A Tutorial on Bialgebras

based on work by Turi, Plotkin, Jacobs, and Kozen

Cornell University

November 16, 2022

Denotational Semantics:

the algebra of program composition

Operational Semantics:
the coalgebra of program execution

Denotational Semantics:

the algebra of program composition

- regular expressions

Operational Semantics:

the coalgebra of program execution

- automata

Denotational Semantics:

the algebra of program composition

- regular expressions
- lambda calculus

Operational Semantics:

the coalgebra of program execution

- automata
- turing machines

A category \mathcal{C} is:

- collection of objects ob \mathcal{C};
- collection of morphisms $\{X \xrightarrow{a} Y\}$ between them
- that can be composed associatively,
- including identities $\mathrm{id}_{X}: X \rightarrow X$

A category \mathcal{C} is:

- collection of objects ob \mathcal{C};
- collection of morphisms $\{X \xrightarrow{a} Y$ between them
- that can be composed associatively,
- including identities id $_{X}: X \rightarrow X$

Extreme examples:

- monoid = category with exactly one object;
- pre-order = category with at most one arrow between objects

Everyone's favorite category: Set, sets and functions.

Initiality / Finality

Initial Object 0
$0-\exists!\rightarrow X$

Initiality / Finality

Initial Object 0
$0-\exists!$

Final Object 1
X $-3!->1$

Initiality / Finality

Initial Object 0
$0-\exists!$
\emptyset

Final Object 1
X -- !! 1

- in Set:

Initiality / Finality

Initial Object 0
$0-\exists!->X$ \emptyset
$\min S$

Final Object 1
X $-\exists!->1$
\{*\}
$\max S$

Quick Review of Functors \& Natural Transformations

Let \mathcal{C} and \mathcal{D} be categories.

Quick Review of Functors \& Natural Transformations

Let \mathcal{C} and \mathcal{D} be categories.

- A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ maps

$$
\begin{array}{llr}
X \in \text { ob } \mathcal{C} & \text { to } & F(X) \in \text { ob } \mathcal{D} \\
f: X \rightarrow Y & \text { to } & F f: F X \rightarrow F Y
\end{array}
$$

Quick Review of Functors \& Natural Transformations

Let \mathcal{C} and \mathcal{D} be categories.

- A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ maps

$$
\begin{aligned}
& X \in \mathrm{ob} \mathcal{C} \\
& \text { to } \\
& F(X) \in \text { ob } \mathcal{D} \\
& f: X \rightarrow Y \\
& \text { to } \\
& F f: F X \rightarrow F Y \\
& X \underset{f^{\searrow}{ }_{Y} \xrightarrow[g]{\longrightarrow}}{\stackrel{g \circ f}{\longrightarrow}} Z \\
& \stackrel{F}{\longmapsto} \\
& F X \underset{F f}{\stackrel{F(g \circ f)}{\longrightarrow}} F Z
\end{aligned}
$$

Quick Review of Functors \& Natural Transformations

Let \mathcal{C} and \mathcal{D} be categories.

- A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ maps

$$
\begin{array}{llr}
X \in \text { ob } \mathcal{C} & \text { to } & F(X) \in \text { ob } \mathcal{D} \\
f: X \rightarrow Y & \text { to } & F f: F X \rightarrow F Y
\end{array}
$$

- a natural transformation $\lambda: F \Rightarrow G$ is a family of maps

$$
\left\{\lambda_{X}: F(X) \rightarrow G(X)\right\}_{X \in \mathrm{ob} \mathcal{C}}
$$

that commutes with morphisms of \mathcal{C}

Quick Review of Functors \& Natural Transformations

Let \mathcal{C} and \mathcal{D} be categories.

