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Denotational Semantics:
the algebra of program composition

I regular expressions
I lambda calculus

Operational Semantics:
the coalgebra of program execution

I automata
I turing machines
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A category C is:
I collection of objects ob C ;
I collection of morphisms {X a−→ Y } between them

I that can be composed associatively,
I including identities idX : X → X

Extreme examples:
I monoid = category with exactly one object;
I pre-order = category with at most one arrow between objects

Everyone’s favorite category: Set, sets and functions.
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Initiality / Finality

Initial Object 0

Final Object 1

0 X∃!

X 1∃!

I in Set: ∅ {∗}
I in (S,≤): minS maxS
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Quick Review of Functors & Natural Transformations

Let C andD be categories.

I A functor F : C → D maps

X ∈ ob C to F (X) ∈ obD
f : X → Y to Ff : FX → FY

I a natural transformation λ : F ⇒ G is a family of maps

{λX : F (X) → G(X)}X∈ob C

that commutes with morphisms of C

for all f : X → Y ,
FX FY

GX GY

λX

Ff

λY

Gf
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Algebra

Given a functor F : C → C ,
An F -algebra (X, α) consists of
I a carrier objectX ∈ ob C
I a structure map α : X → FX

Example. Take F = (−)2 + 1.
A monoid (M,�, e) is a setM together with maps

� : M×M → M, e : {∗} → M (& associative, unital)

or altogether, an F -algebra(
M, 〈�, e〉 : (M×M t {∗}) → M

)



Example. a Kleene Algebra is a set S with operations

+, · : S × S → S, 0, 1 : 1 → S (satisfying some eqns)

Zipped together, they form aΣ-algebra(
S, [+, ·, ∗, 0, 1] : S2+ S2+ S + 1 + 1 → S

)
for the signatureΣ of semiring operations

ΣX ::= x1 + x2 | x1 · x2 | x∗ | 0 | 1
= X2 + X2 +X + 1 + 1

I The initialΣ-algebra is the set of regular expressions.
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Quick review of Monads

Amonad T = (T, η, µ) is
I a functor T : C → C ,
I multiplication µ : T 2 ⇒ T

that is associative

a; ((b; c); d) ∈ T 3X T 2X 3 a; (b; c); d

a; (b; c; d) ∈ T 2X TX 3 a; b; c; d

µTX

TµX µX

µX

I a unit η : 1 ⇒ T

(a) ∈ TX T 2X 3 ((a))

TX 3 (a)

T (ηX)

µX



Algebras of a Monad

I Like before, (X, α : TX → X).

I But also
X TX

X

ηX

α

TX TTX

X TX

α µX

Tα

α

I For example:

R List[R]

R

[−]

sum

List[R] List[List[R]]

R List[R]

sum flatten

map(sum)

sum

I Eilenberg-Moore category CT of algebras:

objects:

morphisms:

(X,α)

X

TX

α

(X,α) (Y, β)

X Y

TX TY

α

f

β

Tf
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The TermMonad

Can compose programs

X + ΣX + ΣΣX + · · · =: Σ∗X

x x; y x; (y ⊕ z)

Σ∗ is the free monad generated by the signatureΣ.
More generally, terms TX := Σ∗X�∼= might satisfy equations.

There is an initial
T -algebra Σ-algebra

T 20 T0∼=
µ0

ΣΣ∗0 Σ∗0
∼=

Lemma (Lambek 1968)
The structure map of an initial algebra is an isomorphism.
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I Interpret programs P as mathematical objects 〈|P |〉 (e.g., numbers)

I That is, specifyΣ-algebra (D, 〈| · |〉).

I Use of initiality corresponds to induction
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Coalgebra

Given a functorG : C → C ,
AG-coalgebra (X, γ) consists of
I X ∈ ob C
I γ : X → GX

Example. Again, takeG = (−)2 + 1.
AG-coalgebra is a (possibly infinite or recursive) set of binary trees
closed under subtree

γ(t) =

{
∗ if t is a leaf

(t1, t2) otherwise



Automata as Coalgebras

A DFA (Q,A, δ, ε), where

δ : Q → QA, ε : 2Q

is a coalgebra (Q, 〈δ, ε〉 : Q → G(Q)) for the signature
G(X) = XA × 2 of finite automata.

