
Research Statement Oliver Richardson

Foundations for Fallible Artificial Agents

The standard picture of an ideal agent—a perfectly rational actor with clear probabilistic beliefs and
indisputable preferences [20, 17]—is useful and compelling. Despite its many opponents over the years,
and well-documented conceptual shortcomings [18, 5], the simplicity and power of this formalism have
led it to a place of cultural dominance among computer scientists. Today, uncertainty is probability and
values are utilities. Still, not every aspect of cognition is most clearly described in terms of expected
utility maximization. Expected utility maximizers are inflexible and brittle. They maintain a fully formed
probabilistic picture of the world at all times, and are slaves to their own unchanging preferences. Do we
really want to build powerful artificial agents that aspire to this paragon of thought (alone)?

Fortunately, the AI systems we build in practice do not embody our unrealistic rationality standards.
Discriminative models (e.g., classifiers and policies) contain only a partial probabilistic description of the
world. We train them by updating parameters incrementally, moving on from a training example long before
we classify it properly—yet a Bayesian update serves to establish a proposition with absolute certainty. We
always use the same handful of objectives to train models, even though every utility function is equally valid.
We augment these objectives with regularizers to prevent over-optimization, in a nod to a kind of epistemic
modesty that an expected utility maximizer does not have. We inject noise, which means sometimes making
“sub-optimal” decisions, but also makes for a more robust system overall [19]. (For example, auto-regressive
language models are much worse during inference when sampling is done at temperature zero, always selecting
the most probable next word.) Is this enormous gap between what an agent is in theory and what we do
in practice simply a result of hacky engineering choices? Or perhaps, in light of a better understanding of
how artificial agents (and indeed human minds) work, we ought to revisit the mathematical underpinnings
of what an agent is in the first place.

My research develops conceptually rich, expressive, and clean mathematical foundations for agents, that
aim to be simultaneously more human and more useful for describing modern AI systems. The result of
this project has been a surprisingly elegant unifying picture of agency quite different from the
standard one. In it, agents can be decomposed into sub-agents [14]. They can hold inconsistent beliefs,
which generate a rich landscape of internal conflict. They are driven not by maximizing some arbitrary
utility function, but rather by the pursuit of consistency (although in some cases, the two are the same)
[3, 13]. And, in the same stroke, this picture validates and explain a wide breadth of ad-hoc choices that we
regularly make in building practical artificial agents. We now describe some pieces of this picture in finer
detail.

Probabilistic Dependency Graphs (PDGs). In some cases, you might be able to articulate the gold
standard for a rational belief: a complete joint distribution µ over relevant outcomes. But in other cases,
you may have only have only partial probabilistic information about how some variables depend on others
(after all, an explicit representation of such a distribution is exponentially large), Bayesian Networks (BNs)
[12, 7] are a way of converting a collection P of local probabilistic relationships into a full joint distribution,
in the special case where each variable is the target of precisely precisely one conditional distribution and
the dependencies are acyclic. This requires only that the modeler assume the conditional independencies
that arise by interpreting P causally.

But what if you aren’t prepared to commit to this causal picture? Moreover, what if your local beliefs
do not form a complete, acyclic picture of the world? Such epistemic situations are very common in real
life. Suppose two different scientist perform experiments on Y , but control for different variables. Let
p(Y |X) and q(Y |Z) be conditional probability distributions representing the respective outcomes of these
two experiments. It is not possible to form a BN that includes both p and q. Another way of getting a joint
distribution is to simply multiply all the distributions together, and then renormalize. This approach yields
another (arguably more general) kind of graphical model, called a factor graph [8]. But, in general, factor
graphs have some conceptual problems. If X and Z turn out to be highly correlated and p = q are the same,
then one might hope to recover a joint probability µ that satisfies µ(Y |X) = p = q. But the approach of
multiplying p and q together yields µ(Y |X) ∝ p(Y |X)2. In general, the components of a factor graph cannot
be given an interpretation in isolation; they have meaning only relative to one another.

1

Research Statement Oliver Richardson

I have introduced a new class of grpahical models called Probabilisitic Dependency Graphs (PDGs) [15],
that address these shortcomings. PDGs allow a modeler to specify arbitrary (even conflicting)
probabilistic and causal information, and with any degree of confidence. Compared to BNs,
PDGs are far more flexible and expressive. Compared to FGs, they are much more interpretable, and
retain a probabilistic interpretation in all cases. PDGs are more modular than existing graphical models;
their components can be recombined easily and without loss of meaning. What’s more, PDGs actually
generalize Bayesian Networks (BNs) and factor graphs (FGs). The key to making this work is a principled
information-theoretic scoring function that scores a candidate distribution µ based on how compatible it is
with the information in a PDG. More precisely, PDGs are given semantics by two scoring functions—one
that measures compatibility with the observational probabilities, and one that measures fit to the graphical
structure. Both functions are sums of relative entropies, weighted by confidence.

