A Tutorial on Bialgebras

based on work by Turi, Plotkin, Jacobs, and Kozen

Cornell University

November 16, 2022

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

the algebra of program composition

Operational Semantics:

the coalgebra of program execution

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

the algebra of program composition

regular expressions

Operational Semantics:

the coalgebra of program execution

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

automata

the algebra of program composition

- regular expressions
- lambda calculus

Operational Semantics:

the coalgebra of program execution

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

- automata
- turing machines

A category \mathcal{C} is:

- ► collection of objects ob *C*;
- collection of morphisms $\{X \xrightarrow{a} Y\}$ between them

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

- that can be composed associatively,
- including identities $id_X : X \to X$

A category \mathcal{C} is:

- collection of objects ob C;
- collection of morphisms $\{X \xrightarrow{a} Y\}$ between them
 - that can be composed associatively,
 - including identities $id_X : X \to X$

Extreme examples:

- monoid = category with exactly one object;
- pre-order = category with at most one arrow between objects

Everyone's favorite category: Set, sets and functions.

Initial Object 0 $0 \xrightarrow{\exists!} X$

Initial Object 0 $0 \xrightarrow{\exists !} X$ Final Object 1 $X \xrightarrow{\exists !} 1$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let \mathcal{C} and \mathcal{D} be categories.

Let ${\mathcal C}$ and ${\mathcal D}$ be categories.

► A functor $F : C \to D$ maps

$$\begin{array}{ll} X \in \operatorname{ob} \mathcal{C} & \text{to} & F(X) \in \operatorname{ob} \mathcal{D} \\ f: X \to Y & \text{to} & Ff: FX \to FY \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathcal{C} and \mathcal{D} be categories.

▶ A functor $F : C \to D$ maps

$$\begin{array}{cccc} X \in \operatorname{ob} \mathcal{C} & \operatorname{to} & F(X) \in \operatorname{ob} \mathcal{D} \\ f: X \to Y & \operatorname{to} & Ff: FX \to FY \\ X \xrightarrow[f]{g \circ f} & Z & \xrightarrow{F} & FX \xrightarrow{F(g \circ f)} FZ \\ \xrightarrow{g \circ f} & Y \xrightarrow{g} & \xrightarrow{F} & FX \xrightarrow{F(g \circ f)} FZ \\ \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Let ${\mathcal C}$ and ${\mathcal D}$ be categories.

• A functor $F : \mathcal{C} \to \mathcal{D}$ maps

$$\begin{array}{lll} X \in \operatorname{ob} \mathcal{C} & \text{to} & F(X) \in \operatorname{ob} \mathcal{D} \\ f: X \to Y & \text{to} & Ff: FX \to FY \end{array}$$

▶ a natural transformation $\lambda : F \Rightarrow G$ is a family of maps

 $\{\lambda_X: F(X) \to G(X)\}_{X \in ob \mathcal{C}}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

that commutes with morphisms of $\mathcal C$

Let ${\mathcal C}$ and ${\mathcal D}$ be categories.

• A functor $F : \mathcal{C} \to \mathcal{D}$ maps

$$\begin{array}{lll} X \in \operatorname{ob} \mathcal{C} & \text{to} & F(X) \in \operatorname{ob} \mathcal{D} \\ f: X \to Y & \text{to} & Ff: FX \to FY \end{array}$$

▶ a natural transformation $\lambda : F \Rightarrow G$ is a family of maps

 $\{\lambda_X: F(X) \to G(X)\}_{X \in \operatorname{ob} \mathcal{C}}$

that commutes with morphisms of $\mathcal C$

for all
$$f: X \to Y$$
, $\begin{array}{c} FX \xrightarrow{Ff} FY \\ \lambda_X \downarrow & \downarrow \lambda_Y \\ GX \xrightarrow{Gf} GY \end{array}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Algebra

Given a functor $F: \mathcal{C} \to \mathcal{C}$, An F-algebra (X, α) consists of

- ▶ a carrier object $X \in \operatorname{ob} \mathcal{C}$
- a structure map $\alpha: X \to FX$

Example. Take $F = (-)^2 + 1$. A monoid (M, \odot, e) is a set M together with maps