The final coalgebra (2A∗
, 〈ε, δ〉) is the semantic Brzozowski derivative

ε : 2A
∗ → 2 δa : 2A

∗ → 2A
∗

ε(B) = 1["" ∈ B] δa(B) = {x | ax ∈ B}
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Category of Coalgebras

G-CoAlg

objects: G-coalgebras morphisms (X, γ) → (Y, η)

X

GX

γ

X Y

GX GY

f

γ η

Gγ

Final coalgebra exists ifG has finite branching

Z

GZ

final coalgebra∼=
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Operational Semantics

G-Colgebra (S, J · K) with program states S ,

I Behavior from finality, called coinduction J · K@
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Distributive Laws

I F,G : C → C
I distributive law = natural transformation λ : FG ⇒ GF .

I when F is a monad, strengthen to “EM law”, by requiring

F 2G FGF GF 2

FG GF

Fλ

µG

λF

λ

Gµ

G

FG GF

ηG Gη

λ
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Bialgebra

Given a distributive law λ : FG ⇒ GF ,
a λ-bialgebra is a triple (X,α, γ) such that
I (X,α) is an F -algebra
I (X, γ) is aG-coalgebra
I λ glues them together, by

FX X GX

FGX GFX

α

F (γ)

γ

λX

G(α)



Allows for Liftings

I α becomes aG-coalgebra
morphism

FX G(FX)

X G(X)

λX◦Fγ

α Gα

γ

I γ becomes an F -algebra
morphism

X F (X)

GX F (GX)

α

γ Fγ

Gα◦λX



Compatible Operational / Denotational Models

ΣT0 ΣD

T0 D

S Z

GS GZ

initial algebra ∼= 〈|·|〉
〈|·|〉#

J·K
J·K@

final coalgebra∼=
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Compatible Operational / Denotational Models

ΣT0 ΣD ΣZ

T0 D

S Z

GT0 GS GZ

initial algebra ∼= 〈|·|〉

ΣJ·K@

〈|·|〉#

λ◦T (!)

J·K
J·K@

final coalgebra∼=

G〈|·|〉#



Section 1

Examples



A Clunky Illustration

Seq Composition FX := X ×X; GX := OI IO Behavior

Prog× Prog Prog OI

OI ×OI OI

;

eval×eval

eval

λ=?

I IfO has a monoid operation :: , can use

λ(f, g) := input 7→ f(input) :: g(input)



Producer / Consumer

I Suppose F,G = (−)×A

I A bialgebra

A×X X X ×A
put get

I is a queue if λ = id
I is a stack if λ = swap
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KA Bialgebras

The bialgebraic relationship between finite automata and regular
expressions:
I A := a finite alphabet,
I F (X) = RExpAX , regular expresssions over elements ofX and

letters of the alphabet;
I G(X) = 2× (−)A, the signature of finite automata
I Distributive law: (a slight generalization of) the syntactic Brzowski

Derivative



KA Bialgebras

The (Syntactic) Brzozowski Derivative:
a coalgebra RExpA → 2× (RExpA)

A

E : RExpA → 2 Da : RExpA → RExpA, for a ∈ A

E(e1 + e2) = E(e1) + E(e2) Da(e1 + e2) = Da(e1) +Da(e2)

E(e1e2) = E(e1) · E(e2) Da(e1e2) = Da(e1)e2 + E(e1)Da(e2)

E(e∗) = 1 Da(e
∗) = Da(e)e

∗

E(1) = 1 Da(1) = Da(0) = 0

E(0) = E(a) = 0, for a ∈ A Da(b) = 1[b = a], for a, b ∈ A

I L(e) = {language represented by e} is the unique coalgebra
morphism L : RExpA → 2A

∗

I used in Brzozowski’s proof of Kleene’s theorem
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E(1) = 1 Da(1) = Da(0) = 0

