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The standard way of modeling an agent with uncertainty:

a probability distribution p : ∆W over worlds W ,

(

a utility function u : Ω → R, some actions A

)

.

W
p

Ω U
u

A

Such agents cannot have internal conflict;
by construction, they have consistent beliefs and desires.
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Why Inconsistency?

A man with a watch knows what time it is;
a man with two watches is never sure.

(Segal’s Law)

Why model inconsistency?

Sometimes people have inconsistent beliefs;

▶ also want to understand the process of resolving it.

Why construct an agent that can be inconsistent?

Perfect consistency can be (needlessly) expensive.
Useful for identifying big problems.

▶ (assertions, check-sums, paradoxes)

Freedom from prefect consistency is valuable, but demands the ability to
recognize and adress internal conflict.
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Yet Another Probabilistic Graphical Model

Probabilistic Dependency Graphs (PDGs),
a new class of graphical model designed to model inconsistent beliefs.

In doing so, we get much more . . .
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Two aspects of Bayesian Networks (BNs)

Qualitative BN, G
an independence relation on variables

X ⊥⊥G Y | Pa(X), for all non-descendents Y of X

(Quantitative) BN, B = (G, p)
a qualitative BN (G) and a cpd pX (X | Pa(X)) for each variable X.

Defines a joint distribution PrB with the independencies ⊥⊥G .

PS
SH

S
C

Variables:

PS Parents Smoke?
S You smoke?

SH Second-hand Smoke?
C Get Cancer?
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Simple Example: Floomps and Guns
Grok thinks it likely (.95) that guns are illegal,
but that floomps (local slang) are legal (.90).

BN

f f[
.90 .10

] g g[
.05 .95

]
F G

must
choose

direction

The cpds of a PDG are attached to edges, not nodes.
PDGs can incorporate arbitrary new probabilistic information.
PDGs can be inconsistent

,
▶ . . . but BNs must resolve inconsistency first,

which may break symmetry and irrecoverably lose information.
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Simple Example: Floomps and Guns

BN PDG

f f[
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] g g[
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]
F G

must
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direction

p??
11
⋆

F G

f f[
.90 .10

]
⋆

g g[
.05 .95

]
⋆

p
p′

The cpds of a PDG are attached to edges, not nodes.
PDGs can incorporate arbitrary new probabilistic information.

Grok learns that Floomps and Guns have the same legal status (92%)

p(G |F ) =

g g[
.92 .08
.08 .92

]
f

f =
(

p′(F |G)
)T

PDGs can be inconsistent

,
▶ . . . but BNs must resolve inconsistency first,

which may break symmetry and irrecoverably lose information.
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Hypergraphs!

Bayesian Networks as PDGs

PS
SH

S
C

11 PS

S

SH

C

p(PS)
p(S |PS)

p(SH |PS)

p(C |S , SH )

T

Restricted PDG

In contrast with BNs:

edge composition has quantitative meaning, since edges have cpds;
a variable can be the target of more than one cpd;
arbitrary restrictions of PDGs are still PDGs.

▶ The analogue is false for BNs!
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Combining PDGs

C T

SL

q

Grok wants to be supreme leader (SL).
She notices that those who use tanning beds have more power,
unless they get cancer

. . . but mom says q(C | T ) =

c c[
.15 .85
.02 .98

]
t

t.

⊔ C T

S

SH

p

= C T

SL

qS

SH

p

Arbitrary PDGs may be combined without loss of information
They may have parallel edges which directly conflict.
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Definition (Probabilistic Dependency Graph)

A PDG is a tuple M = (N , E , V, p, α, β),

where

N is a finite set of nodes (variables)

V gives a set V(X) of possible values for each X;

E is a set of labeled edges {X
L−→ Y }, (or hyper-edges)

and associated to each X
L−→ Y , there is:

pL a cpd pL(Y | X);
αL a confidence in the functional dependence X → Y ;
βL a confidence in the reliability of pL.
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Semantics of PDGs
How to stitch cpds together?
{{M}} ⊆ ∆V(M)

The set of joint distributions consistent with M;

[[M]]γ : ∆V(M) → R
A function (parameterized by γ > 0) that scores distributions by
compatibility with M;

[[M]]∗γ ⊆ ∆V(M)
The distribution(s) most compatible with M

(a singleton in many cases of interest);

⟨⟨M⟩⟩γ : R
The best posssible compatibility of M with any distribution: the
inconsistency of M

· · ·
trace semantics
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Intuition: Measure µ’s violation of M’s cpds.