The observational scoring function is straightforward, yet the structural one, although almost identical
in structure, is a little bit harder to get one’s head around, especially if one isn’t eager to buy analogies to
thermodynamics. However, in the last few months, we have discovered a concrete interpretation of it for a
very broad class of structures, in terms of structural causal models. This has lead us to a novel definition of
what it means for a distribution to reflect the structure of a set of independent causal mechanisms along a
directed hypergraph. Of course, this definition extends the independencies of a Bayesian Network, but it also
cleanly captures functional dependencies, and leads to interesting results for cyclic models. In particular, it
significantly undermines a standard argument against multivariate Shannon entropy.

Inference for BNs and FGs is NP-hard, and clearly PDG inference is at least as difficult. The only
subclass for which inference is tractable consists of those BNs whose structure is “tree-like” (i.e., graphs with
bounded treewidth) [2], and in this case, inference can be done in linear time. For PDGs more generally,
though, it was not obvious how to do inference at all (let alone efficiently), even long after we had a clear
understanding of PDGs. It turns out that for PDGs with bounded tree-width, inference can also be done in
polynomial time (O(n2.89)) [16]. The first key insight was that, with some care, finding a distribution µ that
minimizes the PDG scoring function can be reduced to special kind of convex program that uses exponential
cone constraints, which was shown to be require polynomial time by Nesterov [11]. To get a polynomial
algorithm, we also needed a series of additional insights that allow us to express that optimization problem
much more compactly for PDGs of bounded treewidth, and a careful analysis of approximation guarantees.

When we were first developing the theory of PDGs, our motivations were actually not among the benefits
we have outlined so far. For me personally, one goal was to bring BNs in line with the category theory, the
interlingua of universal mathematical constructions, and indeed PDGs admit a nice presentation in those
terms. But far and away the most important motivation, was the ability to capture inconsistent beliefs.
We wanted to describe the process of resolving inconsistencies, which demanded a way to talk about them.
Although we did not realize this at the time, our way of doing this extended the usefulness of PDGs far
beyond specifying a joint probability distribution.

Loss as the Inconsistency of a PDG. Internal conflict is an important aspect of human thought. Yet we
computer scientists build artificial agents using probabilistic models that, by construction, cannot represent
conflicted beliefs. Inconsistency is clearly undesirable, but we stand to gain a lot by being able to represent
it. A PDG’s degree of inconsistency is the minimum value of its scoring function, over all joint distributions
µ. For example, a Bayesian network has inconsistency zero, because there exists a distribution µ which
simultaneously matches all of its constituent probabilities and also its structure. But in general, beliefs can
conflict with one another.

To to take a simple example, one could have a PDG consisting of two different probabilities p(X) and
q(X) over the same variable, and no joint distribution µ that can simultaneously satisfy both constraints,
unless p = q. Intuitively, if p and q are close to one another, it is not very inconsistent to simultaneously
hold both beliefs, but it becomes more inconsistent as p and q get further apart. The precise numerical value
of this inconsistency depends not just on p and q, but also in the respective respective confidences we have
in them. It turns out that, for different choices of confidence, the resulting inconsistency measure generates
a large array of standard statistical divergences, including the Rényi divergences, forward and reverse KL
divergence, and Chernoff divergences. The result is a unified epistemic interpretation of all of these standard

2

Research Statement Oliver Richardson

statistical divergences [13]. It also gives us a deep insight into relationships between them: properties such
monotonicity of Rényi divergences, the data processing inequality, and many others, can all be viewed as
simple consequences of a single intuitive fact: “more beliefs and higher confidence cannot make you any less
inconsistent”.

All of this is just for PDGs containing two beliefs over the same variable. In general, PDG inconsistency
is a vast generalization of these divergences to arbitrary structured objects [13]. Almost uncannily, the
appropriate loss function in every standard learning setting arises simply by writing down the relevant parts
of the picture as a PDG, and then measureing the resulting inconsistency. The inconsistency of a classifier
and labeled data its log accuracy. If instead the classifier specifies the mean of a Gaussian, the inconsistency
is mean squared error. This recovers a well-known connection between priors and regularizers. It even
gives a clean interpretation of notoriously difficult-to-understand variational objectives: the inconsistency of
simultaneously believing an encode e(Z|X), a decoder d(X|Z), a prior p(Z), and a sample x, is the ELBO
(evidence lower bound), the standard loss function used to train a variational autoencoder [6]. The proof of
the bound after which the ELBO is instructive and straightforward: it correpsonds directly to the fact that
adding the encoder to the PDG can only increase inconsistency.