- A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ maps

$$
\begin{array}{llr}
X \in \text { ob } \mathcal{C} & \text { to } & F(X) \in \text { ob } \mathcal{D} \\
f: X \rightarrow Y & \text { to } & F f: F X \rightarrow F Y
\end{array}
$$

- a natural transformation $\lambda: F \Rightarrow G$ is a family of maps

$$
\left\{\lambda_{X}: F(X) \rightarrow G(X)\right\}_{X \in \mathrm{ob} \mathcal{C}}
$$

that commutes with morphisms of \mathcal{C}

$$
\begin{aligned}
& F X \xrightarrow{F f} F Y \\
& \text { for all } f: X \rightarrow Y, \quad \lambda_{X} \downarrow \quad \downarrow \lambda_{Y} \\
& G X \xrightarrow[G f]{ } G Y
\end{aligned}
$$

Algebra

Given a functor $F: \mathcal{C} \rightarrow \mathcal{C}$,
An F-algebra (X, α) consists of

- a carrier object $X \in$ ob \mathcal{C}
- a structure map $\alpha: X \rightarrow F X$

Example. Take $F=(-)^{2}+1$.
A monoid (M, \odot, e) is a set M together with maps

$$
\odot: M \times M \rightarrow M, \quad e:\{*\} \rightarrow M
$$

(\& associative, unital)
or altogether, an F-algebra

$$
(M,\langle\odot, e\rangle:(M \times M \sqcup\{*\}) \rightarrow M)
$$

Example. a Kleene Algebra is a set S with operations

$$
+, \cdot: S \times S \rightarrow S, \quad 0,1: 1 \rightarrow S \quad \text { (satisfying some eqns) }
$$

Zipped together, they form a Σ-algebra

$$
\left(S,\left[+, \cdot,,^{*}, 0,1\right]: S^{2}+S^{2}+S+1+1 \rightarrow S\right)
$$

for the signature Σ of semiring operations

$$
\begin{aligned}
\Sigma X & ::=x_{1}+x_{2}\left|x_{1} \cdot x_{2}\right| x^{*}|0| 1 \\
& =X^{2}+X^{2}+X+1+1
\end{aligned}
$$

Example. a Kleene Algebra is a set S with operations

$$
+, \cdot: S \times S \rightarrow S, \quad 0,1: 1 \rightarrow S \quad \text { (satisfying some eqns) }
$$

Zipped together, they form a Σ-algebra

$$
\left(S,\left[+, \cdot,,^{*}, 0,1\right]: S^{2}+S^{2}+S+1+1 \rightarrow S\right)
$$

for the signature Σ of semiring operations

$$
\begin{aligned}
\Sigma X & ::=x_{1}+x_{2}\left|x_{1} \cdot x_{2}\right| x^{*}|0| 1 \\
& =X^{2}+X^{2}+X+1+1
\end{aligned}
$$

- The initial Σ-algebra is the set of regular expressions.

Quick review of Monads

A monad $T=(T, \eta, \mu)$ is

- a functor $T: \mathcal{C} \rightarrow \mathcal{C}$,
- multiplication $\mu: T^{2} \Rightarrow T$
that is associative

$$
\begin{array}{cc}
a ;((b ; c) ; d) \in & T^{3} X \xrightarrow{\mu_{T X}} T^{2} X \\
& \mid T \mu_{X} \quad \mu_{X} \downarrow \\
a ;(b ; c ; d) \in & T^{2} X \xrightarrow{\mu_{X}} T X
\end{array}
$$

- a unit $\eta: 1 \Rightarrow T$

Algebras of a Monad

- Like before, $(X, \alpha: T X \rightarrow X)$.

Algebras of a Monad

- Like before, $(X, \alpha: T X \rightarrow X)$.
- But also

Algebras of a Monad

- Like before, $(X, \alpha: T X \rightarrow X)$.
- But also

- For example:

Algebras of a Monad

- Like before, $(X, \alpha: T X \rightarrow X)$.
- But also

- Eilenberg-Moore category \mathcal{C}^{T} of algebras:
objects:
(X, α)
X
α
\downarrow
TX

Algebras of a Monad

- Like before, $(X, \alpha: T X \rightarrow X)$.
- But also

- Eilenberg-Moore category \mathcal{C}^{T} of algebras:
objects:
(X, α)

morphisms:

The Term Monad

Can compose programs

The Term Monad

Can compose programs
X
x

The Term Monad

Can compose programs

$$
\begin{aligned}
& X \\
& x
\end{aligned} \quad+\quad \begin{aligned}
& \sum X \\
& x ; y
\end{aligned}
$$

The Term Monad

Can compose programs

$$
\begin{array}{llll}
X & \sum X & + & \sum \Sigma X \\
x & x ; y & & x ;(y \oplus z)
\end{array}
$$

The Term Monad

Can compose programs

$$
\begin{aligned}
& X \\
& x
\end{aligned} \quad \begin{aligned}
& \Sigma X \\
& x ; y
\end{aligned} \quad+\begin{aligned}
& \Sigma \Sigma X \\
& x ;(y \oplus z)
\end{aligned} \quad+\cdots=: \Sigma^{*} X
$$

Σ^{*} is the free monad generated by the signature Σ.