Motivating Examples. M := 11 X

q

p

Suppose p = [.4, .6].
If p = q, then M is clearly consistent, and compatible with the joint
distribution µ(X) = p = q, so IncM(p) = 0.

If q = [.5, .5] then M is not consistent, but µ = [.45, .55] matches
better than µ = [.9, .1]

If q = [0, 1], then M is much more inconsistent than before, even
though {{M}} = ∅ in both cases.
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Definition (Inc)

The incompatibility of a joint distribution µ with M is given by

IncM(µ) :=
∑

X
L−→Y

βL

ID(µY |X ∥ pL)

=Eµ

∑
X

L−→Y

βL

(
Ip

L︸ ︷︷ ︸
code length,

optimized for pL

to communicate
Y given X

− Iµ︸ ︷︷ ︸
code length,

optimized for µ
to communicate

Y given X

)
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Definition (Inc)

The incompatibility of a joint distribution µ with M is given by

IncM(µ) :=
∑

X
L−→Y

βL ID(µY |X ∥ pL)

=Eµ

∑
X

L−→Y

βL

(
Ip

L︸ ︷︷ ︸
code length,

optimized for pL

to communicate
Y given X

− Iµ︸ ︷︷ ︸
code length,

optimized for µ
to communicate

Y given X

)

the relative entropy
ID(µ ∥ ν) =

∑
w∈Supp µ

µ(w) log µ(w)
ν(w) (KL Divergence)

from ν to µ.
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Intuition: each edge X
L−→ Y indicates that Y is

determined (perhaps noisily) by X alone.

So a µ with uncertainty in Y after X is known
(beyond pure noise) is qualitatively worse.
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Intuition: each edge X
L−→ Y indicates that Y is

determined (perhaps noisily) by X alone.

So a µ with uncertainty in Y after X is known
(beyond pure noise) is qualitatively worse.

measured by H(Y | X)

H(µ)
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Definition (IDef)
The information deficiency of a distribution µ with respect to M is

IDefM(µ) :=
∑

X
L−→Y

αL Hµ(Y |X) − H(µ).
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IDefM(µ) :=
∑

X
L−→Y

αL Hµ(Y |X) − H(µ)︸ ︷︷ ︸.
(a) # bits needed to determine all variables
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The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Definition (IDef)
The information deficiency of a distribution µ with respect to M is

IDefM(µ) :=
︷ ︸︸ ︷∑

X
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αL Hµ(Y |X) − H(µ)︸ ︷︷ ︸.

(b) # bits required to separately determine
each target, knowing the source

(a) # bits needed to determine all variables
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Information Diagrams

The Scoring Function
[[M]]γ(µ) := IncM(µ) + γ IDefM(µ)

Definition (IDef)
The information deficiency of a distribution µ with respect to M is

IDefM(µ) :=
︷ ︸︸ ︷∑

X
L−→Y

αL Hµ(Y |X) − H(µ)︸ ︷︷ ︸.

(b) # bits required to separately determine
each target, knowing the source

(a) # bits needed to determine all variables
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The Scoring Function

We are interested in the quantitative limit (small γ)

[[M]]γ(µ) := IncM(µ) + γ

tradeoff parameter γ ≥ 0
IDefM(µ)

Definition (Inc)

The incompatibility of µ with M:

IncM(µ) :=
∑

X
L−→Y

βL ID(µY |X ∥ p
L
)

Definition (IDef)
The M-information deficiency of µ:

IDefM(µ)=
∑

X
L−→Y

α
L
Hµ(Y |X) − H(µ)
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Formal Statement + properties Relationships Between Semantics

The Optimal Distribution(s)

We have a scoring function [[M]]γ : ∆V(M) → R.

