A Tutorial on Bialgebras

based on work by Turi, Plotkin, Jacobs, and Kozen

Cornell University

November 16, 2022

Denotational Semantics: Operational Semantics:
the algebra of program composition the coalgebra of program execution

Denotational Semantics: Operational Semantics:
the algebra of program composition the coalgebra of program execution

P regular expressions » automata

Denotational Semantics: Operational Semantics:
the algebra of program composition the coalgebra of program execution

P regular expressions » automata
P lambda calculus » turing machines

A category C is:
» collection of objects ob C;
> collection of morphisms { X = Y} between them

> that can be composed associatively,
» including identitiesidx : X — X

A category C is:
» collection of objects ob C;
> collection of morphisms { X = Y} between them

> that can be composed associatively,
» including identitiesidx : X — X

Extreme examples:

» monoid = category with exactly one object;
P pre-order = category with at most one arrow between objects

Everyone’s favorite category: Set, sets and functions.

Initiality / Finality

Initial Object 0

Initiality / Finality

Initial Object 0 Final Object 1

Initiality / Finality

Initial Object 0 Final Object 1

» in Set: 0 {*}

Initiality / Finality

Initial Object 0 Final Object 1
0-2, x X2
> in Set: 0 {*}

» in(S,<): minS max S

Quick Review of Functors & Natural Transformations

Let C and D be categories.

Quick Review of Functors & Natural Transformations

Let C and D be categories.
> Afunctor F' : C — D maps

X eobC to F(X)eobD
Fi XY to Ff:FX = FY

Quick Review of Functors & Natural Transformations
Let C and D be categories.
» Afunctor F' : C — D maps

X eobC to F(X)€obD
f: X—>Y to Ff:FX —>FY
x 2z 5 Fx 0o pz
f\Y g Fi* py " Fg

Quick Review of Functors & Natural Transformations

Let C and D be categories.
> Afunctor F' : C — D maps

X eobC to F(X)eobD
Fi XY to Ff:FX = FY

» a natural transformation A : ' = G is a family of maps
{)\X : F(X) — G(X)}XEObC

that commutes with morphisms of C

Quick Review of Functors & Natural Transformations

Let C and D be categories.
> Afunctor F' : C — D maps

X eobC to F(X)eobD
Fi XY to Ff:FX = FY

» a natural transformation A : ' = G is a family of maps
{)\X : F(X) — G(X)}XEObC

that commutes with morphisms of C

rx -, py
forall f: X =Y,)\XJ, PY

Algebra

Givenafunctor F' : C — C,
An F-algebra (X, «) consists of

> a carrier object X € ob(C
> astructuremap o : X — FX

Example. Take F' = (—)? + 1.
A monoid (M, ®, e) is a set M together with maps

O:MxM—M, e:{x}—>M (& associative, unital)

or altogether, an F'-algebra

(M, (©,€) : (MxM U{x}) —>M>

Example. a Kleene Algebra is a set .S with operations
+,-:85x85—=8, 0,1:1— 5 (satisfying some egns)
Zipped together, they form a X-algebra
(S, [+, 50,1 : S2+ 2+ S+1+1 — S)
for the signature 3. of semiring operations

EX:::.%1+.T2’$1‘562| a;*|0|1
= X* + X° +X+1+1

Example. a Kleene Algebra is a set .S with operations
+,-:85x85—=8, 0,1:1— 5 (satisfyingsome eqns)
Zipped together, they form a X-algebra
(S, [+, 50,1 : S2+ 2+ S+1+1 — S)
for the signature 3. of semiring operations
XX =z +xe|xr 20| ¥ |01

= X* + X° +X+1+1

P The initial 2-algebra is the set of regular expressions.

Quick review of Monads

Amonad T = (T,n, u) is
» afunctorT :C — C,

» multiplication i : T2 = T
that is associative

T3x MX, T2)

[]

T2x M, X

> aunitny:1=1T

T(nx) T2X

\ [

TX

TX

Algebras of a Monad

» Like before, (X, a : TX — X).

Algebras of a Monad

» Like before, (X, a : TX — X).

» Butalso . -
X 257X TX +2 TTX

N)l(| [z

X ——TX

Algebras of a Monad

» Like before, (X, a : TX — X).

» Butalso ; .
X 257X TX +2 TTX

N

X ——TX

» For example:

R L iR List[R] <P st List[R]]

\ l [som e

R+ ListR]

Algebras of a Monad

» Like before, (X, a : TX — X).

» Butalso . -
X 257X TX +2 TTX

N)l(| [z

X +———TX
> Eilenberg-Moore category CT of algebras:

objects:
(X7 Oé)
X
|

TX

Algebras of a Monad

» Like before, (X, a : TX — X).