 $\odot: M \times M \to M, \quad e: \{*\} \to M$ (& associative, unital)

or altogether, an F-algebra

$$\left(M, \left< \odot, e \right> : (M \times M \sqcup \{*\}) \to M\right)$$

ション・山 ・山・・山・・山・ シック

Example. a Kleene Algebra is a set S with operations

 $+, \cdot : S \times S \rightarrow S, \quad 0, 1 : 1 \rightarrow S \quad (\text{satisfying some eqns})$

Zipped together, they form a Σ -algebra

$$\left(S, \; [+, \cdot, \;^*, 0, 1]: S^2 + S^2 + S + 1 + 1 \; \rightarrow \; S\right)$$

for the signature Σ of semiring operations

$$\Sigma X ::= x_1 + x_2 | x_1 \cdot x_2 | x^* | 0 | 1$$

= X² + X² + X + 1 + 1

Example. a Kleene Algebra is a set S with operations

 $+, \cdot : S \times S \rightarrow S, \quad 0, 1 : 1 \rightarrow S \quad (\text{satisfying some eqns})$

Zipped together, they form a Σ -algebra

$$\left(S, \; [+, \cdot, \;^*, 0, 1]: S^2 + S^2 + S + 1 + 1 \; \to \; S\right)$$

for the signature Σ of semiring operations

$$\Sigma X ::= x_1 + x_2 | x_1 \cdot x_2 | x^* | 0 | 1$$

= X² + X² + X + 1 + 1

ション・山 ・山・・山・・山・ シック

• The initial Σ -algebra is the set of regular expressions.

Quick review of Monads

- A monad $T=(T,\eta,\mu)$ is
 - a functor $T : \mathcal{C} \to \mathcal{C}$,
 - multiplication $\mu : T^2 \Rightarrow T$ that is associative

$$\begin{array}{rcl} a; ((b;c);d) \in & T^{3}X \xrightarrow{\mu_{TX}} T^{2}X & \ni a; (b;c); d \\ & & & \downarrow^{T\mu_{X}} & \mu_{X} \downarrow \\ a; (b;c;d) \in & T^{2}X \xrightarrow{\mu_{X}} TX & \ni a; b; c; d \end{array}$$

• a unit $\eta : 1 \Rightarrow T$

• Like before, $(X, \alpha : TX \to X)$.

- Like before, $(X, \alpha : TX \to X)$.
- But also

• Like before, $(X, \alpha : TX \to X)$.

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Eilenberg-Moore category C^T of algebras:

objects: (X, α) X $\alpha \downarrow$ TX

• Like before, $(X, \alpha : TX \to X)$.

• Eilenberg-Moore category C^T of algebras:

Can compose programs

Can compose programs

X

x

Can compose programs

X	+	ΣX

x x;y

Can compose programs

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ のへぐ

Can compose programs

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ □ のへ⊙

 Σ^* is the free monad generated by the signature $\Sigma.$

Can compose programs

ション・山 ・山・・山・・山・ シック

 Σ^* is the free monad generated by the signature Σ . More generally, terms $TX := \frac{\Sigma^* X}{\cong}$ might satisfy equations.

Can compose programs

 Σ^* is the free monad generated by the signature $\Sigma.$ More generally, terms $TX:=\overset{\Sigma^*X}{\simeq}$ might satisfy equations.

There is an initial

ション・山 ・山・・山・・山・ シック

Can compose programs

 Σ^* is the free monad generated by the signature $\Sigma.$ More generally, terms $TX:=\overset{\Sigma^*X}{\simeq}$ might satisfy equations.

There is an initial

Lemma (Lambek 1968)

The structure map of an initial algebra is an isomorphism.

• Interpret programs P as mathematical objects $\langle P \rangle$ (e.g., numbers)

• Interpret programs P as mathematical objects $\langle P \rangle$ (e.g., numbers)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ のへぐ

• That is, specify Σ -algebra $(D, \langle \cdot \rangle)$.

- Interpret programs P as mathematical objects $\langle P \rangle$ (e.g., numbers)
- That is, specify Σ -algebra $(D, \langle \cdot \rangle)$.