Let [[M]]∗γ be the set of best-scoring distributions.

Proposition (uniqueness for small γ, informal)
As γ → 0, there is a unique optimal distribution, which we call [[M]]∗.
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Capturing Bayesian Networks

For any β, let MB,β be the PDG corresponding to B,
with α = 1, and confidences β.

PS

S

SH

C

Theorem (BNs are PDGs)

If B is a BN and PrB is the distribution it specifies, then for all γ > 0
and all vectors β,

[[MB,β]]∗γ = {PrB}, and thus [[MB,β]]∗ = PrB .

{{M}} ⊥⊥B

space of distributions
consistent with MB
(which minimize Inc)

space of distributions
with independencies of B

(which can be shown
to minimize IDef)PrB
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Corolary: BNs as Maximum Entropy Distributions
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Φ’s standard scoring function: “variational free energy”

Factor Graphs

A B

C D

E

ϕ1 ϕ2

ϕ3

ϕ4

Definition
A factor graph Φ is

a set of variables X = {Xi}, and factors
{ϕJ : V(XJ) → R≥0}J∈J , with XJ ⊆ X ; Φ defines a distribution

PrΦ(x⃗) := 1
ZΦ

∏
J∈J

ϕJ(x⃗J), where ZΦ is the
normalization constant.
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Ψ’s standard scoring function: “variational free energy”

Factor Graphs

A B
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Ψ’s standard scoring function: “variational free energy”

Factor Graphs

A B

C D

E
ϕ1 ϕ2

ϕ3

ϕ4

Definition
A weighted factor graph Ψ = (Φ, θ) is a set of variables X = {Xi},
factors {ϕJ : V(XJ) → R≥0}J∈J , and weights (θJ)J∈J with XJ ⊆ X ; Ψ
defines a distribution

PrΨ(x⃗) := 1
ZΦ

∏
J∈J

ϕJ(x⃗J)θJ ,
where ZΨ is the
normalization constant.
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PDGs as Factor Graphs

PS
S

SH

C

T

⇝

PS
S

SH

C

T

The cpds of a PDG are essentially factors. Are the semantics the same?

Theorem (Yes, for γ = 1)
[[N]]∗1 = PrΦN

for all unweighted PDGs N.

Theorem (generalization to weighted factor graphs)
Semantics match (for specific γ) if β ∝ α.
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Precise Theorem Statement
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An Important Difference between PDGs and
Factor Graphs

M :=

11

X

pq

X
=: Φ

If p = q, then [[M]]∗ = p = q. . .
. . . but PrΦ ∝ p2
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Full Theorem

Factor Graphs as PDGs

PS
S

SH

C

T

⇝

PS
S

SH

C

T

Theorem
PrΦ = [[NΦ]]∗1 for all factor graphs Φ.

Theorem
A simlar result holds for weighted factor graphs.
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Inconsistency

Inconsistency: the optimal value of the scoring function.

⟨⟨M⟩⟩γ := inf
µ

[[M]]γ(µ)

Nice property for minimization:
⟨⟨M⟩⟩ is strictly convex and smooth in cpds (on the interior)
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Inference via Inconsistency Reduction
Identify the event Y =y with the cpd δy−→ Y .

Conditioning as inconsistency resolution.
To condition on an event (Y =y), simply add it to the PDG. Then the
new best distribution is the old one, conditioned on (Y =y). That is,[[

M ⊔ (Y =y)
]]∗

= [[M]]∗ | (Y =y).

Querying Pr(Y | X) in a PDG M.

We can add X
p−→ Y to M, to get M ⊔ p.

The choice of cpd p that minimizes the inconsistency ⟨⟨M ⊔ p⟩⟩
is [[M]]∗(Y |X),

▶ so an inconsistency oracle yields fast inference by gradient descent.

(Theorem): Unfortunately,
1 Deciding if M is consistent is NP-hard.
2 Computing ⟨⟨M⟩⟩γ is #P-hard, for γ > 0.