The Term Monad

Can compose programs

$X+\Sigma X+$| $\Sigma \Sigma X$ |
| :--- |
| x |$\quad+y=\cdots \quad=: \Sigma^{*} X$

$x ; y \oplus z)$
Σ^{*} is the free monad generated by the signature Σ.
More generally, terms $T X:=\Sigma^{*} X / \cong$ might satisfy equations.

The Term Monad

Can compose programs

```
X + \SigmaX + \Sigma\SigmaX +\cdots =: \Sigma* X
x
x;y
x;(y\oplusz)
```

Σ^{*} is the free monad generated by the signature Σ.
More generally, terms $T X:=\Sigma^{*} X / \cong$ might satisfy equations.
There is an initial

$$
\begin{aligned}
& T \text {-algebra } \\
& T^{2} 0 \xrightarrow[\cong]{\mu_{0}} T 0
\end{aligned}
$$

Σ-algebra

$$
\Sigma \Sigma^{*} 0 \xrightarrow{\cong} \Sigma^{*} 0
$$

The Term Monad

Can compose programs

```
X + \SigmaX + \Sigma\SigmaX +\cdots =: \Sigma* X
x
x;y
x;(y\oplusz)
```

Σ^{*} is the free monad generated by the signature Σ.
More generally, terms $T X:=\Sigma^{*} X / \cong$ might satisfy equations.
There is an initial

$$
\begin{aligned}
& T \text {-algebra } \\
& T^{2} 0 \xrightarrow[\cong]{\mu_{0}} T 0
\end{aligned}
$$

Σ-algebra

$$
\Sigma \Sigma^{*} 0 \xrightarrow{\cong} \Sigma^{*} 0
$$

Lemma (Lambek 1968)
The structure map of an initial algebra is an isomorphism.

Denotational Semantics

- Interpret programs P as mathematical objects $\langle P\rangle$ (e.g., numbers)

Denotational Semantics

- Interpret programs P as mathematical objects $\langle P\rangle$ (e.g., numbers)
- That is, specify Σ-algebra $(D, \downarrow \cdot \downarrow)$.

Denotational Semantics

- Interpret programs P as mathematical objects $\langle P\rangle$ (e.g., numbers)
- That is, specify Σ-algebra $(D, \downarrow \cdot \nabla)$.

$$
\begin{gathered}
\Sigma D \\
\downarrow \downarrow \cdot \downarrow \\
D
\end{gathered}
$$

Denotational Semantics

- Interpret programs P as mathematical objects $\backslash P\rangle$ (e.g., numbers)
- That is, specify Σ-algebra $(D, \downarrow \cdot \downarrow)$.

Denotational Semantics

- Interpret programs P as mathematical objects $\backslash P\rangle$ (e.g., numbers)
- That is, specify Σ-algebra $(D, \downarrow \cdot \downarrow)$.

$$
\begin{aligned}
& \Sigma \Sigma^{*} 0 \text {-----> } \Sigma D \\
& \text { initial algebra } \downarrow \cong \quad \downarrow 1 \cdot \downarrow \\
& \Sigma^{*} 0-\cdots \stackrel{-\cdots}{\cdot V^{*}} \rightarrow
\end{aligned}
$$

Denotational Semantics

- Interpret programs P as mathematical objects $\backslash P\rangle$ (e.g., numbers)
- That is, specify Σ-algebra $(D, \downarrow \cdot \downarrow)$.

$$
\begin{array}{ccc}
\Sigma \Sigma^{*} 0 & \cdots-\cdots & \Sigma D \\
\text { initial algebra } \downarrow \cong & \downarrow \mathfrak{l} \cong \\
\Sigma^{*} 0 & \cdots \cdots \cdot \overline{\nabla^{*}} & D
\end{array}
$$

- Use of initiality corresponds to induction

Coalgebra

Given a functor $G: \mathcal{C} \rightarrow \mathcal{C}$,
A G-coalgebra (X, γ) consists of

