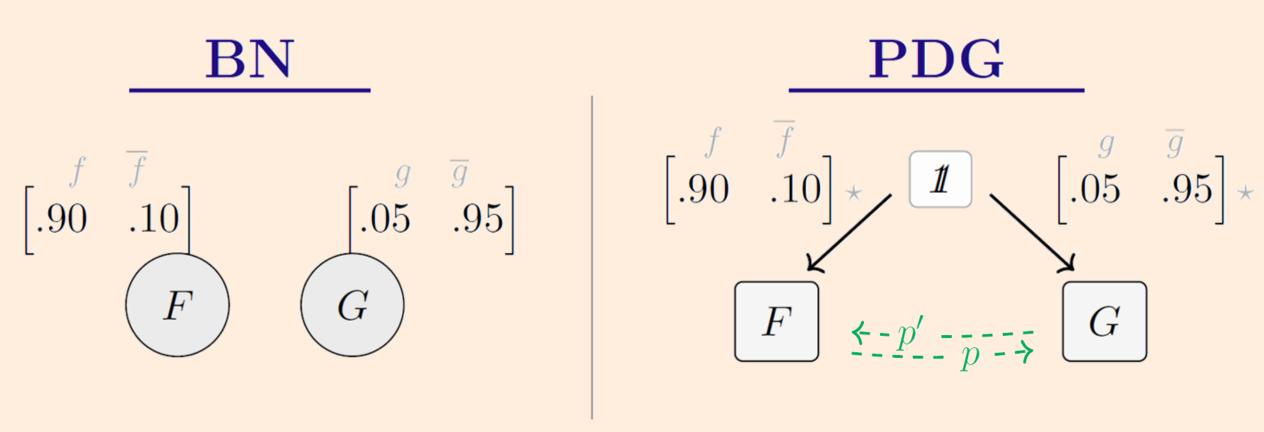
Why Yet Another Graphical Model?

PDGs...

- capture inconsistency, including conflicting information from multiple sources with varying reliability.
- are especially modular; to combine info from two sources, simply take a PDG union. This incorporates new data (edge cpds) and concepts (nodes) without affecting previous information.
- cleanly separate quantitative info (the cpds) from qualitative info (the edges), with variable confidence in both (the weights β and α). This is captured by terms Inc and IDef in our scoring function.
- have (several) natural semantics; one of them allows us to pick out a unique distribution. Using this distribution, PDGs can capture BNs and factor graphs.

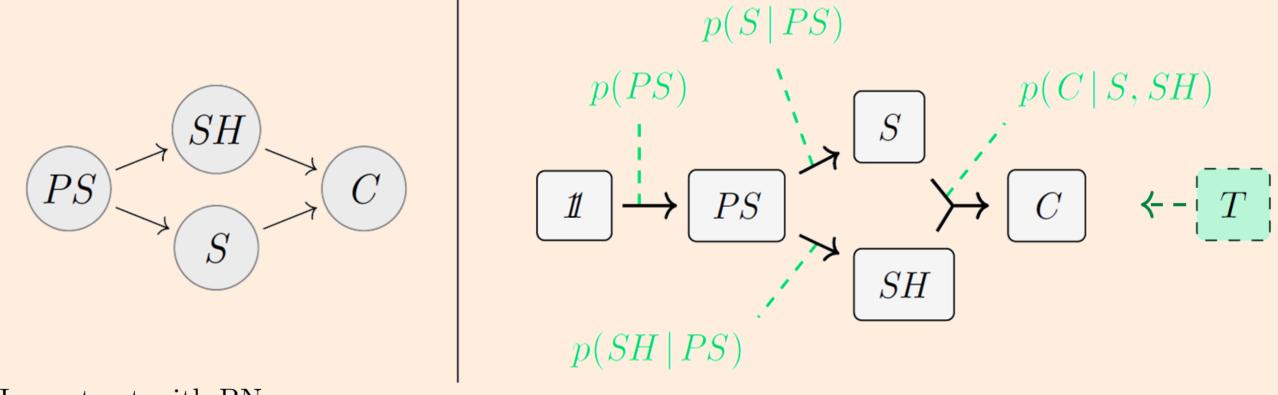
Modeling Examples

A SIMPLE ILLUSTRATION



- The cpds of a PDG are attached to edges, not nodes.
- PDGs can incorporate arbitrary new probabilistic information.
- PDGs can be inconsistent
 - ► ... but BNs must resolve inconsistency first, which may break symmetry and irrecoverably lose information.

Bayesian Networks as PDGs

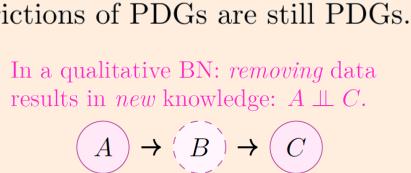


Restricted PDG

 $\longrightarrow C \leftarrow T$

In contrast with BNs:

- edge composition has *quantitative* meaning, since edges have cpds;
- a variable can be the target of more than one cpd;
- arbitrary restrictions of PDGs are still PDGs.



