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Yet Another Probabilistic Graphical Model

We introduce probabilistic dependency graphs (PDGs), a new class of
graphical models for representing uncertainty.

Why do we need another one?

To resolve inconsistency, we must first model it.
In doing so, we get much more . . .
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Two aspects of Bayesian Networks (BNs)

Qualitative BN, G
an independence relation on variables

X ⊥⊥G Y | Pa(X), for all non-descendents Y of X

(Quantitative) BN, B = (G,p)
a qualitative BN (G) and a cpd pX (X | Pa(X)) for each variable X.

Defines a joint distribution PrB with the independencies ⊥⊥G .
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Modeling Example: Floomps and Guns
Grok thinks it likely (.95) that guns are illegal,
but that floomps (local slang) are legal (.90).

BN

f f[
.90 .10

] g g[
.05 .95

]
F G

The cpds of a PDG are attached to edges, not nodes.
PDGs can incorporate arbitrary new probabilistic information.
PDGs can be inconsistent

I . . . but BNs must resolve inconsistency first,
which may break symmetry and irrecoverably lose information.
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Modeling Example: Floomps and Guns

BN PDG

f f[
.90 .10

] g g[
.05 .95

]
F G

p??
11

F G

f f[
.90 .10

]
?

g g[
.05 .95

]
?

p
p′

The cpds of a PDG are attached to edges, not nodes.
PDGs can incorporate arbitrary new probabilistic information.

Grok learns that Floomps and Guns have the same legal status (92%)

p(G |F ) =

g g[
.92 .08
.08 .92

]
f

f =
(
p′(F |G)

)T

PDGs can be inconsistent

I . . . but BNs must resolve inconsistency first,
which may break symmetry and irrecoverably lose information.
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Modeling Example: Floomps and Guns

BN PDG
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Incorporated:
µ
F

µ
G

p p′

p??
11

F G

µF µG

p
p′

The cpds of a PDG are attached to edges, not nodes.
PDGs can incorporate arbitrary new probabilistic information.
PDGs can be inconsistent,
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Bayesian Networks as PDGs

PS
SH

S
C

11 PS

S

SH

C

p(PS)
p(S |PS)

p(SH |PS)

p(C |S ,SH )

T

Restricted PDG

In contrast with BNs:

edge composition has quantitative meaning, since edges have cpds;
a variable can be the target of more than one cpd;
arbitrary restrictions of PDGs are still PDGs.

I The analogue is false for BNs!
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S
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Must now give distributions on
SH and S , or distinguish them as
“observed” (a conditional BN).
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11 PS
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p(PS)
p(S |PS)
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T

Restricted PDG

A B C

In a qualitative BN: removing data
results in new knowledge: A ⊥⊥ C.

In contrast with BNs:
edge composition has quantitative meaning, since edges have cpds;
a variable can be the target of more than one cpd;
arbitrary restrictions of PDGs are still PDGs.

I The analogue is false for BNs!
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Combining PDGs

C T

SL

q

Grok wants to be supreme leader (SL).
She notices that those who use tanning beds have more power,

. . . but mom says q(C | T ) =

c c[
.15 .85
.02 .98

]
t

t .

Grok worries getting cancer from a tanning bed will make SL
impossible.

+ C T

S

SH

p = C T

SL

qS

SH

p

Arbitrary PDGs may be combined without loss of information
They may have parallel edges (e.g., p, q), which directly conflict.
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Definition (Probabilistic Dependency Graph)

A PDG is a tuple M = (N , E ,V,p, α, β),

where

N is a finite set of nodes (variables)

V gives a set V(X) of possible values for each X;

E is a set of labeled edges {X L−→ Y }, (hyper-edges)

and associated to each X
L−→ Y , there is:

pL a cpd pL(Y | X);
αL ∈ [0,∞) a confidence in the functional dependence X → Y
βL ∈ (0,∞) a confidence in the reliability of pL.
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X∈N

V(X) is the set of possible
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PDG Semantics

{{M}} The set of joint distributions consistent with M;
[[M]]γ A function, scoring distributions by compatibility with M;
[[M]]∗ The “best” joint distribution.
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PDG Semantics
{{M}} The set of joint distributions consistent with M;{

µ ∈ ∆[V(M)] : for all X L−→ Y ∈ E . µ(Y |X) = pL(Y |X)
}

[[M]]γ A loss function (parameterized by γ), scoring a joint
distribution’s compatibility with M;

[[M]]γ(µ) := IncM(µ)︸ ︷︷ ︸(quantitative
term

)+ γ IDefM(µ)︸ ︷︷ ︸(qualitative
term

)

[[M]]∗ The “best” joint distribution.

[[M]]∗ := arg min
µ

[[M]]γ(µ)
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Intuition: beyond stating whether or not µ is consistent
with M, we score µ’s compatibility with M.