. . . just like for BNs and
Factor Graphs.
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Priors and Regularizers

Inconsistency: The Universal Loss

Fruitful to cast AI as optimization. But what to optimize?

▶ Cross Entropy, Square Loss, Accuracy, . . .
▶ choice is made by instinct, tradition, or pragmatics, which makes

results difficult to motivate, and vulnerable to overfitting.
Choice of model admits more principled discussion.

▶ Model makes claims about reality.
▶ For instance: priors correspond to regularizers, but can be wrong.

Bayes Rule: posterior ∝ likelihood · prior
log posterior = log likelihood + log prior + C

(new objective) (old objective) (regularizer)

Surprising Result
Most standard objectives arise as the inconsistency of the natural PDG
describing the situation.

Bonus
A visual language for reasoning about relationships between objectives.
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Surprise as Inconsistency

Consider a distribution p(X).

The surprise (information content) at seeing a sample x is:

Ip(x) := log 1
p(X =x) .

Proposition
Surprise is the inconsistency of simultaneously believing p and X = x.
That is,

Ip(x) =
〈〈

X
p X=x

〉〉
.

PDG semantics just so happen to give the standard meaure of
compatibility between a sample and distribution.
“surprise”: a particular kind of internal conflict.
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For entire dataset

Surprise as Inconsistency
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Priors and Regularizers

Big Table of Objectives
Objective PDG Equation

Marginal
Information

〈〈
Z X

p

x

〉〉
− log p(X =x)

Cross Entropy
(Supervised)

〈〈
YX

data (β:∞)

f

〉〉
1
m

m∑
i=1

[
log 1

f(yi|xi)

]
−Hdata(Y |X)

Accuracy
〈〈

YX

h

f

D
(β)

〉〉
−β log

(
accuracyf,D(h)

)

Square Loss

〈〈
YX

N (f(x), 1)

N (g(x), 1)

D
(β:∞)

〉〉
ED

(
f(X) − h(X)

)2
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Inconsistency as a Divergence

You believe both p(X) and q(X).

Your inconsistency: a divergence between p and q?

Let IDPDG
(r,s) (p, q) :=

X
p

(β:r)

q

(β:s)

Lemma (Closed Form)

IDPDG
(r,s) (p, q) = −(r + s) log

∑
x

(
p(x)rq(x)s

) 1
r+s

.
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Divergences as Inconsistencies

r

s

Non-convex region

Axis of Symmtry

Rényi divergences
for α ∈ (0, 1)

(negative) Rényi divergences
for α ∈ (1, ∞)

Chernoff

Divergences

α-divergences

IDB(p, q) Bhattacharya
distance

...
ID(q ∥ p)

Reverse KL

ID(p ∥ q)
KL Divergence

· · ·
Iq(p > 0)
Max Entropy

−χ2(p ∥ q)
−χ2 divergence

− log sup p
q

−Min Entropy

2IDB(p, q)

Plot of〈〈
X

p
(β:r)

q
(β:s)

〉〉
for various r and s
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A Very Useful Fact

Believing more things can’t make you any less inconsistent.

Lemma (monotonicity of inconsistency)

1 ⟨⟨M ⊔ M′⟩⟩ ≥ ⟨⟨M⟩⟩.
2 If β > β′, then ⟨⟨M⟩⟩ ≥ ⟨⟨M′⟩⟩.
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Variational Auto-Encoders, Take 1
Structure consists of two neural networks (cpds):

X Z X̂encoder
e(Z | X)

decoder

d(X | Z)

Objective:

▶ For each x, want to minimize Rec(x) :=
“reconstruction error”
− E

z∼e|x
log d(x | z)

▶ Also have a distribution p(Z) that we want encodings to match.
▶ Combine to get VaE objective:

ELBOp,e,d(x) :=

−ID
(
e(Z|x)

∥∥ p(Z)
)︸ ︷︷ ︸

divergence from prior

−Rec(x) = E
z∼e|x

[
log p(z)d(x | z)

e(z | x)