Combining PDGs

$$C \downarrow T + \downarrow S \downarrow C \downarrow T = \downarrow S \downarrow C \downarrow T \downarrow SH$$

$$SH \downarrow SH$$

$$SH \downarrow SH$$

$$SH \downarrow SH$$

$$SL \downarrow SH$$

$$SL \downarrow SH$$

- Arbitrary PDGs may be combined without loss of information
- They may have parallel edges (e.g., p, q), which directly conflict.

PROBABILSITIC DEPENDENCY GRAPHS

Oliver E. Richardson – Joseph Y. Halpern

Cornell University
Department of Computer Science

Definition (Probabilistic Dependency Graph)

A PDG is a tuple $\mathcal{M} = (\mathcal{N}, \mathcal{E}, \mathcal{V}, \mathbf{p}, \alpha, \beta)$, where

 \mathcal{N} is a finite set of nodes (variables)

 \mathcal{V} gives a set $\mathcal{V}(X)$ of possible values for each X;

 \mathcal{E} is a set of labeled edges $\{X \xrightarrow{L} Y\}$, and associated to each $X \xrightarrow{L} Y$, there is:

 \mathbf{p}_{L} a cpd $\mathbf{p}_{L}(Y \mid X)$;

 $\alpha_{\!\scriptscriptstyle L} \in [0,\infty)$ a confidence in the functional dependence $X \to Y$

 $\beta_L \in (0, \infty)$ a confidence in the reliability of \mathbf{p}_L .

PDG SEMANTICS

- 1. $\{m\}$ The set of joint distributions consistent with m;
- 2. $[m]_{\gamma}$ A loss function (parameterized by γ), scoring a joint distribution's compatibility with m;

tradeoff parameter $\gamma \geq 0$

 $[m]_{\gamma}(\mu) := Inc_{m}(\mu) + \gamma IDef_{m}(\mu)$

(Quantitative)

Qualitative

Definition (Inc)

The *incompatibility* of μ with m:

$$Inc_{\mathbf{m}}(\mu) := \sum_{X \xrightarrow{L} Y} \beta_L \ \mathbf{D}(\mu_{Y|X} \parallel \mathbf{p}_L)$$

The inconsistency of \boldsymbol{m} is

 $Inc(\mathbf{m}) := \inf_{\mu \in \Delta \mathcal{V}(\mathbf{m})} Inc_{\mathbf{m}}(\mu).$

Definition (IDef) The *m*-information deficit of μ : # bits to separately determine each target, knowing the source IDef_m(μ) = $\sum \alpha_L H_{\mu}(Y|X) - H(\mu)$

 $X \xrightarrow{L} Y$ # bits to determine all vars

3. [m]* The (unique) "best" joint distribution (in the quantitative limit).

$$[[m]]^* := \lim_{\gamma \to 0} \arg \min_{\mu} [[m]]_{\gamma}(\mu)$$

Properties of Semantics

Proposition (the second semantics extends the first)

 $\{\!\!\{\boldsymbol{m}\}\!\!\} = \{\mu : [\![\boldsymbol{m}]\!]_0(\mu) = 0\}.$

Proposition (If there there are distributions consistent with m, the best distribution is one of them.)

 $[m]^* \in [m]_0^*$, so if m is consistent, then $[m]^* \in \{m\}$.

Proposition (uniqueness for small γ)

- If $0 < \gamma \leq \min_{L} \beta_{L}^{m}$, then $[[m]]_{\gamma}^{*}$ is a singleton.
- $2 \lim_{\gamma} [m]_{\gamma}^* exists and is unique.$

Capturing BNs as PDGs

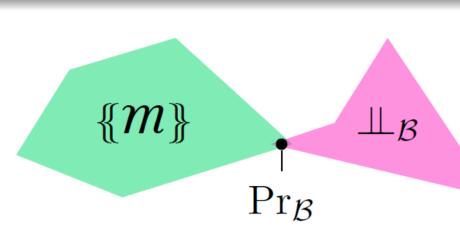
Let $\mathcal{M}_{\mathcal{B},\beta}$ be the PDG corresponding to the BN \mathcal{B} , with weights β .