At first glance it may seem as though the minimum value of the PDG scoring function (i.e., the incon-
sistency) is just one aspect of the scoring function—but, perhaps surprisingly, the two are equivalent. The
scoring function for a PDG M , applied to a joint distribution µ, is the inconsistency of the PDG obtained
by adding µ (with high confidence) to M . Furthermore, calculating a PDG’s degree of inconsistency and
describing the corresponding optimal distribution are even more closely related than it might seem. It turns
out that the ability to precisely calculating a PDG’s degree of inconsistency is enough to do inference in
essentially constant time [16]. In a sense, this means that it is no easer to know how exactly how inconsistent
you are, than it is resolving all of your inconsistencies.

Since calculating a PDG’s degree of inconsistency is so difficult in the general case, an obvious approach
is to restrict one’s attention to one small part of the model at a time, and resolve inconsistencies locally.
This leads to an “approximate” algorithm for resolving inconsistencies bit-by-bit: focus on one small part of
the graph, and resolve inconsistencies in it by controlling parameters of another small part. The result is a
very general algorithm called Local Inconsistency Resolution [14]. Immediate special cases include the EM
algorithm [10], message passing algorithms [9], adversarial training [1], and the adversarial process used to
train generative adversarial networks (GANs) [4].

Confidence Functions. One key component of a PDG is a numerical degree of “confidence” in each piece
of probabilistic information (and in the functional depednence suggested by each arc). There is a strong
precedent for doing things the way we do—i.e., by taking weighted sums of evidence—but what exactly does
confidence mean in contexts like this? Confidence is often viewed as a synonym for likelihood, but that’s
not what’s happening here. While high confidence is difficult to distinguish from high probability, there is a
sense in which low confidence can bet quite different from low probability. What does a weight of zero mean
in the context of linear regression, or in the multiplicative weights algorithm? It doesn’t mean that a given
feature is wrong, but rather that it is not trusted. Suppose you are 60% sure that X is true, and then an
untrusted party tells you X is true. Having no confidence in this statement is quite different from thinking
that X is false, or that this statement is a lie. You simply don’t trust it.

Although obvious in retrospect, this distinction can be difficult to see at first. This may be because of
the cultural dominance of probability, which is itself a coherent (and not unrelated) interpretation of the
word “confidence”. The mathematical foundation for these ideas applies extremely broadly. It helps to
explain why we update our learning models incrementally (i.e., with “low confidence”). In some sense, it
genrealizes the ideas of Shafer’s Theory of Evidence [18] to almost any belief state. These ideas have laid
out in an unpublished paper entitled Learning with Confidence which I expect to submit in the coming
months. The key feature of a confidence function is that it allows the learning of a statement φ to be
continuously parameterized by confidence value s ∈ [0, 1], where s = 0 leaves your beliefs unchanged, s = 1
is an idempotent update.

3

Research Statement Oliver Richardson

Mixture Languages. Confidence functions can be used as the basis of an inductive semantics for a
programing language. There is an important distinction between a process whose state is continuous, and one
that evolves continuously over time. There are many general-purpose programming abstractions for modeling
processes with continuous state (e.g., real-valued variables and probabilistic programs), but programming
languages for modeling of continuous time processes are quite domain-specific. This is because the correctness
of such computations is not considered a matter of computer science—after all, the correctness of a physics
engine is a matter of physics, and the correctness of an animation is a matter of taste. Yet continuous-
time processes of every kind compose in the same (surprisingly unfamiliar) way: they can be “mixed”.
This is different from the dominant model of concurrency, in which parallel composition amounts to a
non-deterministic interleaving of atomic instructions and is notoriously unintuitive. But for continuous
processes—and in particular anything described by a confidence function—concurrency has a single clear and
intuitive meaning: run them at the same time. Roughly speaking, this coincides with a uniform infinitesimal
interleaving. In work that will be presented at the Languages for Inference (LAFI) workshop at POPL
‘24, Jialu Bao and I outline a hierarchy of operational semantics for mixture languages and show how to
inductively define sequential and parallel composition, as well as conditionals in this setting.