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Interpret programs P as mathematical objects $\langle P \rangle$ (e.g., numbers)
- That is, specify Σ -algebra $(D, \langle \cdot \rangle)$.

$$\begin{array}{ccc} \Sigma\Sigma^*0 & \Sigma D\\ \text{initial algebra} & & & & \downarrow \langle \cdot \rangle\\ \Sigma^*0 & D \end{array}$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ □ のへ⊙
Denotational Semantics

Interpret programs P as mathematical objects ⟨P⟩ (e.g., numbers)
That is, specify Σ-algebra (D, (·)).

$$\begin{array}{ccc} \Sigma\Sigma^*0 & \dashrightarrow & \Sigma D\\ \text{initial algebra} & & & & \downarrow \langle \cdot \rangle\\ \Sigma^*0 & \dashrightarrow & D \end{array}$$

Denotational Semantics

Interpret programs P as mathematical objects ⟨P⟩ (e.g., numbers)
That is, specify Σ-algebra (D, (⋅)).

$$\begin{array}{ccc} \Sigma\Sigma^*0 & \dashrightarrow & \Sigma D\\ \text{initial algebra} & & & & \downarrow \langle \cdot \rangle\\ & & & & & & \downarrow \langle \cdot \rangle\\ & & & & \Sigma^*0 & \dashrightarrow & D \end{array}$$

イロト 不同 トイヨト イヨト ヨー ろくぐ

Use of initiality corresponds to induction

Coalgebra

Given a functor $G : \mathcal{C} \to \mathcal{C}$, A *G*-coalgebra (X, γ) consists of $\blacktriangleright X \in \operatorname{ob} \mathcal{C}$

$$\blacktriangleright \ \gamma: X \to GX$$

Example. Again, take $G = (-)^2 + 1$.

A $G\mbox{-}{\rm coalgebra}$ is a (possibly infinite or recursive) set of binary trees closed under subtree

$$\gamma(t) = egin{cases} * & ext{if } t ext{ is a leaf} \ (t_1,t_2) & ext{otherwise} \end{cases}$$

うして 山田 マイボット ボット ショー ろくの

Automata as Coalgebras

A DFA $(Q,\mathbb{A},\delta,\epsilon)$, where

$$\delta: Q \to Q^{\mathbb{A}}, \qquad \epsilon: 2^{Q}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a coalgebra $(Q, \langle \delta, \epsilon \rangle : Q \to G(Q))$ for the signature $G(X) = X^{\mathbb{A}} \times 2$ of finite automata.

Automata as Coalgebras

A DFA $(Q,\mathbb{A},\delta,\epsilon)$, where

$$\delta: Q \to Q^{\mathbb{A}}, \qquad \epsilon: 2^Q$$

is a coalgebra $(Q, \langle \delta, \epsilon \rangle : Q \to G(Q))$ for the signature $G(X) = X^{\mathbb{A}} \times 2$ of finite automata.

The **final** coalgebra $(2^{\mathbb{A}^*}, \langle \epsilon, \delta \rangle)$ is the semantic Brzozowski derivative

$$\begin{aligned} \epsilon : 2^{\mathbb{A}^*} &\to 2 & \delta_a : 2^{\mathbb{A}^*} \to 2^{\mathbb{A}^*} \\ \epsilon(B) &= \mathbb{1}["" \in B] & \delta_a(B) &= \{x \mid ax \in B\} \end{aligned}$$

・ロト・西ト・ヨト・ヨト・日下 のへの

Category of Coalgebras

 $G\text{-}\mathbf{CoAlg}$

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Category of Coalgebras

 $G\text{-}\mathbf{CoAlg}$

Final coalgebra exists if G has finite branching

$$\begin{array}{c} Z \\ \cong & & \downarrow \\ \text{final coalgebra} \\ GZ \end{array}$$

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $G\text{-}\mathsf{Colgebra}\,(S,[\![\,\cdot\,]\!])$ with program states S ,