Motivating Examples. M := 11 X

q

p

If p =
x1 x2[
.4 .6

]
? = q, then M is consistent, and compatible with

the joint distribution µ(X) = p.

If p =
x1 x2[
.4 .6

]
? and q =

x1 x2[
.5 .5

]
? , then M is not consistent, but

µ =
[
.45 .55

]
matches better than µ =

[
.9 .1

]
.

If p =
[
.4 .6

]
and q =

[
0 1

]
, then M is much more inconsistent

than before, even though {{M}} = ∅ in both cases.
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Definition (Inc)

The incompatibility of a joint distribution µ with M is given by

IncM(µ) :=
∑

X
L−→Y

βL

ID(µY |X ‖ pL)

The inconsistency of M is the smallest possible incompatibility,

Inc(M) := inf
µ∈∆V(M)

IncM(µ).
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Intuition: each edge X L−→ Y indicates that Y is
determined (perhaps noisily) by X alone.

So a µ with uncertainty in Y after X is known
(beyond pure noise) is qualitatively worse.
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Intuition: each edge X L−→ Y indicates that Y is
determined (perhaps noisily) by X alone.

So a µ with uncertainty in Y after X is known
(beyond pure noise) is qualitatively worse.

measured by H(Y | X)

H(µ)
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Definition (IDef)
The information deficit of a distribution µ with respect to M is

IDefM(µ) :=
∑

X
L−→Y

αL Hµ(Y |X)−H(µ).
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Definition (IDef)
The information deficit of a distribution µ with respect to M is
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X
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αL Hµ(Y |X)−H(µ)︸ ︷︷ ︸.
(a) # bits needed to determine all variables
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Definition (IDef)
The M-information deficit of µ:

IDefM(µ)=
︷ ︸︸ ︷∑
X

L−→Y

α
L
Hµ(Y |X)−H(µ)︸ ︷︷ ︸

# bits to separately determine
each target, knowing the source

# bits to determine all vars

Examples
M0 = X Y

IDefM0(µ)=−Hµ(X,Y )
(optimal µ maximizes entropy of X,Y )

M1 = X Y

IDefM1(µ)=−Hµ(X)
(optimal µ maximizes entropy of X)

M2 = X Y

IDefM2(µ)=−Hµ(X) + Hµ(Y | X)
(optimal µ maximizes entropy for X, and

makes Y a function of X)

M3 = X Y

IDefM3(µ)=− Iµ(X;Y )
(opt. µ makes X,Y share information)

Information Diagrams
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ

tradeoff parameter γ ≥ 0
IDefM(µ)

Definition (Inc)

The incompatibility of µ with M:

IncM(µ) :=
∑
X

L−→Y

βL ID(µY |X ‖ p
L
)

The inconsistency of M is

Inc(M) := inf
µ∈∆V(M)

IncM(µ).

Definition (IDef)
The M-information deficit of µ:

IDefM(µ)=
︷ ︸︸ ︷∑
X

L−→Y

α
L
Hµ(Y |X)−H(µ)︸ ︷︷ ︸

# bits to separately determine
each target, knowing the source

# bits to determine all vars
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The Scoring Function
A BN strictly enforces the qualitative picture (large γ)

we are interested in the quantitative limit (small γ)
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PDG Semantics
{{M}} The set of joint distributions consistent with M;{

µ ∈ ∆[V(M)] : for all X L−→ Y ∈ E . µ(Y |X) = pL(Y |X)
}

[[M]]γ A loss function (parameterized by γ), scoring a joint
distribution’s compatibility with M;

[[M]]γ(µ) := IncM(µ)︸ ︷︷ ︸(quantitative
term

)+ γ IDefM(µ)︸ ︷︷ ︸(qualitative
term

)
[[M]]∗γ The “best” joint distribution.

[[M]]∗γ := arg min
µ

[[M]]γ(µ)
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PDG Semantics
{{M}} The set of joint distributions consistent with M;{

µ ∈ ∆[V(M)] : for all X L−→ Y ∈ E . µ(Y |X) = pL(Y |X)
}

[[M]]γ A loss function (parameterized by γ), scoring a joint
distribution’s compatibility with M;

[[M]]γ(µ) := IncM(µ)︸ ︷︷ ︸(quantitative
term

)+ γ IDefM(µ)︸ ︷︷ ︸(qualitative
term

)Proposition (uniqueness for small γ)
1 If 0 < γ ≤ minL βML , then [[M]]∗γ is a singleton.
2 lim

γ→0
[[M]]∗γ exists and is unique.

[[M]]∗ The (unique) “best” joint distribution (in the quantitative limit).