- $X \in \mathrm{ob} \mathcal{C}$
- $\gamma: X \rightarrow G X$

Example. Again, take $G=(-)^{2}+1$.
A G-coalgebra is a (possibly infinite or recursive) set of binary trees closed under subtree

$$
\gamma(t)= \begin{cases}* & \text { if } t \text { is a leaf } \\ \left(t_{1}, t_{2}\right) & \text { otherwise }\end{cases}
$$

Automata as Coalgebras

A DFA $(Q, \mathbb{A}, \delta, \epsilon)$, where

$$
\delta: Q \rightarrow Q^{\mathbb{A}}, \quad \epsilon: 2^{Q}
$$

is a coalgebra $(Q,\langle\delta, \epsilon\rangle: Q \rightarrow G(Q))$ for the signature $G(X)=X^{\mathbb{A}} \times 2$ of finite automata.

Automata as Coalgebras

A DFA $(Q, \mathbb{A}, \delta, \epsilon)$, where

$$
\delta: Q \rightarrow Q^{\mathbb{A}}, \quad \epsilon: 2^{Q}
$$

is a coalgebra $(Q,\langle\delta, \epsilon\rangle: Q \rightarrow G(Q))$ for the signature $G(X)=X^{\mathbb{A}} \times 2$ of finite automata.

The final coalgebra $\left(2^{\mathbb{A}^{*}},\langle\epsilon, \delta\rangle\right)$ is the semantic Brzozowski derivative

$$
\begin{array}{ll}
\epsilon: 2^{\mathbb{A}^{*}} \rightarrow 2 & \delta_{a}: 2^{\mathbb{A}^{*}} \rightarrow 2^{\mathbb{A}^{*}} \\
\epsilon(B)=\mathbb{1}[" " \in B] & \delta_{a}(B)=\{x \mid a x \in B\}
\end{array}
$$

Category of Coalgebras

G-CoAlg

objects: G-coalgebras

morphisms $(X, \gamma) \rightarrow(Y, \eta)$

Category of Coalgebras

G-CoAlg

Final coalgebra exists if G has finite branching

$$
\begin{aligned}
& Z \\
& \left.\cong\right|_{\text {final coalgebra }} \\
& G Z
\end{aligned}
$$

Operational Semantics

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

Operational Semantics

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

Operational Semantics

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

Operational Semantics

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

$$
\begin{aligned}
& \left.\llbracket \cdot \downarrow \downarrow \quad \cong\right|_{\text {final coalgebra }} \\
& G S \text {-----> } G Z
\end{aligned}
$$

Operational Semantics

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

$$
\begin{aligned}
& \left.\llbracket \cdot \downarrow \downarrow \quad \cong\right|_{\text {final coalgebra }} \\
& G S \text {-----> } G Z
\end{aligned}
$$

Operational Semantics

G-Colgebra $(S, \llbracket \cdot \rrbracket)$ with program states S,

$$
\begin{aligned}
& \mathbb{I} \cdot \rrbracket \downarrow \downarrow \downarrow_{\text {final coalgebra }} \\
& G S \text {-----> } G Z
\end{aligned}
$$

- Behavior from finality, called coinduction $\llbracket \cdot \rrbracket^{@}$

Distributive Laws

- $F, G: \mathcal{C} \rightarrow \mathcal{C}$
- distributive law $=$ natural transformation $\lambda: F G \Rightarrow G F$.

Distributive Laws

- $F, G: \mathcal{C} \rightarrow \mathcal{C}$
- distributive law = natural transformation $\lambda: F G \Rightarrow G F$.
- when F is a monad, strengthen to "EM law", by requiring

Bialgebra

Given a distributive law $\lambda: F G \Rightarrow G F$,
a λ-bialgebra is a triple (X, α, γ) such that

- (X, α) is an F-algebra
- (X, γ) is a G-coalgebra
- λ glues them together, by

Allows for Liftings

- α becomes a G-coalgebra morphism

- γ becomes an F-algebra morphism

Compatible Operational / Denotational Models

$$
\begin{aligned}
& G S \text {-----> } G Z
\end{aligned}
$$

Compatible Operational / Denotational Models

$$
\begin{aligned}
& \| \\
& \begin{array}{cc}
S--\ldots \rrbracket^{-->} & Z \\
\llbracket \cdot \rrbracket \downarrow \rrbracket^{@} & \cong \downarrow \text { final coalgebra }
\end{array} \\
& G S \text {-----> } G Z
\end{aligned}
$$