 $G\text{-}\mathsf{Colgebra}\,(S,[\![\,\cdot\,]\!])$ with program states S ,

 $S \\ \llbracket \cdot \rrbracket \\ GS$

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

$$\begin{array}{ccc} S & \xrightarrow{\llbracket \cdot \rrbracket^{\textcircled{0}}} Z \\ \llbracket \cdot \rrbracket & \rightleftharpoons & \end{split} \\ final \ coalgebra \\ GS & \xrightarrow{} & GZ \end{array}$$

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

$$\begin{array}{ccc} S & \xrightarrow{\llbracket \cdot \rrbracket^{\textcircled{0}}} Z \\ \llbracket \cdot \rrbracket & \rightleftharpoons & \end{split} \\ final \ coalgebra \\ GS & \xrightarrow{} & GZ \end{array}$$

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

$$\begin{array}{ccc} S & \xrightarrow{\llbracket \cdot \rrbracket^{\textcircled{0}}} Z \\ \llbracket \cdot \rrbracket & \rightleftharpoons & \end{split} \\ final \ coalgebra \\ GS & \xrightarrow{} & GZ \end{array}$$

イロト 不同 トイヨト イヨト ヨー ろくぐ

• Behavior from finality, called coinduction $[\![\cdot]\!]^{@}$

Distributive Laws

$\blacktriangleright F, G: \mathcal{C} \to \mathcal{C}$

• distributive law = natural transformation $\lambda : FG \Rightarrow GF$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Distributive Laws

- $\blacktriangleright F, G: \mathcal{C} \to \mathcal{C}$
- distributive law = natural transformation $\lambda : FG \Rightarrow GF$.
- when F is a monad, strengthen to "EM law", by requiring

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

Bialgebra

Given a distributive law $\lambda: FG \Rightarrow GF$,

- a λ -bialgebra is a triple (X,α,γ) such that
 - \blacktriangleright (X, α) is an *F*-algebra
 - \blacktriangleright (X, γ) is a G-coalgebra
 - \blacktriangleright λ glues them together, by

$$\begin{array}{ccc} FX & \xrightarrow{\alpha} & X & \xrightarrow{\gamma} & GX \\ F(\gamma) \downarrow & & \uparrow^{G(\alpha)} \\ FGX & \xrightarrow{\lambda_X} & & GFX \end{array}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Allows for Liftings

 α becomes a G-coalgebra morphism

 γ becomes an F-algebra morphism

$$\begin{array}{ccc} S & & & & Z \\ \hline \vdots & & & \downarrow \\ \hline \vdots & & & \downarrow \\ GS & & & & GZ \end{array} \rightarrow \begin{array}{c} S & & & \\ GZ & & & & \\ \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\begin{array}{c} \Sigma T0 & \dashrightarrow \Sigma D \\ \text{initial algebra} \middle| \cong & & \downarrow \langle \cdot \rangle \\ T0 & \dashrightarrow D \\ & & \parallel \\ & S & \dashrightarrow Z \\ & & \| \cdot \| & \cong \downarrow \text{final coalgebra} \\ & & GS & \dashrightarrow GZ \end{array}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

・ロト・西・・ヨ・・日・・日・

Examples

▲□▶ 4 □▶ 4 □▶ 4 □▶ 4 □▶ 4 □▶

A Clunky Illustration

Seq Composition $FX := X \times X; \quad GX := O^I$ IO Behavior

If O has a monoid operation :: , can use

 $\lambda(f,g) := \mathsf{input} \mapsto f(\mathsf{input}) :: g(\mathsf{input})$

(日)

(日)
(日)

(日)
(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(

Suppose $F, G = (-) \times A$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQの

Suppose
$$F, G = (-) \times A$$

A bialgebra

$$A \times X \xrightarrow{\mathsf{put}} X \xrightarrow{\mathsf{get}} X \times A$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Suppose
$$F, G = (-) \times A$$

A bialgebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Suppose
$$F, G = (-) \times A$$

A bialgebra

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Suppose
$$F, G = (-) \times A$$

A bialgebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The bialgebraic relationship between finite automata and regular expressions:

- A := a finite alphabet,
- ► $F(X) = \operatorname{RExp}_{\mathbb{A}} X$, regular expressions over elements of X and letters of the alphabet;
- ▶ $G(X) = 2 \times (-)^{\mathbb{A}}$, the signature of finite automata
- Distributive law: (a slight generalization of) the syntactic Brzowski Derivative