» Butalso . -
X 257X TX +2 TTX

N)l(| [z

X ——TX

> Eilenberg-Moore category CT of algebras:

objects: morphisms:

(X,) (X,) (Y, 8)
X x—f vy
| | s

rf
TX TX ——TY

The Term Monad

Can compose programs

The Term Monad

Can compose programs

X

xr

The Term Monad

Can compose programs

X + XX

x T3y

The Term Monad

Can compose programs
X + ¥X + YXYX
5 x;y x; (y® z)

The Term Monad

Can compose programs

X + XX + > X 4+ o

x Ty z; (y ® 2)

>* is the free monad generated by the signature X..

XX

The Term Monad

Can compose programs

X 4+ XX +

a T,y

>* is the free monad generated by the signature X..

More generally, terms T'X :=

X

might satisfy equations.

XX

The Term Monad

Can compose programs
X + XX + ¥¥X + - = Y'X
7 W) xz; (y ® 2)

>* is the free monad generated by the signature X..

More generally, terms T'X := E*X/g might satisfy equations.
There is an initial
T-algebra Y-algebra

720 25 T0 TI*0 —= T*0

The Term Monad

Can compose programs
X 4+ XX 4+ X¥X qF oo = XX
7 W) xz; (y ® 2)

>* is the free monad generated by the signature X..

X s

More generally, terms T'X := might satisfy equations.

There is an initial

T-algebra Y-algebra
720 25 T0 TI*0 —= T*0

Lemma (Lambek 1968)
The structure map of an initial algebra is an isomorphism.

Denotational Semantics

» Interpret programs P as mathematical objects { P) (e.g, numbers)

Denotational Semantics

» Interpret programs P as mathematical objects { P) (e.g, numbers)
» That is, specify X-algebra (D, { -)).

Denotational Semantics

» Interpret programs P as mathematical objects { P) (e.g, numbers)
» That is, specify Y-algebra (D, { -)).

D

|

D

Denotational Semantics

» Interpret programs P as mathematical objects {P) (e.g, numbers)
» That is, specify X-algebra (D, { -)).

230 XD

initial algebral% J’G)

3*0 D

Denotational Semantics

» Interpret programs P as mathematical objects {P) (e.g, numbers)
» That is, specify X-algebra (D, { -)).

)3) Ju| JE— D))

initial algebral% J’G)

D) === > D
)

Denotational Semantics

» Interpret programs P as mathematical objects {P) (e.g, numbers)
» That is, specify X-algebra (D, { -)).

)3) Ju| JE— D))

initial algebral% J’G)
>*0 f””—#—» D

P Use of initiality corresponds to induction

Coalgebra

Given a functor G : C — C,
A G-coalgebra (X, ~y) consists of

> X ecobC
> v: X -5 GX

Example. Again, take G = (—)? + 1.
A G-coalgebra is a (possibly infinite or recursive) set of binary trees
closed under subtree

* if t is a leaf
v(t) = {

(t1,t2) otherwise

Automata as Coalgebras

ADFA (Q, A, J, €), where
§:Q — Q8 €:29

is a coalgebra (@, (0, ¢€) : Q@ — G(Q)) for the signature
G(X) = X% x 2 of finite automata.

Automata as Coalgebras

ADFA (Q, A, J, €), where
§:Q — Q8 €:29

is a coalgebra (@, (0, ¢€) : Q@ — G(Q)) for the signature
G(X) = X% x 2 of finite automata.

The final coalgebra (247, (¢, §)) is the semantic Brzozowski derivative

e: 28 59 5y 1 287 5 oA
e(B) = 1["" € B] 0qa(B) ={z | ax € B}

Category of Coalgebras

G-CoAlg

objects: G-coalgebras

X

il

GX

morphisms (X, v) —

(Y;n)

Category of Coalgebras

G-CoAlg
objects: G-coalgebras morphisms (X, v) — (Y, n)
X x 1y
il I
Gy
GX GX — GY

Final coalgebra exists if G has finite branching

Z
%\Lﬁnal coalgebra

GZ

Operational Semantics

G-Colgebra (S, [-]) with program states S,

Operational Semantics

G-Colgebra (S, [-]) with program states .S,

S
11
GS

Operational Semantics

G-Colgebra (S, [-]) with program states .S,

Z

S
[-]]J’ %\Lﬁnal coalgebra
GS GZ

Operational Semantics

G-Colgebra (S, [-]) with program states .S,

g -1z

[-]}l %J’ﬁnal coalgebra

Operational Semantics

G-Colgebra (S, [-]) with program states .S,

g -1z

[-]}l %J’ﬁnal coalgebra

Operational Semantics

G-Colgebra (S, [-]) with program states .S,

1@
sz
[ﬂl %J’ﬁnal coalgebra
GGl ===== »GZ

» Behavior from finality, called coinduction [- |®

Distributive Laws

> FG:C—C
» distributive law = natural transformation \ : F'G = GF.