Compatible Operational / Denotational Models

$$
\begin{aligned}
& \Sigma T 0 \text {----> } \Sigma D \xrightarrow{2} \Sigma Z \\
& \text { initial algebra } \downarrow \cong \text { 』 } \downarrow \cdot \downarrow \\
& \stackrel{\downarrow}{T} 0-\perp \cdot \downarrow^{*} \rightarrow D \\
& \|
\end{aligned}
$$

$$
\begin{aligned}
& G S \text {-----> } G Z
\end{aligned}
$$

Compatible Operational / Denotational Models

Examples

A Clunky Illustration

Seq Composition $\quad F X:=X \times X ; \quad G X:=O^{I} \quad$ IO Behavior

- If O has a monoid operation :: , can use

$$
\lambda(f, g):=\text { input } \mapsto f(\text { input }):: g \text { (input })
$$

Producer / Consumer

- Suppose $F, G=(-) \times A$

Producer / Consumer

- Suppose $F, G=(-) \times A$
- A bialgebra

$$
A \times X \xrightarrow{\text { put }} X \xrightarrow{\text { get }} X \times A
$$

Producer / Consumer

- Suppose $F, G=(-) \times A$
- A bialgebra

$$
\begin{gathered}
A \times X \xrightarrow{\text { put }} X \xrightarrow{\text { get }} X \times A \\
\begin{array}{c}
\text { g×get } \\
\downarrow \\
A \times(X \times A) \xrightarrow{\text { put } \times A} \\
\\
\lambda=?
\end{array}+(A \times X) \times A
\end{gathered}
$$

Producer / Consumer

- Suppose $F, G=(-) \times A$
- A bialgebra

$$
\begin{aligned}
& A \times(X \times A) \xrightarrow{\lambda=?}(A \times X) \times A
\end{aligned}
$$

- is a queue if $\lambda=$ id

Producer / Consumer

- Suppose $F, G=(-) \times A$
- A bialgebra

$$
\begin{gathered}
A \times X \xrightarrow{\text { put }} X \xrightarrow{\text { get }} X \times A \\
\begin{array}{c}
\text { g×get } \\
\downarrow \\
A \times(X \times A) \xrightarrow{\text { put } \times A} \\
\\
\lambda=?
\end{array}+(A \times X) \times A
\end{gathered}
$$

- is a queue if $\lambda=$ id
- is a stack if $\lambda=$ swap

KA Bialgebras

The bialgebraic relationship between finite automata and regular expressions:

- $\mathbb{A}:=$ a finite alphabet,
- $F(X)=\operatorname{RExp}_{\mathbb{A}} X$, regular expresssions over elements of X and letters of the alphabet;
- $G(X)=2 \times(-)^{\mathbb{A}}$, the signature of finite automata
- Distributive law: (a slight generalization of) the syntactic Brzowski Derivative

KA Bialgebras

KA Bialgebras

The (Syntactic) Brzozowski Derivative: a coalgebra $\operatorname{RExp}_{\mathbb{A}} \rightarrow 2 \times\left(\operatorname{RExp}_{\mathbb{A}}\right)^{\mathbb{A}}$

KA Bialgebras

The (Syntactic) Brzozowski Derivative:
a coalgebra $\operatorname{RExp}_{\mathbb{A}} \rightarrow 2 \times\left(\operatorname{RExp}_{\mathbb{A}}\right)^{\mathbb{A}}$

$$
E: \operatorname{RExp}_{\mathbb{A}} \rightarrow 2 \quad D_{a}: \operatorname{RExp}_{\mathbb{A}} \rightarrow \operatorname{REx}_{\mathbb{A}}, \text { for } a \in \mathbb{A}
$$