]
≤

“evidence”
log Prpd(x)

Urge to use graphical models (even if can’t quite capture entire VaE)

e(Z | X) has same target as p(Z), so can’t put in BN;
The heart of the VaE is not its structure, but its objective.
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Variational Auto-Encoders, Take 2

Structure:

e(Z | X) : encoder
d(X | Z) : decoder
p(Z) : prior
observe a sample x

Objective function is free:

Z X

e

(∞)

d

xp
= ELBOp,e,d(x)

=

〈〈
X Z X̂(∞)

e(Z | X) d(X | Z)x x

p 〉〉
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Another Visual Proof: Data Processing Inequality

Visual Proof: The Variational Bound

− log Prp,d(X =x) =〈〈
Z X

d
xp

〉〉
≤
〈〈

Z X
∞
e

d

xp
〉〉

= − ELBOp,e,d(x).
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Recap

PDGs. . .
capture inconsistency, including conflicting information from
multiple sources with varying reliability.

are especially modular.
cleanly separate quantitative from qualitative information, and can
express variable confidence in each (β and α).
naturally capture BNs and factor graphs, with the best-scoring
distribution.
simultaneously capture many standard loss functions and
divergences with the value of the scoring function.
give us a clean visual language for reasoning about the relationships
between objectives.

But there is much more to be done!
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Outline for Section 8

1 Introduction

2 Modeling Examples
What are Floomps?
Smoking BN Manipulations
Union and Restriction

3 Syntax

4 Semantics

5 Capturing other
Graphical Models

Bayesian Networks
Factor Graphs

6 Inference

7 Inconsistency as Loss
Motivation
Standard Metrics
Inconsistency and Statistical
Divergences
Variational AutoEncoders

8 Other Aspects of PDGs
Category Theory
Databases
Other Projects Work
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More Category Theory

A B

C D

f

g k

h

PDG inconsistency measures how close the diagram is to commuting

exp
(

− 1
γ

⟨⟨M⟩⟩γ

)
= #

{
a : kfa = hga

}
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More Category Theory

PDG M :=
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f
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h
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Databases

DatabaseR1
A B C

a1 b1 c1
a2 b2 c2

R3
C D

c2 d1
c1 d3

R2
B D

b2 d1
b3 d2
b4 d3

Relational Schema

A

B

C

D
R1

R2

R3

Row-PDG

A
C

B D

R1

R2

R3

Proposition
If D is a database and µ is a joint distribution over MD, then
µ ∈ {{MD}} iff Supp(µ) is a universal relation for D.

Corollary
MD is consistent iff D is join consistent.
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Ongoing and Future Work

Belief propagation as local inconsistency reduction

Properties of “sub-stochastic” PDGs: semantics for incomplete cpds
Trace Semantics and Composition

▶ Extend semantics to score other objects, not just joint distributions.
▶ Regarding PDGs as probabilistic automata.
▶ Open Question: Do PDGs capture Dependency Networks? ∗

Encoding preferences, and understanding preference changes
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A Different Flavor of Agent

A

UΩ
u

W
p

X1

X2

X3
W

Ice

Cat

Ω

faith

Driven by pursuit of coherence;
not (necessarily) maximization.

PDG Python library available at
https://orichardson.github.io/pdg/
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Proposition (uniqueness for small γ)
1 If 0 < γ ≤ minL βM

L , then [[M]]∗γ is a singleton.
2 lim

γ→0
[[M]]∗γ exists and is a singleton.

This lets us define [[M]]∗ := unique element
(

lim
γ→0

[[M]]∗γ
)

.
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back to semantics properties

Relationships Between Semantics

Proposition (the set of consistent distributions is the zero set of the scoring
function)

{{M}}=
{
µ : [[M]]0(µ)=0

}
.

Proposition (If there there are distributions consistent with M, the
best distribution is one of them. )

[[M]]∗ ∈ [[M]]∗0, so if M is consistent, then [[M]]∗ ∈ {{M}}.

Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 5 / 20



Another View of PDG semantics

[[M]]γ(µ) = E
µ

log
∏

X
L−→Y

(
µ(Y | X)
pL(Y | X)

)β
L

 µ(N )∏
X

L−→Y

µ(Y | X)α
L


γ
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Comparing PDG to Factor Graph Semantics

[[M]](µ) = Eµ

∑
X

L−→Y

[log likelihood / cross entropy︷ ︸︸ ︷
β

L
log 1

p
L
(Y |X) + (α

L
γ − β

L
) log 1

µ(Y |X)︸ ︷︷ ︸
local regularization (if β

L
> α

L
γ)

]
−

global regularization︷ ︸︸ ︷
γ H(µ) .

And the weighted factor graph’s canonical scoring function:

VFEΨ(µ) := E
µ

∑
J∈J

θJ log 1
ϕJ(XJ)

− H(µ)
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Properties of Inconsistency, for minimization

⟨⟨M⟩⟩γ := inf
µ

[[M]]γ

Nice properties for minimization:
The function γ 7→ ⟨⟨M⟩⟩γ is continuous for all γ

The function p 7→ ⟨⟨M ⊔ p⟩⟩γ is smooth and strictly convex on its
interior.
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Back to Factor Graph Definition

VFEΦ(µ) := E
µ

[
−
∑
J∈J

θJ log ϕJ(XJ)
]

− H(µ)
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back to BN theorem

Bayesian Networks: Maximum Entropy?

Common distributions
tend to maximize
entropy subject to
natural constraints.

distribution constraints

Gaussian N (µ, σ2) mean µ, variance σ2

Exponential Exp(λ) positive support, mean λ

Factor graphs moment matching.
· · · · · ·

Bayesian Networks cpds + ???

C1

C2

X

50/50

50/50

Pr(X | C1, C2) ={
1[X = x0] if C1 = C2

Unif(X) if C1 ̸= C2

Corollary
Among the distributions in {{B}}, PrB has the maximum entropy, beyond
the entropy of the given cpds.

IDef says maximize: H(µ) −
∑

X∈N
Hµ(X | Pa X)
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PDG→WFG WFG→PDG

Full Factor Graph Results

Theorem (PDGs are WFGs)

If β = γα, then [[M]]∗γ = Pr(ΦM,β).
Concretely, for all unweighted PDGs N and non-negative vectors v over
the edges of N, and all γ > 0, we have that [[(N, v, γv)]]γ = γ VFE (ΦN,v);
consequently, [[(N, v, γv)]]∗γ = {Pr(ΦN,v)}.

Theorem (WFGs are PDGs)

For all weighted factor graphs Ψ = (Φ, θ) and all γ > 0, we have that
VFEΨ = 1/γ[[MΨ,γ ]]γ + C for some constant C, so PrΨ is the unique
element of [[MΨ,γ ]]∗γ.
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Variations: Surprise as Inconsistency
Proposition (marginal information as inconsistency)
If p(X, Z) is a joint distribution, the (marginal) information of the
(partial) observation X = x is given by

Ip(x) = log 1
p(x) =

〈〈
Z X

p

x

〉〉
.

Proposition (supervised setting: conditional cross entropy)

The inconsistency of the PDG containing f(Y | X) and a
high-confidence empirical distribution Prxy of samples xy = {(xi, yi)} is
equal to the cross entropy ( plus H(Y | X), a constant that depends only on
the data Prxy). That is,〈〈

YX

Prxy (β:∞)

f

〉〉
= 1

|xy|
∑

(x,y)∈xy

[
log 1

f(y | x)

]
− HPrxy(Y | X).
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Proposition (Accuracy as Inconsistency)
Consider a predictor h : X → Y for true labels f : X → Y , and a
distribution D(X). The inconsistency of believing all three is

〈〈
YX

h

f

D

(β)

〉〉
= −β log

(
accuracyf,D(h)

)
= β ID[f = h].