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The (Syntactic) Brzozowski Derivative: a coalgebra $\mathsf{RExp}_{\mathbb{A}} \to 2 \times (\mathsf{RExp}_{\mathbb{A}})^{\mathbb{A}}$

The (Syntactic) Brzozowski Derivative: a coalgebra $\operatorname{RExp}_{\mathbb{A}} \to 2 \times (\operatorname{RExp}_{\mathbb{A}})^{\mathbb{A}}$

 $E: \mathsf{RExp}_{\mathbb{A}} \to 2 \qquad D_a: \mathsf{RExp}_{\mathbb{A}} \to \mathsf{RExp}_{\mathbb{A}}, \text{ for } a \in \mathbb{A}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

$$\begin{split} & \text{The (Syntactic) Brzozowski Derivative:} \\ & \text{a coalgebra } \operatorname{RExp}_{\mathbb{A}} \to 2 \times (\operatorname{RExp}_{\mathbb{A}})^{\mathbb{A}} \\ & E: \operatorname{RExp}_{\mathbb{A}} \to 2 \qquad D_a: \operatorname{RExp}_{\mathbb{A}} \to \operatorname{RExp}_{\mathbb{A}}, \text{ for } a \in \mathbb{A} \\ & E(e_1 + e_2) = E(e_1) + E(e_2) \qquad D_a(e_1 + e_2) = D_a(e_1) + D_a(e_2) \\ & E(e_1e_2) = E(e_1) \cdot E(e_2) \qquad D_a(e_1e_2) = D_a(e_1)e_2 + E(e_1)D_a(e_2) \\ & E(e^*) = 1 \qquad D_a(e^*) = D_a(e)e^* \\ & E(1) = 1 \qquad D_a(1) = D_a(0) = 0 \\ & E(0) = E(a) = 0, \text{ for } a \in \mathbb{A} \qquad D_a(b) = \mathbb{1}[b = a], \text{ for } a, b \in \mathbb{A} \end{split}$$

(日)((1))

$$\begin{split} & \text{The (Syntactic) Brzozowski Derivative:} \\ & \text{a coalgebra } \operatorname{RExp}_{\mathbb{A}} \to 2 \times (\operatorname{RExp}_{\mathbb{A}})^{\mathbb{A}} \\ & E: \operatorname{RExp}_{\mathbb{A}} \to 2 \qquad D_a: \operatorname{RExp}_{\mathbb{A}} \to \operatorname{RExp}_{\mathbb{A}}, \text{ for } a \in \mathbb{A} \\ & E(e_1 + e_2) = E(e_1) + E(e_2) \qquad D_a(e_1 + e_2) = D_a(e_1) + D_a(e_2) \\ & E(e_1e_2) = E(e_1) \cdot E(e_2) \qquad D_a(e_1e_2) = D_a(e_1)e_2 + E(e_1)D_a(e_2) \\ & E(e^*) = 1 \qquad D_a(e^*) = D_a(e)e^* \\ & E(1) = 1 \qquad D_a(1) = D_a(0) = 0 \\ & E(0) = E(a) = 0, \text{ for } a \in \mathbb{A} \qquad D_a(b) = \mathbb{1}[b = a], \text{ for } a, b \in \mathbb{A} \end{split}$$

- ▶ $L(e) = \{ \text{language represented by } e \}$ is the unique coalgebra morphism $L : \operatorname{RExp}_{\mathbb{A}} \to 2^{\mathbb{A}^*}$
- used in Brzozowski's proof of Kleene's theorem

$$\operatorname{Brz}:\operatorname{RExp}_{\mathbb{A}}(2\times(-)^{\mathbb{A}})\to 2\times(\operatorname{RExp}_{\mathbb{A}}(-))^{\mathbb{A}}$$

usually presented in curried form

 $E: \mathsf{RExp}_{\mathbb{A}}(2\times (-)^{\mathbb{A}}) \to 2 \qquad D_a: \mathsf{RExp}_{\mathbb{A}}(2\times (-)^{\mathbb{A}}) \to \mathsf{RExp}_{\mathbb{A}}(-), \ a \in \mathbb{A}$

