminals
for each bidder is known but the demands and valuations are un-
known. We prove below that Greedy-1 is monotone and exact as
desired in Proposition 1.

LEMMA 9. Algorithm Greedy-1 is monotone and exact with re-
spect to any bidder’s i type (di, ci), even if a γ-approximation al-
gorithm is used in line 4.

PROOF. Let us fix a bidder i, and let the bids of the other bid-
ders be fixed. Suppose i bids (di, ci) and was selected to the output
solution, and this happened in iteration t ∈ N. Let now ci increase
to some c′i ≥ ci, and let the demand di decrease to d′

i ≤ di, as
needed for the monotonicity. If commodity i has been allocated
in some iteration t′ < t, then we are done. Otherwise, we will
argue that i will be allocated in iteration t as before. Since i has
not been selected up to iteration t, the same partial solution is com-
puted when i’s type is (d′

i, c
′
i) instead of type (di, ci); same is true

for the γ-approximation algorithm in line 4 in iteration t. Now,
we know that for type (di, ci) bidder i maximized the quantity

cj

dj

P

e∈Sj
ye

in iteration t, where Sj was the γ-approximate solu-

tion found. Thus, bidder i must also maximize
cj

dj

P

e∈Sj
ye

when

having type (d′
i, c

′
i), and so i will still be allocated.

Exactness of Greedy-1 is easy to see, i.e., it just corresponds to
routing exactly the demand of di along a chosen si-ti-path.

6. WINNER DETERMINATION IN CA’S
WITH GENERAL BIDDERS

We will show in this section how to extend our algorithm and
analysis from Section 5 to combinatorial auctions (CA) with gen-
eral bidders. A crucial issue in combinatorial auctions is how the

types (bids) of the agents (bidders) are represented, i.e., the bidding
language. We will allow each bidder to specify her bids through an
oracle, see [6] for a similar approach. Suppose, we have k bid-
ders K = {1, . . . , k}. Let U , |U | = m, be the set of all kinds
of goods for sale, s.t. each e ∈ U is available in be ∈ N units;
B = mine{be}. Let cS > 0 be the valuation of bidder i ∈ K for
S ∈ Si ⊆ 2U , where Si are all sets i may demand; |Si| may be
exponential. Given γ ≥ 1, “prices” ye > 0, for each e ∈ U , and a
bidding threshold zi ≥ 0, a γ-oracle of bidder i either decides that
cS ≤ zi for all S ∈ Si (i.e., i cannot buy anything), or otherwise
the oracle outputs S′ ∈ Si such that

P

e∈S′ ye

cS′ − zi
≤ γ ·

P

e∈S ye

cS − zi
, ∀S ∈ Si with cS > zi.

γ-oracle(i, y, zi) denotes the output of our γ-oracle for bidder i,
where y = (ye : e ∈ U). There are, e.g., simple polynomial time
1-oracles for all bidding languages used by Bartal et al. [6]. For
example, we have used the shortest path 1-oracle for UFP, and the
multicast tree 1.55-oracle in Section 5.
The winner determination problem in CAs (WDCA) is defined as
the following integer linear program (ILP):
max{

Pk
i=1

P

S∈Si
cS · xS|

P

S:S∈S,e∈S xS ≤ be ∀e ∈ U,
P

S∈Si
xS ≤ 1 ∀i ∈ K, xS ∈ {0, 1} ∀S}.

Consider the XOR-bids language [25]. Each bidder can submit
an arbitrary number of pairs (bids) (S, cS), where S ⊆ U , and cS

is the valuation. Implicit here is that the bidder wants to receive at
most one of these bids. If each bidder, e.g., submits a list of XOR-
bids, then there is a trivial linear time 1-oracle. We use the fact
that any complicated set of preferences given through a γ-oracle
is equivalent to a (possibly exponential) number of XOR-bids, see
Nisan [25]. This allows us to simulate the γ-oracle in an ILP where
XOR-bids are represented as constraints

P

S∈Si
xS ≤ 1. Our

primal-dual greedy algorithm for WDCA, called Greedy-2, extends
Greedy-1. It uses our full primal-dual machinery and maintains ex-
plicitly the y and z-dual variables. The main difficulty here comes
from the fact that one commodity (bidder) can have now unbounded
ratio of the largest to smallest valuation on it’s sets. This makes
troubles in defining the z-variables that would make constraint (6)
feasible. To deal with this problem we explicitly put z’s into the
γ-oracle and take a sequence of sets from one commodity whose
values form an arithmetic progression with factor 1 + 2γ and re-
pair this infeasibility afterwards – see Fig. 5. Thus, Greedy-2 may
consider each commodity more than once, but it nevertheless has
time polynomial in m, k, and log(1+2γ)(cmax/cmin) due to han-
dling the z-variables in lines 5,6, and 8. Analysis in Section 5 can
be extended to give the following.