Thought of as a feature of h, but as a PDG, symmetry between f, h
is clear.
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Proposition (Mean Square Error as Inconsistency)〈〈
YX

N (f(x), 1)

N (g(x), 1)

D

(β:∞)

〉〉
= ED

(
f(X) − h(X)

)2
=: MSE(f, h)
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back to table of losses

Proposition (Regularizers as priors)
Suppose you believe Y ∼ fθ(Y ),

have a prior p(θ), and have an
empirical distribution D(Y ) which you trust.Then the inconsistency of
also believing Θ = θ0 isthe regularized-cross entropy loss, and controlled
by the strength βp of the prior. That is,

That is,〈〈
Θ Y

f

p
(β)

θ0

D
(∞)

〉〉

= E
y∼D

[
log 1

f(y | θ0)

]
+ β log 1

p(θ0) − H(D)

Using a (discretized) unit gaussian as a prior, p(θ) = 1
k exp(−1

2θ2) for a
normaization constant k, the RHS becomes

ED

[
log 1

f(Y | θ0)

]
︸ ︷︷ ︸

Cross entropy loss of fθ w.r.t. D
(data-fit cost of θ0)

+ β

2 θ2
0︸ ︷︷ ︸

ℓ2 regularizer
(complexity cost of θ0)

+β log k − H(D)︸ ︷︷ ︸
constant in f and θ0

.
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For entire dataset

Surprise as Inconsistency
Consider a distribution p(X).
The surprise (information content) at seeing a sample x is:

Ip(x) := log 1
p(X =x) .

Proposition
Average Surprise is the inconsistency of simultaneously believing p and
an emperical distribution Prx, with high confidence ( plus H(Y | X), a
constant that depends only on the data Prxy) That is,

Ip(x) =
〈〈

X
p Prx

(β:∞)

〉〉
+ H(Prx).

PDG semantics just so happen to give the standard meaure of
compatibility between a sample and distribution.
“surprise”: a particular kind of internal conflict.
Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 16 / 20
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back to variational bound proof

Visual Proof: Data Processing Inequality

IDPDG
(β,ζ)

(
p
∥∥∥ q
)

≥ IDPDG
(β,ζ)

(
f ◦ p

∥∥∥ f ◦ q
)

〈〈
X

q

(ζ)
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Outline for Section 15
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Deficiency
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BNs as MaxEnt
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PDGs as diagrams of the
Markov Category
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Back to Commutative Diagrams

Definition (PDG)
N : Set (node set)

V : N → Set (node values)
E ⊆ N × N × Label (edge set)

For X
L−→ Y ∈ E ,

p
L

: V(X) → ∆V(Y ) (edge cpd)
α

L
: R (functional determination)

β
L

: R (cpd confidence)

• (N , V) is a set of variables

• (N , E) is a multigraph
• (N , E , α), the qualitative

data, forms a weighted
multigraph.

• We call (N , E , V, p) an
unweighted PDG

▶ and give it semantics as
though αL = βL = 1.

Let Mark be the category of measurable spaces and Markov kernels.

Equivalent Categorical Definition
An unweighted PDG is a functor ⟨p, V⟩ : Paths(N , E) → Mark.
So a PDG is formally a diagram in Mark.
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What do you do with diagrams? Take limits / colimits.

· · · X1 X2
X3 · · ·

V
∀ L

∼=X1X3

∃!

For the deterministic sub-PDG Mdet ⊆ M:

limMdet =
(

natural
sample space Ω, random

variables
{

X̃ : Ω → V(X)
}

X∈N

)

In general: limM =
(
Verts( LM︸ ︷︷ ︸

Locally Consistent Polytope
(possible states of the Sum-Product algorithm)

), { variable marginals }
)

For a BN B: limMB =
(

11 ,
{

PrB(X)
}

X∈N

)

Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 19 / 20



What do you do with diagrams? Take limits / colimits.

· · · X1 X2
X3 · · ·

V
∀

L

∼=X1X3

∃!

For the deterministic sub-PDG Mdet ⊆ M:

limMdet =
(

natural
sample space Ω, random

variables
{

X̃ : Ω → V(X)
}

X∈N

)

In general: limM =
(
Verts( LM︸ ︷︷ ︸

Locally Consistent Polytope
(possible states of the Sum-Product algorithm)

), { variable marginals }
)

For a BN B: limMB =
(

11 ,
{

PrB(X)
}

X∈N

)

Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 19 / 20



What do you do with diagrams? Take limits / colimits.