$$\begin{split} E(e_1 + e_2) &= E(e_1) + E(e_2) & D_a(e_1 + e_2) = D_a(e_1) + D_a(e_2) \\ E(e_1e_2) &= E(e_1)E(e_2) & D_a(e_1e_2) = D_a(e_1)e_2 + E(e_1)D_a(e_2) \\ E(e^*) &= 1 & D_a(e^*) = D_a(e)e^* \\ E(0) &= E(a) = 0 & D_p(0) = D_a(1) = 0 \\ E(1) &= 1 & D_a(b) = [a = b] \\ E(i, f) &= i & D_a(i, f) = f(a) \end{split}$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ つくぐ

The bialgebra diagram becomes:

Intuitively:

- given a way $\langle \epsilon, \delta \rangle$ of taking derivatives on X,
- can replace each x with $(\epsilon(x), \delta(x))$ derivative, so that
- Brz_X combines them with the traditional syntactic derivative of the expression

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>
Two Extremal Brz-bialgebras

▶ initial bialgebra, $X = \operatorname{Reg}_{\mathbb{A}} = \operatorname{RExp}_{\mathbb{A}} \emptyset$, regular subsets of \mathbb{A}^*

$$\begin{array}{c} \operatorname{\mathsf{RExp}}_{\mathbb{A}}\operatorname{\mathsf{Reg}}_{\mathbb{A}} & \xrightarrow{\alpha} & \operatorname{\mathsf{Reg}}_{\mathbb{A}} & \xrightarrow{\langle \epsilon, \delta \rangle} & 2 \times (\operatorname{\mathsf{Reg}}_{\mathbb{A}})^{\mathbb{A}} \\ & & & & & & & \\ \operatorname{\mathsf{RExp}}_{\mathbb{A}}\langle \epsilon, \delta \rangle \\ & & & & & & & \\ \operatorname{\mathsf{RExp}}_{\mathbb{A}}(2 \times (\operatorname{\mathsf{Reg}}_{\mathbb{A}})^{\mathbb{A}}) & \xrightarrow{\operatorname{\mathsf{Brz}}_{\operatorname{\mathsf{Reg}}}} & 2 \times (\operatorname{\mathsf{RExp}}_{\mathbb{A}}\operatorname{\mathsf{Reg}}_{\mathbb{A}})^{\mathbb{A}} \end{array}$$

• final bialgebra, $X = \mathbb{A}^*$

$$\begin{array}{c} \operatorname{\mathsf{RExp}}_{\mathbb{A}}(\mathbb{A}^*) & \longrightarrow X & \xrightarrow{\langle \epsilon, \delta \rangle} & 2 \times (\mathbb{A}^*)^{\mathbb{A}} \\ \\ \operatorname{\mathsf{RExp}}_{\mathbb{A}}\langle \epsilon, \delta \rangle & & & \uparrow^{\operatorname{id}_2 \times (\alpha)^{\mathbb{A}}} \\ \operatorname{\mathsf{RExp}}_{\mathbb{A}}(2 \times (\mathbb{A}^*)^{\mathbb{A}}) & \xrightarrow{\operatorname{\mathsf{Brz}}_{\mathbb{A}^*}} & 2 \times (\operatorname{\mathsf{RExp}}_{\mathbb{A}} \mathbb{A}^*)^{\mathbb{A}} \end{array}$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Explicitly, the final Brz-bialgebra

$$\mathsf{RExp}_{\mathbb{A}}(\mathbb{A}^*) \xrightarrow{\alpha} X \xrightarrow{\langle \epsilon, \delta \rangle} 2 \times (\mathbb{A}^*)^{\mathbb{A}}$$

is given by

Explicitly, the final Brz-bialgebra

$$\mathsf{RExp}_{\mathbb{A}}(\mathbb{A}^*) \xrightarrow{\alpha} X \xrightarrow{\langle \epsilon, \delta \rangle} 2 \times (\mathbb{A}^*)^{\mathbb{A}}$$

is given by the semantic Brzozowski derivative

$$\epsilon : 2^{\mathbb{A}^*} \to 2 \qquad \qquad \delta_a : 2^{\mathbb{A}^*} \to 2^{\mathbb{A}^*}$$

$$\epsilon(S) = \mathbb{1}["" \in S] \qquad \qquad \delta_a(S) = \{x \mid ax \in S\}$$