KA Bialgebras

The (Syntactic) Brzozowski Derivative:
a coalgebra $\operatorname{RExp}_{\mathbb{A}} \rightarrow 2 \times\left(\operatorname{RExp}_{\mathbb{A}}\right)^{\mathbb{A}}$

$$
E: \operatorname{RExp}_{\mathbb{A}} \rightarrow 2 \quad D_{a}: \operatorname{RExp}_{\mathbb{A}} \rightarrow \operatorname{REx}_{\mathbb{A}} \text {, for } a \in \mathbb{A}
$$

$$
\begin{array}{ll}
E\left(e_{1}+e_{2}\right)=E\left(e_{1}\right)+E\left(e_{2}\right) & D_{a}\left(e_{1}+e_{2}\right)=D_{a}\left(e_{1}\right)+D_{a}\left(e_{2}\right) \\
E\left(e_{1} e_{2}\right)=E\left(e_{1}\right) \cdot E\left(e_{2}\right) & D_{a}\left(e_{1} e_{2}\right)=D_{a}\left(e_{1}\right) e_{2}+E\left(e_{1}\right) D_{a}\left(e_{2}\right) \\
E\left(e^{*}\right)=1 & D_{a}\left(e^{*}\right)=D_{a}(e) e^{*} \\
E(1)=1 & D_{a}(1)=D_{a}(0)=0 \\
E(0)=E(a)=0, \text { for } a \in \mathbb{A} & D_{a}(b)=\mathbb{1}[b=a], \text { for } a, b \in \mathbb{A}
\end{array}
$$

KA Bialgebras

The (Syntactic) Brzozowski Derivative:
a coalgebra $\operatorname{RExp}_{\mathbb{A}} \rightarrow 2 \times\left(\operatorname{RExp}_{\mathbb{A}}\right)^{\mathbb{A}}$

$$
\begin{array}{ll}
\quad E: \operatorname{RExp}_{\mathbb{A}} \rightarrow 2 & D_{a}: \operatorname{RExp}_{\mathbb{A}} \rightarrow \operatorname{RExp}_{\mathbb{A}}, \text { for } a \in \mathbb{A} \\
E\left(e_{1}+e_{2}\right)=E\left(e_{1}\right)+E\left(e_{2}\right) & D_{a}\left(e_{1}+e_{2}\right)=D_{a}\left(e_{1}\right)+D_{a}\left(e_{2}\right) \\
E\left(e_{1} e_{2}\right)=E\left(e_{1}\right) \cdot E\left(e_{2}\right) & D_{a}\left(e_{1} e_{2}\right)=D_{a}\left(e_{1}\right) e_{2}+E\left(e_{1}\right) D_{a}\left(e_{2}\right) \\
E\left(e^{*}\right)=1 & D_{a}\left(e^{*}\right)=D_{a}(e) e^{*} \\
E(1)=1 & D_{a}(1)=D_{a}(0)=0 \\
E(0)=E(a)=0, \text { for } a \in \mathbb{A} & D_{a}(b)=\mathbb{1}[b=a], \text { for } a, b \in \mathbb{A}
\end{array}
$$

- $L(e)=\{$ language represented by $e\}$ is the unique coalgebra morphism $L: \operatorname{RExp}_{\mathbb{A}} \rightarrow 2^{\mathbb{A}^{*}}$
- used in Brzozowski's proof of Kleene's theorem

KA Bialgebras

$$
\operatorname{Brz}: \operatorname{RExp}_{\mathbb{A}}\left(2 \times(-)^{\mathbb{A}}\right) \rightarrow 2 \times\left(\operatorname{RExp}_{\mathbb{A}}(-)\right)^{\mathbb{A}}
$$

usually presented in curried form

$$
\begin{array}{ll}
E: \operatorname{RExp}_{\mathbb{A}}\left(2 \times(-)^{\mathbb{A}}\right) \rightarrow 2 & D_{a}: \operatorname{RExp}_{\mathbb{A}}\left(2 \times(-)^{\mathbb{A}}\right) \rightarrow \operatorname{RExp}_{\mathbb{A}}(-), a \in \mathbb{A} \\
E\left(e_{1}+e_{2}\right)=E\left(e_{1}\right)+E\left(e_{2}\right) & D_{a}\left(e_{1}+e_{2}\right)=D_{a}\left(e_{1}\right)+D_{a}\left(e_{2}\right) \\
E\left(e_{1} e_{2}\right)=E\left(e_{1}\right) E\left(e_{2}\right) & D_{a}\left(e_{1} e_{2}\right)=D_{a}\left(e_{1}\right) e_{2}+E\left(e_{1}\right) D_{a}\left(e_{2}\right) \\
E\left(e^{*}\right)=1 & D_{a}\left(e^{*}\right)=D_{a}(e) e^{*} \\
E(0)=E(a)=0 & D_{p}(0)=D_{a}(1)=0 \\
E(1)=1 & D_{a}(b)=[a=b] \\
E(i, f)=i & D_{a}(i, f)=f(a)
\end{array}
$$