One of the most interesting discoverie is a duality between observe and sample commands. Relative
entropy is an asymmetric measure of discrepancy between two probability distributions, one representing a
belief and the other representing reality. We give semantics to observe p(Y |X) by allowing p to play the
rule of belief, and to sample Y ∼ p | X by allowing it to play the role of reality. With these definitions,
we find that an observe command amounts to multiplicative interpolation, while a sample command
interpolates additively. Moreover, PDGs (and hence other graphical models) are mixtures of observe
commands. Traditional probabilistic programs are sequences of sample commands, which are themselves
mixtures of deterministic programs. The standard algorithms captured by local inconsistency resolution [14]
can also be described with such a programming language.

Next Steps and Future Work

Going forwards, I would like to extend these mathematical foundations of fallible probabilistic agents. Al-
though much of what I have described is quite abstract, I am also an entheusiastic coder, and I am looking
to reintroduce a focus on application to my work. Here are some of the next ideas I am considering.

PDG-based Logic. There is a natural way to use PDG semantics to define a logical entailment relation.
The resulting logic is quite unusual because it captures a lot of probabilitic reaosning, and gives meaningful
results even if all relevant formulas are contradictions. PDGs also naturally give rise to an epistemic variant
of it. PDGs as Probabilistic Databases. PDGs are one way of storing probabilistic information. Another is a
probabilistic database. Preliminary investigations suggest that PDGs can store similar kinds of information,
but without making as many independence assumptions. I have also shown that the structural aspects of
PDGs can model quantifiers, which allow PDGs to also capture the query language.

Alternative Foundations for RL Agents. PDGs can be used to give a beautifully symetric description
of an agent interacting with an environment (or more generally, multiple agents interacting with one another),
of which all of the standard reinforcement learning settings (MDPs, POMDPs) are special cases. I would
like to build out this framework more, and suspect that it may naturally lead to a particularly clean account
of continual learning.

Applications for PDGs. The most important future direction for me, is to begin applying these ideas
to real-world problems. We have seen how, in any situation in which there is a common loss function, PDG
inconsistency reproduces it. But what about non-standard situations? Although I have several toy examples
where this way of selecting a loss function is better than the current standard, I would like to find a setting
people care about in which PDGs provide a different loss than one currently in use. I have some initial
reasons for thinking that PDGs might be particularly well-suited to modeling gene regulatory networks.

4

Research Statement Oliver Richardson

References

[1] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Š rndić, Pavel Laskov, Giorgio Gi-
acinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Advanced Information
Systems Engineering, pages 387–402. Springer Berlin Heidelberg, 2013.

[2] Venkat Chandrasekaran, Nathan Srebro, and Prahladh Harsha. Complexity of inference in graphical
models. arXiv preprint arXiv:1206.3240, 2012.

[3] Leon Festinger. Cognitive dissonance. Scientific American, 207(4):93–106, 1962.

[4] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples, 2014.

[5] Joseph Y Halpern. Reasoning About Uncertainty. MIT press, 2017.

[6] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

[7] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
press, 2009.

[8] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on information theory, 47(2):498–519, 2001.

[9] Tom Minka. Divergence measures and message passing. Technical Report MSR-TR-2005–173, Microsoft
Research, Cambridge, U.K., 2005.

[10] Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse,
and other variants. In Learning in Graphical Models, pages 355–368. Springer, 1998.

[11] Yu E Nesterov, Michael J Todd, and Yinyu Ye. Infeasible-start primal-dual methods and infeasibility
detectors for nonlinear programming problems. Technical report, 1999.

[12] Judea Pearl. Bayesian networks. 2011.

[13] Oliver E Richardson. Loss as the inconsistency of a probabilistic dependency graph: Choose your model,
not your loss function. AISTATS ‘22, 151, 2022.

[14] Oliver E Richardson. The local inconsistency resolution algorithm (workshop version), 2023. ICML
‘23 Workshops: Local Learning Workshop (LLW) and Structured Prediction in Generative Modeling
(SPIGM).

[15] Oliver E Richardson and Joseph Y Halpern. Probabilistic dependency graphs. AAAI ‘21, 2021.

[16] Oliver E Richardson, Joseph Y Halpern, and Christopher De Sa. Inference for probabilistic dependency
graphs. UAI ‘23, 2023.

[17] Leonard J Savage. The theory of statistical decision. Journal of the American Statistical association,
46(253):55–67, 1951.

[18] Glenn Shafer. A Mathematical Theory of Evidence, volume 42. Princeton university press, 1976.

[19] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[20] John von Neumann and Oskar Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1953.

5