Distributive Laws

>» FG:C—>C
» distributive law = natural transformation \ : F'G = GF.

» when F'is a monad, strengthen to “EM law”, by requiring

F) AF

F2G FGF GF?
nG Gn
pG l lGu
FG GF FG - GF

Bialgebra

Given a distributive law A\ : FF'G = GF,
a \-bialgebra is a triple (X, «, y) such that

» (X, «a)isan F-algebra
» (X,7)isa G-coalgebra
>) glues them together, by

FX —* s x T ,GX

Fe)| [

FGX — 2\ GFX

Allows for Liftings

> o becomes a (G-coalgebra
morphism

FX XM G(mx)

[

X —— G(X)

P ~ becomes an F'-algebra
morphism

X —2 5 F(X)

e

GX oo F(GX)

Compatible Operational / Denotational Models

70 ----- » 2D
initial algebral% lq)
0 -5 p
S - > Z

[H]l 1® %lﬁnal coalgebra

Compatible Operational / Denotational Models

70 ----- » 2D
initial algebral% lq)
0 -5 p
S - > Z

[H]l 1® %lﬁnal coalgebra

Compatible Operational / Denotational Models

270 ----- » D DIVA
initial algebral% lq)
7o -, p
L" ——————— > Z

[H]l o %lﬁnalcoalgebra

Compatible Operational / Denotational Models

»T0 - » 2D »Z
initial algebral% lq)
7o -5 p
L" ——————— > Z

GTO GS - » GZ

Examples

P -

it
v

Q>

A Clunky llustration

Seq Composition FX := X x X; GX :=O! 10 Behavior

Prog x Prog —— Prog %Ly Of
evalxevall H

o' x 0! A= » Of

» If O has a monoid operation ::, can use

A(f,g) := input — f(input) :: g(input)

Producer / Consumer

» Suppose F,G = (—) x A

Producer / Consumer

» Suppose F,G = (—) x A
> A bialgebra

Ax X P x 5 x A

Producer / Consumer

» Suppose F,G = (—) x A
> A bialgebra

put get

Ax X X X xA

Ax getl Tput x A

A><(X><A)’\4:?>(A><X)><A

Producer / Consumer

» Suppose F,G = (—) x A

> A bialgebra
Axx Mo x 2 xx4
AXgetl TputXA
Ax (X xA) =t (AxX)x A

> isaqueueif A\ =id

Producer / Consumer

» Suppose F,G = (—) x A

> A bialgebra
Axx Mo x 2 xx4
AXgetl TputXA
Ax (X xA) =t (AxX)x A

> isaqueueif A\ =id
P isastackif A = swap

KA Bialgebras

The bialgebraic relationship between finite automata and regular
expressions:

> A :=afinite alphabet,

» F(X) = RExp, X, regular expresssions over elements of X and
letters of the alphabet;

> G(X) =2 x (—)" the signature of finite automata

> Distributive law: (a slight generalization of) the syntactic Brzowski
Derivative

KA Bialgebras

KA Bialgebras

The (Syntactic) Brzozowski Derivative:
a coalgebra RExp, — 2 x (RExp,)"

KA Bialgebras

The (Syntactic) Brzozowski Derivative:
a coalgebra RExp, — 2 x (RExp,)"

E :RExpy — 2 D, : RExpy — RExp,, fora € A

KA Bialgebras

The (Syntactic) Brzozowski Derivative:
a coalgebra RExp, — 2 x (RExp,)"

E :RExpy — 2 D, : RExpy — RExp,, fora € A

KA Bialgebras

The (Syntactic) Brzozowski Derivative:
a coalgebra RExp, — 2 x (RExp,)"

E :RExpy — 2 D, : RExpy — RExp,, fora € A
E(er +e2) = E(e1) + E(e2) Dg(er +e2) = Dy(er) + Da(e2)
E(e1es) = E(eq) - E(eg) D, (e1e2) = Dy(e1)ea + E(e1)Da(e2)
Ee") =1 D,(e*) = D,(e)e*

B(1) =1 Do(1) = D (0) = 0
E(0)=E(a)=0, fora € A D,(b) =1[b=aq], fora,be A

» L(e) = {language represented by e} is the unique coalgebra
morphism L : RExp, — 28

P used in Brzozowski’s proof of Kleene’s theorem

KA Bialgebras

Brz : RExp, (2 x (—)*) — 2 x (RExp, (—))*

usually presented in curried form

E :RExp, (2 x (—)) — 2 Dy : RExp, (2 x (—)*) = RExp,(—), a € A

E(e; +e3) = E(e1) + E(ea) Dg(er +ea) = Dy(er) + Dy(e2)
E(ejes) = E(er)E(e2) D,(e1e2) = Dy(er)es + E(e1)Dg(ea
E(e*)=1 D,(e*) = D,(e)e*
E(0)=E(a)=0 D,(0) = Dy(1) =0