E(0) = E(a) = 0, for a ∈ A Da(b) = 1[b = a], for a, b ∈ A

I L(e) = {language represented by e} is the unique coalgebra
morphism L : RExpA → 2A

∗

I used in Brzozowski’s proof of Kleene’s theorem



KA Bialgebras

Brz : RExpA(2× (−)A) → 2× (RExpA(−))A

usually presented in curried form

E : RExpA(2× (−)A) → 2 Da : RExpA(2× (−)A) → RExpA(−), a ∈ A

E(e1 + e2) = E(e1) + E(e2) Da(e1 + e2) = Da(e1) +Da(e2)

E(e1e2) = E(e1)E(e2) Da(e1e2) = Da(e1)e2 + E(e1)Da(e2)

E(e∗) = 1 Da(e
∗) = Da(e)e

∗

E(0) = E(a) = 0 Dp(0) = Da(1) = 0

E(1) = 1 Da(b) = [a = b]

E(i, f) = i Da(i, f) = f(a)



KA Bialgebras

The bialgebra diagram becomes:

RExpAX X 2×XA

RExpA(2×XA) 2× (RExpAX)A

α

RExpA〈ε,δ〉

〈ε,δ〉

BrzX

id2×(α)A

Intuitively:
I given a way 〈ε, δ〉 of taking derivatives onX ,
I can replace each x with (ε(x), δ(x)) derivative, so that
I BrzX combines them with the traditional syntactic derivative of the

expression



KA Bialgebras

Two Extremal Brz-bialgebras
I initial bialgebra,X = RegA=RExpA∅, regular subsets ofA∗

RExpARegA RegA 2× (RegA)
A

RExpA(2× (RegA)
A) 2× (RExpARegA)

A

α

RExpA〈ε,δ〉

〈ε,δ〉

BrzRegA

id2×(α)A

I final bialgebra,X = A∗

RExpA(A∗) X 2× (A∗)A

RExpA(2× (A∗)A) 2× (RExpAA∗)A

α

RExpA〈ε,δ〉

〈ε,δ〉

BrzA∗

id2×(α)A



KA Bialgebras

Explicitly, the final Brz-bialgebra

RExpA(A∗) X 2× (A∗)Aα 〈ε,δ〉

is given by

the semantic Brzozowski derivative

ε : 2A
∗ → 2 δa : 2A

∗ → 2A
∗

ε(S) = 1["" ∈ S] δa(S) = {x | ax ∈ S}

and α is as one would expect:

α(e1 + e2) = α(e1) ∪ α(e2) α(0) = ∅
α(e1e2) = {xy | x ∈ α(e1), y ∈ α(e2)} α(1) = {ε}

α(e∗) =
⋃
n

α(en) α(a) = {a}
α(S) = S
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Many Variants

I KAT— combine with boolean tests
I NetKAT— NetKAT expressions, and NetKAT packet forwarding

model
I GKAT— guarded expressions and fully deterministic automata
I KAT + B! — extend with mutable variables

In each case, there is a different syntax F , different behaviorG, but
always a distributive law (closely related to the Brzozowski Derivative)
relating them bialgebraically.
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Section 2

Some Bialgebra Facts



Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

Kl Laws λ : FT ⇒ TF EM Laws λ : TG ⇒ GT

m m

Kl(T ) Kl(T )

C CF

EM(T ) EM(T )

C CG
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For an EM law ρ : TG ⇒ GT ,

CoAlg(EM(G)) ∼= BiAlg(TG ρ⇒ GT ) ∼= EM(Coalg(T ))



Theorem (Jacobs)
If there is an initial object 0 and a finalG-coalgebra,
I Algebraic and coalgebraic semantics coincide

ΣT0 ΣZ

T0

Z

GT0 GS GZ

initial algebra ∼=
〈|·|〉#

λ◦T (!)

final coalgebra∼=

G〈|·|〉#

I Bisimilarity / observational equivalence on T0 is a congruence
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Denotational Semantics:
the algebra of program composition

I regular expressions
I lambda calculus

Operational Semantics:
the coalgebra of program execution

I automata
I turing machines
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