KA Bialgebras

The bialgebra diagram becomes:

$$
\begin{gathered}
\operatorname{RExp}_{\mathbb{A}} X \xrightarrow{\alpha} X \xrightarrow{\langle\epsilon, \delta\rangle} 2 \times X^{\mathbb{A}} \\
\operatorname{RExp}_{\mathbb{A}}\langle\epsilon, \delta\rangle \downarrow \\
\operatorname{RExp}_{\mathbb{A}}\left(2 \times X^{\mathbb{A}}\right) \xrightarrow[\operatorname{id}_{2} \times(\alpha)^{\mathbb{A}} \uparrow]{ } \quad 2 \times\left(\operatorname{RExp}_{\mathbb{A}} X\right)^{\mathbb{A}}
\end{gathered}
$$

Intuitively:

- given a way $\langle\epsilon, \delta\rangle$ of taking derivatives on X,
- can replace each x with $(\epsilon(x), \delta(x))$ derivative, so that
- Brz_{X} combines them with the traditional syntactic derivative of the expression

KA Bialgebras

Two Extremal Brz-bialgebras

- initial bialgebra, $X=\operatorname{Reg}_{\mathbb{A}}=\operatorname{RExp}_{\mathbb{A}} \emptyset$, regular subsets of \mathbb{A}^{*}

$$
\begin{aligned}
& \operatorname{RExp}_{\mathbb{A}} \operatorname{Reg}_{\mathbb{A}} \xrightarrow{\alpha} \operatorname{Reg}_{\mathbb{A}} \xrightarrow{\langle\epsilon, \delta\rangle} 2 \times\left(\operatorname{Reg}_{\mathbb{A}}\right)^{\mathbb{A}} \\
& \operatorname{RExp}_{\mathrm{A}}\langle\epsilon, \delta\rangle \downarrow \quad \mathrm{id}_{2} \times(\alpha)^{\text {A }} \\
& \operatorname{RExp}_{\mathbb{A}}\left(2 \times\left(\operatorname{Reg}_{\mathbb{A}}\right)^{\mathbb{A}}\right) \longrightarrow \operatorname{BrzReg}_{\mathbb{A}} \quad 2 \times\left(\operatorname{RExp}_{\mathbb{A}} \operatorname{Reg}_{\mathbb{A}}\right)^{\mathbb{A}}
\end{aligned}
$$

- final bialgebra, $X=\mathbb{A}^{*}$

$$
\begin{aligned}
& \operatorname{RExp}_{\mathbb{A}}\left(\mathbb{A}^{*}\right) \xrightarrow{\alpha} X \xrightarrow{\langle\epsilon, \delta\rangle} 2 \times\left(\mathbb{A}^{*}\right)^{\mathbb{A}} \\
& \operatorname{RExp}_{\mathbb{A}}\langle\epsilon, \delta\rangle \downarrow \\
& \operatorname{RExp}_{\mathbb{A}}\left(2 \times\left(\mathbb{A}^{*}\right)^{\mathbb{A}}\right) \xrightarrow[\operatorname{Brz}_{\mathbb{A}^{*}}]{ } \begin{array}{l}
\text { id } 2 \times(\alpha)^{\mathbb{A}}
\end{array} \\
& 2 \times\left(\operatorname{RExp}_{\mathbb{A}} \mathbb{A}^{*}\right)^{\mathbb{A}}
\end{aligned}
$$