THEOREM 6. Suppose there is a polynomial time γ-oracle for
each bidder. Then Greedy-2 is a simple primal-dual e · (2γ +

1) · (m)1/(B+1)-approximation algorithm for the winner determi-
nation problem in multi-unit combinatorial auctions. This implies
an O(m1/(B+1))-approximation for (0, 1)-PIPs.

We would like to point out that our algorithm from Theorem 6 is
a unified combinatorial greedy algorithm for many specific packing
problems for which specialized combinatorial greedy algorithms
were known – see, e.g., [14, 18].

The problem of approximating WDCA has been widely stud-
ied. Though, it has not been used before, we could use randomized
rounding to obtain an O(γm1/(B+1))-approximation to WDCA.
This, however, requires solving an LP relaxation of the ILP, where
some constraints of the dual LP are represented by γ-oracles. This
could be done by using the Ellipsoid algorithm. Theorem 6 implies

Algorithm Greedy-2:
1 T := ∅; K := {1, . . . , k}; S′ := ∅;
2 forall e ∈ U do ye := 1/be; forall i ∈ K do zi := 0;
3 repeat
4 forall i ∈ K do Si := γ-oracle(i, y, zi);

5 j := argmax

(

cSi − zi
P

e∈Si
ye

˛

˛

˛

˛

˛

i ∈ K

)

;

6 if cSj > zj then
7 T := T ∪ {Sj}; S′ := Sj ;
8 zj := (1 + 2γ) · cSj ;

9 forall e ∈ Sj do ye := ye ·
`

eB+1m
´1/(be+1)

;
10 until

`
P

e∈U beye ≥ eB+1m
´

or
(∀i ∈ K, S ∈ Si : cS ≤ zi);

11 forall i ∈ K do
skip all, but the most valuable, sets from T ∩Si;

12 if
P

T∈T \{S′} cT ≥ cS′ then
return T \{S′} else return {S′}.

Figure 5: Winner determination in multi-unit CAs.

the same approximation by a simple combinatorial greedy algo-
rithm. To our knowledge, the best known combinatorial algorithm
for WDCA follows by the work of Awerbuch et al. [4] and Bartal et
al. [6], and gives an O(B · (m)1/(B−2))-approximation. Theorem
6 gives an O(m1/(B+1))-approximation to (0,1)-PIPs. Chekuri
and Khanna [10] show that the best possible ratio for (0,1)-PIPs is

Ω(m
1

B+1), unless NP= ZPP. Previously, this bound for (0,1)-PIPs
was only matched by using LP-based randomized rounding [27,
31].

The algorithm from Theorem 6 can be extended to winner de-
termination in multi-unit combinatorial auctions with multisets, al-
lowing agents to bid on more than one unit of each good, i.e., a set
is now S = {qS(e) : e ∈ U}, where qS(e) ∈ [0, 1]. We obtain
an approximation ratio of e(2γ + 1)(m)1/B in this case. This also
implies a O(m1/B)-approximation for PIPs, which was achieved
before only by LP-based randomized rounding [27, 31].

THEOREM 7. If each bidder has a poly-time γ-oracle, then there
is a simple primal-dual greedy e ·(2γ +1) ·(m)1/B -approximation
for WDCA with multi-sets. This implies an O(m1/B)-approxima-
tion for PIPs.

7. TRUTHFUL SINGLE-MINDED CA’S
We show here that our algorithms from Section 6 imply truth-

ful mechanisms for multi-unit combinatorial auctions among un-
known single-mined bidders. From an algorithmic point of view,
multi-unit CAs essentially correspond to NP-hard PIPs. The most
general tool for approximating PIPs – randomized rounding as in-
troduced by Raghavan and Thompson [27, 28], see also [31], does
not give a truthful mechanism. To circumvent this problem, Archer
et al. [1] introduce additional dropping probabilities for bidders,
which makes their algorithm monotone in the bids. This approach
yields a truthful mechanism but only in a probabilistic sense and
only for “known bidders”. We use our greedy algorithms for CAs
represented in form of PIPs to obtain truthful mechanisms with ap-
proximation factors close to those of randomized rounding.