Theorem (BNs are PDGs)

If \mathcal{B} is a BN and $\Pr_{\mathcal{B}}$ is the distribution it specifies, then for all $\gamma > 0$ and all vectors β ,

$$\llbracket m_{\mathcal{B},\beta} \rrbracket_{\alpha}^* = \operatorname{Pr}_{\mathcal{B}}.$$

space of distributions consistent with $m_{\mathcal{B}}$ (which minimize Inc)

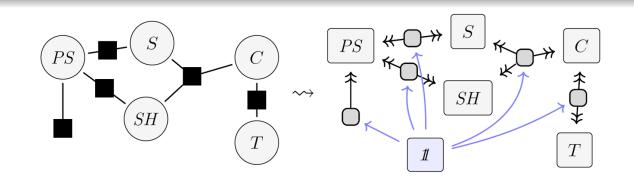


space of distributions with independencies of \mathcal{B} (which can be shown to minimize IDef)

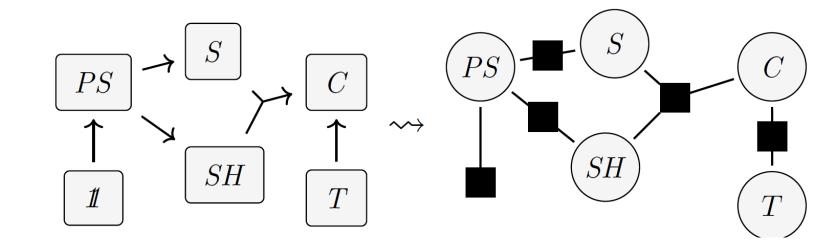
Capturing Factor Graphs as PDGs

Theorem (PDGs capture factor graphs)

We can naturally translate factor graphs and their exponential families, into PDGs, in a way which preserves their semantics.



PDGs as Factor Graphs



The cpds of a PDG are essentially factors. Are the semantics the same? Only for $\gamma = 1$

$$[[m]]_{\gamma}(\mu) = \mathbb{E}_{\mathbf{w} \sim \mu} \left\{ \sum_{X \stackrel{L}{\longrightarrow} Y} \left[\beta_L \log \frac{1}{\mathbf{p}_L(y^{\mathbf{w}}|x^{\mathbf{w}})} + (\alpha_L \gamma - \beta_L) \log \frac{1}{\mu(y^{\mathbf{w}}|x^{\mathbf{w}})} \right] - \gamma \log \frac{1}{\mu(\mathbf{w})} \right\}.$$

$$|\mathbf{m}|_{\gamma}(\mu) = \mathbb{E}_{\mathbf{w} \sim \mu} \left\{ \sum_{X \stackrel{L}{\longrightarrow} Y} \left[\beta_L \log \frac{1}{\mathbf{p}_L(y^{\mathbf{w}}|x^{\mathbf{w}})} + (\alpha_L \gamma - \beta_L) \log \frac{1}{\mu(y^{\mathbf{w}}|x^{\mathbf{w}})} \right] - \gamma \log \frac{1}{\mu(\mathbf{w})} \right\}.$$

$$|\mathbf{m}|_{\gamma}(\mu) = \mathbb{E}_{\mathbf{w} \sim \mu} \left\{ \sum_{X \stackrel{L}{\longrightarrow} Y} \left[\beta_L \log \frac{1}{\mathbf{p}_L(y^{\mathbf{w}}|x^{\mathbf{w}})} + (\alpha_L \gamma - \beta_L) \log \frac{1}{\mu(y^{\mathbf{w}}|x^{\mathbf{w}})} \right] - \gamma \log \frac{1}{\mu(\mathbf{w})} \right\}.$$

$$|\mathbf{m}|_{\gamma}(\mu) = \mathbb{E}_{\mathbf{w} \sim \mu} \left\{ \sum_{X \stackrel{L}{\longrightarrow} Y} \left[\beta_L \log \frac{1}{\mathbf{p}_L(y^{\mathbf{w}}|x^{\mathbf{w}})} + (\alpha_L \gamma - \beta_L) \log \frac{1}{\mu(y^{\mathbf{w}}|x^{\mathbf{w}})} \right] - \gamma \log \frac{1}{\mu(\mathbf{w})} \right\}.$$

$$|\mathbf{m}|_{\gamma}(\mu) = \mathbb{E}_{\mathbf{w} \sim \mu} \left\{ \sum_{X \stackrel{L}{\longrightarrow} Y} \left[\beta_L \log \frac{1}{\mathbf{p}_L(y^{\mathbf{w}}|x^{\mathbf{w}})} + (\alpha_L \gamma - \beta_L) \log \frac{1}{\mu(y^{\mathbf{w}}|x^{\mathbf{w}})} \right] - \gamma \log \frac{1}{\mu(\mathbf{w})} \right\}.$$

Inference and Inconsistency: a Glimpse.

Conditioning as inconsistency resolution.

To condition on Y = y, in \mathcal{M} , simply add the edge $\mathcal{I} \xrightarrow{\sigma_y} Y$ to get $\mathcal{M}_{Y=y}$. Then $[\![\mathcal{M}_{Y=y}]\!]^* = [\![\mathcal{M}]\!]^* \mid (Y = y)$.

Querying $Pr(Y \mid X)$ in a PDG m.

- We can add $X \xrightarrow{p} Y$ to \mathcal{M} with a cpt p, to get \mathcal{M}^{+p} .
- The choice of cpd p that minimizes the inconsistency of \mathcal{M}^{+p} (which is strongly convex and smooth in p) is $[\![\mathcal{M}]\!]^*(Y|X)$,
- so oracle access to inconsistency yields fast inference by gradient descent.