E(1)=1 D,(b) =[a=1]

E(7f =1 Da(”‘/:f -. ((J)

KA Bialgebras

The bialgebra diagram becomes:

(€:6)

RExp, X = X 2 x XA
REpr\<6,§)l ing(a)AT
RExp, (2 X XA) — 5 2 % (RExp, X)*

Ber

Intuitively:

> given a way (e, d) of taking derivatives on X,

» can replace each z with (e(x), d(x)) derivative, so that

P Brzx combines them with the traditional syntactic derivative of the
expression

KA Bialgebras

Two Extremal Brz-bialgebras
> initial bialgebra, X = Reg, =RExp, (), regular subsets of A*

1
RExp,Reg, . Reg, 0, 9% (Reg,)
REpr<e,§>l Tidg x ()t

RExp, (2 X (Regy)"))A

2 x (RExp,Reg,

BI'ZRegA

> final bialgebra, X = A*
RExp, (A%) — 2 X — 9% 95 (a%)h
REpr(eﬁ)l Tidzx(oz)A

REXPA(Q X (A*)A> T 2 X (REXPAIQ*)A

KA Bialgebras

Explicitly, the final Brz-bialgebra

(,6)

RExp, (A*) —— X 2 x (A*)A

is given by

KA Bialgebras

Explicitly, the final Brz-bialgebra

RExp, (A*) —2s X 9%, 95 (A%)A

is given by the semantic Brzozowski derivative

e: 28 52 0 1 28 — 2
e(S)=1[""e 5] 34(S) ={x | ax € S}

KA Bialgebras

Explicitly, the final Brz-bialgebra

RExp, (A*) —2s X 9%, 95 (A%)A

is given by the semantic Brzozowski derivative

e: 28 52 0 1 28 — 2
e(S)=1[""e 5] 34(S) ={x | ax € S}

and « is as one would expect:

ale; + e2) = aler) Uales) a(0)=10

alerez) ={zy |z € aler), y € afe2)} a(l) ={e}

ae’) = Jale) a(a) = {a}
" a(S)==5

Many Variants

» KAT — combine with boolean tests

P NetKAT — NetKAT expressions, and NetKAT packet forwarding
model

P> GKAT — guarded expressions and fully deterministic automata

> KAT + B! — extend with mutable variables

Many Variants

» KAT — combine with boolean tests

P NetKAT — NetKAT expressions, and NetKAT packet forwarding
model

P> GKAT — guarded expressions and fully deterministic automata

> KAT + B! — extend with mutable variables

In each case, there is a different syntax F’, different behavior G, but
always a distributive law (closely related to the Brzozowski Derivative)
relating them bialgebraically.

Some Bialgebra Facts

«O> «Fr «Er «

[Tl
v

Q>

Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

KlLaws A : FT = TF EMLaws \ : TG = GT

Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

KlLaws A : FT = TF EMLaws \ : TG = GT

i)
EM(T) —— EM(T)

| |

c—% ¢

Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

KlLaws A : FT = TF EMLaws \ : TG = GT
3 (3
K(T) —— KI(T) EM(T) —— EM(T)
c—Lr ¢ c—% ¢

ForanEMlaw p : TG = GT,

CoAlg(EM(G)) = BiAlg(TG £ GT) = EM(Coalg(T))

Theorem (Jacobs)
If there is an initial object 0 and a final GG-coalgebra,

P Algebraic and coalgebraic semantics coincide

Theorem (Jacobs)
If there is an initial object 0 and a final G-coalgebra,

P Algebraic and coalgebraic semantics coincide

ST0 ----- » $D %7
initial aIgebral% lq)
05 p

GT0 GS ----- y GZ

Theorem (Jacobs)
If there is an initial object 0 and a final GG-coalgebra,

P Algebraic and coalgebraic semantics coincide

7 | — y N7
initial algebral%
TO
~— \\\\\Q'D#
Je T~-~o
[s

%J’ﬁnal coalgebra

GT0 GS ----- s GZ

Theorem (Jacobs)
If there is an initial object 0 and a final GG-coalgebra,

P Algebraic and coalgebraic semantics coincide

3| S y $7
initial algebral%
T0 __
Ty
[1e \\\\} e
glﬁnal coalgebra
GTO0 GS ----- y GZ

P Bisimilarity / observational equivalence on T'0 is a congruence

Denotational Semantics: Operational Semantics:
the algebra of program composition the coalgebra of program execution

P regular expressions » automata
P lambda calculus » turing machines

	Examples
	KA Bialgebras

	Some Bialgebra Facts