We model multi-unit CAs among single-minded bidders as a spe-
cial case of ILP (1)-(4), where E = U . A bid of bidder i ∈ K is
(ai, vi) = (S, cS), S ∈ Si, and cS is the valuation. Assume that

Algorithm Greedy-3:
1 T := ∅;
2 forall e ∈ U do ye := 1/be;
3 repeat

4 S := argmax



cS
P

e∈U qS(e)ye

˛

˛

˛

˛

S ∈ S \ T

ff

;

5 T := T ∪ {S};
6 forall e ∈ S do ye := ye · (e

Bm)qS(e)/be ;
7 until

P

e∈U beye ≥ eBm;
8 return T .

Figure 6: Truthful mechanism for multi-unit CAs among un-
known single-minded bidders. For CAs without multisets:
qS(e) ∈ {0, 1} for each e ∈ U , S ∈ S .

|Si| = 1 for each bidder i ∈ K, and S =
S

i Si. The relation R�

is defined as S � S′ iff S ⊆ S′. The algorithm is now simpler
than Greedy-2, see Fig. 6. We can use our analysis from Section 6
to show that Greedy-3 is a O(m1/B)-approximation to the defined
ILP, which is a (0,1)-PIP. Greedy-3 is exact and monotone for CAs
with unknown single-minded bidders, as needed in Proposition 1
(see the proof of Lemma 9).

THEOREM 8. Algorithm Greedy-3 is a truthful O(m
1
B)-appro-

ximation mechanism for multi-unit combinatorial auctions among
unknown single-minded bidders.

Let us remark that the values of the dual variables ye cannot be
used for the prices offered to the bidders. However, prices fol-
lowing the critical-value payment can be calculated by k calls to
Greedy-3, one for each bidder. Within a call not taking into account
the bid of bidder i we compute in each iteration of Greedy-3 the
minimum bid that would have resulted in bidder i being selected in
line 4. Clearly, bidder i’s critical value is just the minimum among
these values. The best known truthful mechanism for this prob-
lem among unknown single-minded bidders is O(B · m1/(B−2))-
approximate [6]. (It works in fact for more general bidders.)

Our result can be generalized towards CAs with unknown single-
minded bidders with multi-sets. We will model a bid of bidder i as a
pair (S, cS), such that S = {qS(e) : e ∈ U}, where qS(e) ∈ [0, 1]
is a fraction, i.e., the number of units after scaling, of good e the
bidder requires. We model this problem as an ILP similar to ILP
(1)-(4), assuming |Si| = 1 for each i ∈ K. We now use algorithm
Greedy-3 with: line 6 changed into forall e ∈ U do ye := ye ·
(eB−1m)qS(e)/(be−1), and line 7 changed into until

P

e∈U beye ≥

eB−1m. Our previous analysis can be used to obtain the following.

THEOREM 9. Algorithm Greedy-3 modified as above is a truth-

ful O(m
1

B−1)-approximation mechanism for multi-unit combina-
torial auctions with unknown single-minded bidders and multisets.

The best previous truthful mechanism for this problem is due to
Bartal et al. [6], and achieves an O(B · (m/θ)1/(B−2))-approxi-
mation, where θ = min{qS(e) : e ∈ U, S ∈ S, qS(e) > 0}. Our
ratio is independent from θ.

8. REFERENCES
[1] A. Archer, C.H. Papadimitriou, K. Talwar, and É. Tardos. An

approximate truthful mechanism for combinatorial auctions with
single parameter agents. In 14th ACM-SIAM SODA, 2003.

[2] A. Archer and É. Tardos. Truthful mechanisms for one-parameter
agents. In IEEE FOCS, pp. 482–491, 2001.

[3] B. Awerbuch, Y. Azar, A. Meyerson. Reducing truth-telling online
mechanisms to online optimization. In ACM STOC, 503–510, 2003.

[4] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive
online routing. In Proc. 34th IEEE FOCS, pages 32–40, 1993.

[5] Y. Azar and O. Regev. Strongly polynomial algorithms for the
unsplittable flow problem. In 8th IPCO, LNCS, pp. 15-29, 2001.