Explicitly, the final Brz-bialgebra

$$\mathsf{RExp}_{\mathbb{A}}(\mathbb{A}^*) \xrightarrow{\alpha} X \xrightarrow{\langle \epsilon, \delta \rangle} 2 \times (\mathbb{A}^*)^{\mathbb{A}}$$

is given by the semantic Brzozowski derivative

$$\epsilon : 2^{\mathbb{A}^*} \to 2 \qquad \qquad \delta_a : 2^{\mathbb{A}^*} \to 2^{\mathbb{A}^*}$$

$$\epsilon(S) = \mathbb{1}["" \in S] \qquad \qquad \delta_a(S) = \{x \mid ax \in S\}$$

and α is as one would expect:

$$\alpha(e_1 + e_2) = \alpha(e_1) \cup \alpha(e_2) \qquad \qquad \alpha(0) = \emptyset$$

$$\alpha(e_1e_2) = \{xy \mid x \in \alpha(e_1), y \in \alpha(e_2)\} \qquad \qquad \alpha(1) = \{\epsilon\}$$

$$\alpha(e^*) = \bigcup_n \alpha(e^n) \qquad \qquad \alpha(a) = \{a\}$$

$$\alpha(S) = S$$

Many Variants

- KAT combine with boolean tests
- NetKAT NetKAT expressions, and NetKAT packet forwarding model
- GKAT guarded expressions and fully deterministic automata

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

KAT + B! — extend with mutable variables

Many Variants

- KAT combine with boolean tests
- NetKAT NetKAT expressions, and NetKAT packet forwarding model
- GKAT guarded expressions and fully deterministic automata
- KAT + B! extend with mutable variables

In each case, there is a different syntax F, different behavior G, but always a distributive law (closely related to the Brzozowski Derivative) relating them bialgebraically.

Some Bialgebra Facts

Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

 $\mathsf{KI}\,\mathsf{Laws}\,\lambda:FT\Rightarrow TF\qquad\qquad\mathsf{EM}\,\mathsf{Laws}\,\lambda:TG\Rightarrow GT$

Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

KI Laws $\lambda: FT \Rightarrow TF$

Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

KI Laws $\lambda: FT \Rightarrow TF$ $\begin{array}{c}
\downarrow \\
C \xrightarrow{F} \\
\end{array} \xrightarrow{} C
\end{array}$

EM Laws $\lambda: TG \Rightarrow GT$ $\mathcal{K}\mathcal{U}(T) \longrightarrow \mathcal{K}\mathcal{U}(T) \qquad \qquad \mathcal{E}\mathcal{M}(T) \longrightarrow \mathcal{E}\mathcal{M}(T)$ $\begin{array}{c}
\downarrow \\
C \xrightarrow{G} & C
\end{array}$

For an EM law $\rho: TG \Rightarrow GT$,

 $\mathbf{CoAlg}(\mathcal{EM}(G)) \cong \mathbf{BiAlg}(TG \stackrel{\rho}{\Rightarrow} GT) \cong \mathcal{EM}(\mathbf{Coalg}(T))$

If there is an initial object 0 and a final G-coalgebra,

Algebraic and coalgebraic semantics coincide

If there is an initial object 0 and a final G-coalgebra,

Algebraic and coalgebraic semantics coincide

・ロト・西ト・ヨト・日下・ ヨー うらつ

If there is an initial object 0 and a final G-coalgebra,

Algebraic and coalgebraic semantics coincide

・ロト・西ト・ヨト・日下・ ヨー うらつ

If there is an initial object 0 and a final G-coalgebra,

Algebraic and coalgebraic semantics coincide

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

 \blacktriangleright Bisimilarity / observational equivalence on T0 is a congruence

Denotational Semantics:

the algebra of program composition

- regular expressions
- lambda calculus

Operational Semantics:

the coalgebra of program execution

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

- automata
- turing machines