KA Bialgebras

Explicitly, the final Brz-bialgebra

$$
\operatorname{RExp}_{\mathbb{A}}\left(\mathbb{A}^{*}\right) \xrightarrow{\alpha} X \xrightarrow{\langle\epsilon, \delta\rangle} 2 \times\left(\mathbb{A}^{*}\right)^{\mathbb{A}}
$$

is given by

KA Bialgebras

Explicitly, the final Brz-bialgebra

$$
\operatorname{RExp}_{\mathbb{A}}\left(\mathbb{A}^{*}\right) \xrightarrow{\alpha} X \xrightarrow{\langle\epsilon, \delta\rangle} 2 \times\left(\mathbb{A}^{*}\right)^{\mathbb{A}}
$$

is given by the semantic Brzozowski derivative

$$
\begin{array}{ll}
\epsilon: 2^{\mathbb{A}^{*}} \rightarrow 2 & \delta_{a}: 2^{\mathbb{A}^{*}} \rightarrow 2^{\mathbb{A}^{*}} \\
\epsilon(S)=\mathbb{1}[" " \in S] & \delta_{a}(S)=\{x \mid a x \in S\}
\end{array}
$$

KA Bialgebras

Explicitly, the final Brz-bialgebra

$$
\operatorname{RExp}_{\mathbb{A}}\left(\mathbb{A}^{*}\right) \xrightarrow{\alpha} X \xrightarrow{\langle\epsilon, \delta\rangle} 2 \times\left(\mathbb{A}^{*}\right)^{\mathbb{A}}
$$

is given by the semantic Brzozowski derivative

$$
\begin{array}{ll}
\epsilon: 2^{\mathbb{A}^{*}} \rightarrow 2 & \delta_{a}: 2^{\mathbb{A}^{*}} \rightarrow 2^{\mathbb{A}^{*}} \\
\epsilon(S)=\mathbb{1}[" " \in S] & \delta_{a}(S)=\{x \mid a x \in S\}
\end{array}
$$

and α is as one would expect:

$$
\begin{array}{ll}
\alpha\left(e_{1}+e_{2}\right)=\alpha\left(e_{1}\right) \cup \alpha\left(e_{2}\right) & \alpha(0)=\emptyset \\
\alpha\left(e_{1} e_{2}\right)=\left\{x y \mid x \in \alpha\left(e_{1}\right), y \in \alpha\left(e_{2}\right)\right\} & \alpha(1)=\{\epsilon\} \\
\alpha\left(e^{*}\right)=\bigcup_{n} \alpha\left(e^{n}\right) & \alpha(a)=\{a\} \\
& \alpha(S)=S
\end{array}
$$

Many Variants

- KAT - combine with boolean tests
- NetKAT - NetKAT expressions, and NetKAT packet forwarding model
- GKAT - guarded expressions and fully deterministic automata
- KAT + B! - extend with mutable variables

Many Variants

- KAT - combine with boolean tests
- NetKAT - NetKAT expressions, and NetKAT packet forwarding model
- GKAT - guarded expressions and fully deterministic automata
- KAT + B! - extend with mutable variables

In each case, there is a different syntax F, different behavior G, but always a distributive law (closely related to the Brzozowski Derivative) relating them bialgebraically.

Some Bialgebra Facts

Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

$$
\text { KI Laws } \lambda: F T \Rightarrow T F \quad \text { EM Laws } \lambda: T G \Rightarrow G T
$$

Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

Kl Laws $\lambda: F T \Rightarrow T F$

Distributive laws correspond to Liftings over monads

Lemma (Jacobs)

For an EM law $\rho: T G \Rightarrow G T$,
$\operatorname{CoAlg}(\mathcal{E M}(G)) \cong \operatorname{BiAlg}(T G \stackrel{\rho}{\Rightarrow} G T) \cong \mathcal{E} \mathcal{M}(\operatorname{Coalg}(T))$

Theorem (Jacobs)
If there is an initial object 0 and a final G-coalgebra,

- Algebraic and coalgebraic semantics coincide

Theorem (Jacobs)

If there is an initial object 0 and a final G-coalgebra,

- Algebraic and coalgebraic semantics coincide

Theorem (Jacobs)
If there is an initial object 0 and a final G-coalgebra,

- Algebraic and coalgebraic semantics coincide

Theorem (Jacobs)
If there is an initial object 0 and a final G-coalgebra,

- Algebraic and coalgebraic semantics coincide

- Bisimilarity / observational equivalence on $T 0$ is a congruence

Denotational Semantics:

the algebra of program composition

- regular expressions
- lambda calculus

Operational Semantics:

the coalgebra of program execution

- automata
- turing machines