[[M]]∗ := lim
γ→0

arg min
µ

[[M]]γ(µ)
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PDG Semantics

1. {{M}} The set of joint distributions consistent with M;
2. [[M]]γ A loss function (parameterized by γ), scoring a joint

distribution’s compatibility with M;
3. [[M]]∗ The “best” joint distribution.

Proposition (the second semantics extends the first )

{{M}}=
{
µ : [[M]]0(µ)=0

}
.

Proposition (If there there are distributions consistent with M, the
best distribution is one of them. )

[[M]]∗ ∈ [[M]]∗0, so if M is consistent, then [[M]]∗ ∈ {{M}}.
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Capturing Bayesian Networks

Let MB,β be the PDG corresponding to the BN B, with weights β.

Theorem (BNs are PDGs)

If B is a BN and PrB is the distribution it specifies, then for all γ > 0
and all vectors β,

[[MB,β]]∗γ = {PrB}, and thus [[MB,β]]∗ = PrB .

{{M}} ⊥⊥B
space of distributions
consistent with MB
(which minimize Inc)

space of distributions
with independencies of B

(which can be shown
to minimize IDef)PrB
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Factor Graphs

A B

C D

E
φ1 φ2

φ3

φ4

Definition
A factor graph Φ is a set of random variables X = {Xi} and factors
{φJ : V(XJ)→ R≥0}J∈J , where XJ ⊆ X ; define

PrΦ(~x) = 1
ZΦ

∏
J∈J

φJ(~xJ),

where ZΦ is the normalization constant.
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PDGs as Factor Graphs

11

PS
S

SH

C

T

 

PS
S

SH

C

T

The cpds of a PDG are essentially factors. Are the semantics different?
Not for γ = 1.

Theorem
[[N]]∗1 = PrΦN

for all unweighted PDGs N.

Theorem

For all unweighted PDGs N and non-negative vectors v over the edges of
N, and all γ > 0, we have that [[(N,v, γv)]]γ = γGFE (ΦN,v);
consequently, [[(N,v, γv)]]∗γ = {Pr(ΦN,v)}.
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Why not use factor graphs, then?

M :=

11

X

pq

X
=: Φ

If p = q, then [[M]]∗ = p = q. . .
. . . but PrΦ ∝ p2

More generally, (positive) factors individually have no meaning,
a factor graph can fail to normalize, in which case it has no global
semantics either.
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Factor Graphs as PDGs
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Theorem
PrΦ = [[NΦ]]∗1 for all factor graphs Φ.

Theorem
For all weighted factor graphs Ψ = (Φ, θ) and all γ > 0, we have that
GFEΨ = 1/γ[[MΨ,γ ]]γ + C for some constant C, so PrΨ is the unique
element of [[MΨ,γ ]]∗γ.
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Letting xw and yw denote the values of X and Y , respectively, in
w ∈ V(M), we have

[[M]](µ) = E
w∼µ

{ ∑
X

L−→Y

[log likelihood / cross entropy︷ ︸︸ ︷
βL log 1

pL(yw|xw) +

(αLγ − βL) log 1
µ(yw|xw)︸ ︷︷ ︸

local regularization (βL > αLγ)

]
− γ log 1

µ(w)︸ ︷︷ ︸
global regularization

}
.
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Inference and Inconsistency: a Glimpse.

Conditioning as inconsistency resolution.
To condition on Y =y, in M, simply add the edge 11 δy−→ Y to get MY=y.
Then [[MY=y]]∗ = [[M]]∗ | (Y =y).

Querying Pr(Y | X) in a PDG M.

We can add X
p−→ Y to M with a cpt p, to get M+p.

The choice of cpd p that minimizes the inconsistency of M+p

(which is strongly convex and smooth in p) is [[M]]∗(Y |X),
so oracle access to inconsistency yields fast inference by gradient
descent.

This is closely related to
standard variational techniques! 11 Z X

p(Z) p(X |Z)
decoderprior

q(Z |X)
encoder
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Summary

PDGs. . .
capture inconsistency, including conflicting information from
multiple sources with varying reliability.

are especially modular; to combine info from two sources, simply
take a PDG union. This incorporates new data (edge cpds) and
concepts (nodes) without affecting previous information.
cleanly separate quantitative info (the cpds) from qualitative info
(the edges), with variable confidence in both (the weights β and α).
This is captured by terms Inc and IDef in our scoring function.
have (several) natural semantics; one of them allows us to pick out
a unique distribution. Using this distrbution, PDGs can capture
BNs and factor graphs.

But there is much more to be done!
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Hyper-graphs? Or merely graphs?

C T

SL

SL

C T

C×T

This widget expands state space, but graphs are simpler.
There is a natural correspondence

joint distributions �
expanded joint distributions

satisfying coherence constraints

(working directly with hypergraphs is also possible)

main definition
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Illustrations of IDef

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

back to semantics
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