[6] Y. Bartal, R. Gonen, and N. Nisan. Incentive Compatible Multi-Unit
Combinatorial Auctions. In the Proc. 9th conference on Theoretical
Aspects of Rationality and Knowledge (TARK), USA, June, 2003.

[7] G. Calinescu. Bounding the payment of approximate truthful
mechanisms. In ISAAC, 2004.

[8] A. Chakrabarti, C. Chekuri, A. Kumar and A. Gupta. Approximation
Algorithms for the Unsplittable Flow Problem. In APPROX, 2002.

[9] C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack
Problem. In ACM-SIAM SODA, 2000.

[10] C. Chekuri and S. Khanna. On Multidimensional Packing Problems.
In 10th ACM-SIAM SODA, pp. 185–194, 1999.

[11] E. Clarke. Multipart pricing of public goods. Public Choice, 8,
pp. 17–33, 1971.

[12] N. Garg and J. Könemann. Faster and Simpler Algorithms for
Multicommodity Flow and Other Fractional Packing Problems. In
IEEE FOCS, 1998.

[13] T. Groves. Incentives in teams. Econometrica, 41(4), 617–631, 1973.
[14] M.M. Halldórsson. A survey on independent set approximations. In

Proc. APPROX ’98, Springer LNCS 1444, pp. 1–14, 1998.
[15] R. Hassin. Approximation Schemes for the Restricted Shortest Path

Problem. Math. Oper. Res., 17(1), pp. 36–42, 1992.
[16] K. Jain and V. Vazirani. Applications of Approximation Algorithms

to Cooperative Games. In ACM STOC, 2001.
[17] K. Jain and V. Vazirani. Equitable Cost Allocation via Primal-Dual

Type Algorithms. In ACM STOC, 2002.
[18] J. Kleinberg. Approximation algorithms for disjoint paths problems.

PhD thesis, MIT, 1996.
[19] S.G. Kolliopoulos and C. Stein. Approximating disjoint-path

problems using greedy algorithms and packing integer programs. In
6th IPCO, Springer LNCS, 1412, 1998.

[20] A. Kothari, D. Parkes, and S. Suri. Approximately–strategyproof and
tractable multi–unit auctions. ACM Conference on Electronic
Commerce (EC), 2003.

[21] D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth revelation in
approximately efficient combinatorial auctions. ACM Conference on
Electronic Commerce (EC), 1999.

[22] M.V. Marathe, R. Ravi, R. Sundaram, S.S. Ravi, D.J. Rosenkrantz,
and H.B. Hunt. Bicriteria network design problems. J. of Algorithms,
28(1), 142–171, 1998.

[23] A. Mu’alem and N. Nisan. Truthful Approximation Mechanisms for
Restricted Combinatorial Auctions. In 18th Nat’l AAAI Conf., 2002.

[24] N. Nisan and A. Ronen. Algorithmic Mechanism Design. In ACM
STOC, pp. 129–140, 1999.

[25] N. Nisan. Bidding and Allocation in Combinatorial Auctions. In 2nd
ACM Conference on Electronic Commerce (EC), 2000.

[26] C. A. Phillips. The Network Inhibition Problem. In ACM STOC,
1993.

[27] P. Raghavan. Probabilistic Construction of Deterministic
Algorithms: Approximating Packing Integer Programs. J. Comput.
Syst. Sci., 37(2), 130-143, 1988.

[28] P. Raghavan and C.D. Thompson. Randomized rounding: a
technique for provably good algorithms and algorithmic proofs.
Combinatorica, 7: 365–374, 1987.

[29] G. Robins and A. Zelikovsky. Improved Steiner Tree Approximation
in Graphs. In ACM-SIAM SODA, 770–779, 2000.

[30] S. Sahni. Algorithms for Scheduling Independent Tasks. Journal of
the ACM, 23(1), pp. 116–127, 1976.

[31] A. Srinivasan. Improved Approximation Guarantees for Packing and
Covering Integer Programs, SIAM J. Computing, 29, 648–670, 1999.

[32] K. Talwar. The Price of Truth: Frugality in Truthful Mechanisms. In
STACS, 2003.

[33] W. Vickrey. Counterspeculation, auctions and competitive sealed
tenders. J. Finance, 16, pp. 8–37, 1961.