· · · X1 X2
X3 · · ·

V
∀ L

∼=X1X3

∃!

For the deterministic sub-PDG Mdet ⊆ M:

limMdet =
(

natural
sample space Ω, random

variables
{

X̃ : Ω → V(X)
}

X∈N

)

In general: limM =
(
Verts( LM︸ ︷︷ ︸

Locally Consistent Polytope
(possible states of the Sum-Product algorithm)

), { variable marginals }
)

For a BN B: limMB =
(

11 ,
{

PrB(X)
}

X∈N

)

Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 19 / 20



What do you do with diagrams? Take limits / colimits.

· · · X1 X2
X3 · · ·

V
∀ L

∼=X1X3

∃!

For the deterministic sub-PDG Mdet ⊆ M:

limMdet =
(

natural
sample space Ω, random

variables
{

X̃ : Ω → V(X)
}

X∈N

)

In general: limM =
(
Verts( LM︸ ︷︷ ︸

Locally Consistent Polytope
(possible states of the Sum-Product algorithm)

), { variable marginals }
)

For a BN B: limMB =
(

11 ,
{

PrB(X)
}

X∈N

)

Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 19 / 20



What do you do with diagrams? Take limits / colimits.

· · · X1 X2
X3 · · ·

V
∀ Ω ∼=X1X3

∃!

For the deterministic sub-PDG Mdet ⊆ M:

limMdet =
(

natural
sample space Ω, random

variables
{

X̃ : Ω → V(X)
}

X∈N

)

In general: limM =
(
Verts( LM︸ ︷︷ ︸

Locally Consistent Polytope
(possible states of the Sum-Product algorithm)

), { variable marginals }
)

For a BN B: limMB =
(

11 ,
{

PrB(X)
}

X∈N

)

Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 19 / 20



What do you do with diagrams? Take limits / colimits.

· · · X1 X2
X3 · · ·

V
∀ L

∼=X1X3

∃!

For the deterministic sub-PDG Mdet ⊆ M:

limMdet =
(

natural
sample space Ω, random

variables
{

X̃ : Ω → V(X)
}

X∈N

)

In general: limM =
(
Verts( LM︸ ︷︷ ︸

Locally Consistent Polytope
(possible states of the Sum-Product algorithm)

), { variable marginals }
)

For a BN B: limMB =
(

11 ,
{

PrB(X)
}

X∈N

)

Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 19 / 20



What do you do with diagrams? Take limits / colimits.

· · · X1 X2
X3 · · ·

V
∀ L

∼=X1X3

∃!

For the deterministic sub-PDG Mdet ⊆ M:

limMdet =
(

natural
sample space Ω, random

variables
{

X̃ : Ω → V(X)
}

X∈N

)

In general: limM =
(
Verts( LM︸ ︷︷ ︸

Locally Consistent Polytope
(possible states of the Sum-Product algorithm)

), { variable marginals }
)

For a BN B: limMB =
(

11 ,
{

PrB(X)
}

X∈N

)
Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 19 / 20



Oliver Richardson Probabilistic Dependency Graphs and Inconsistency 20 / 20


	Introduction
	Modeling Examples
	What are Floomps?
	Smoking BN Manipulations
	Union and Restriction

	Syntax
	Semantics
	Capturing other Graphical Models
	Bayesian Networks
	Factor Graphs

	Inference
	Inconsistency as Loss
	Motivation
	Standard Metrics
	Inconsistency and Statistical Divergences
	Variational AutoEncoders

	Other Aspects of PDGs
	Category Theory
	Databases
	Other Projects Work

	Appendix
	Hyper-graphs
	The Information Deficiency
	More on Semantics
	More on Graphical Models
	BNs as MaxEnt

	More Losses
	Regularizers

	More Visual Proofs
	More Category Theory
	PDGs as diagrams of the Markov Category



