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| KEY IDEAS
A PDG Is a directed (hyper) graph, Q: How tO- calculate PT_(Y‘X)- Ina PDG? 1. Insight: can rewrite the PDG scoring function (when convex) as an exponential
with a conditional probabilities and or Its degree of Inconsistency? conic program: an optimization problem of the form P —
confidences attached to arcs. A- Often, can translate PDG scoring function to a small convex optimization minimize c'x subjectto Ax=b, xeK pgigéﬁﬁffﬁagigZwﬁzcﬂ?e
problem with “exponential cone” constraints, answering both questions. Such problems can be solved by in time O( poly(dim K) ). related to refative entropy.

PDGs can capture:
< inconsistent beliefs, and provide a way to INFERENCE LANDSCAPE

2. For (limitas y — 0), need to minimize Sinc among minimizers of
Olnc. This set of OlInc-minimizers Is characterized by shared marginals, so can use

=
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measure the degree of this inconsistency; | S = @ actor graphs linear constraints after finding one minimizer of Olnc. Then, Sinc becomes convex!
. Easily converted to a factor graph; 5 (N) S g 1 p
. : inference with belief propagation B @p.y=1) . e . .
*»» Bayesian networks (BNSs) l 2 3. Intractable to optimize [12].,(x) over joint distributions y, which grow exponentially
@ e Inference now possible with ( N4)J = Bayesian In # of vars. A clique tree Is a probability over every cluster of a tree decomposition
/ \@ A~ - > exponential conic programming S networks of M, and represents u satisfying an important independence property of PDGs:
e — -SH ﬁ (acyclic,a = 1)
@ but PDG dular “g ) Theorem (PDG Markov Property). In the combined model M
& factor graphs - but 5 alc MOotre moduldr, © K — — _ My + M, the variables of M; and M, are conditionally Q
confidence in structure )40 Independent given the ones they have in common. M L B \C
p q - - - o _ . . 1 . .
k@)f T = X — PDG Inference Is #P hard, as it subsumes BN inference. Thus, it suffices to optimize over clique trees, which grow linearly in # vars, given
...but inference in BNs is efficient for trees, our assumption of bounded treewidth. Formulating the optimization over clique trees
¢ variational autoencoders (VAES) "~ | and graphs G that are sufficiently “tree-like”. Involves some additional subtleties (because of Sinc)... see the paper for details!
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. — ; e ludine their standard — | Defn. Atree decomposition of G Is a tree whose nodes _ S
<< — 4 X >> l0ss funlétiong’ as inconsistency - | are subsets of vertices of G, called clusters, such that: treewidth =1 I MPLEMENTATION @@
~ 8 _ _ _ (a tree) connects PDG python library to commercial =~ 2§ '8 iigss
- — ELBOp,e,d(ﬂ?)- o) » each (hyper) edge of G Is contained In some cluster, solvers such as MOSEK and ECOS, Via cvxpy .
f) « the intersection of any two clusters is a subset of every (®) i
< other classical | ' tti d their | cluster on the unique path (since it's a tree) between them. EXPERIMENTS
»* Otner Classical 1earning setungs an elr 10SS T quep resource costs
functions, statistical divergences, regularizers, “ | The width of a tree decomposition is one less than the 10° Algoo.ri’:chm
GANS, learning algorithms, causal models, ... — | largest cluster; the treewidth of G is the smallest width | . . -
of any tree decomposition of G. treewidth = 3 . e torchadam
] o ] . o torchibfgs 2 »0
Is Inference efficient for tree-like PDGs? E 10 o 5> infer 3o
PDG FORMALISM & SEMANTICS 3 T B Iy -
7]] — variables X connected by arcs eA; THEOREM: POLYNOMIAL TIME PDG INFERENCE | | —
each (S % T)€ A is associated with: UNDER BOUNDED TREEWIDTH 1 R
a conditional probability B, (7°|.S), and ( - &] can do y-inference 07107 1070 10 0 10t 10 B =
two confidences: and a, . For 14 S { } U O' rCIllElc% ay ’ and Calculate y_thO”S'StenCy gap between objective and best known for this PDG (plus 1le-15)
| . r plot: running inference on random PDGs with ~1
SerED for a PDG thathas N total arcs + vars, treewidth T, Scatter plot: running inference on random PDGs with ~10
Ajoint probability z(X) can be incompatible with a PDG in two ways variables. The convex solver ( , Violet) I1s more accurate
JOINt probabliity piA ) can be ICoMpatible With @ FL 1h TWO Ways. (<) than black-box optimization baselines (greens), and
Observational Incompatibility with (P, B) Structural Incompatibility with (A, a) to precision €, In time often faster (1) for small PDGs. The area of each circle is
> &D(ﬂ(T, S) ) IP’G(T|S)M(S)) ( > ag HH(TIS)) — H(u) N 3 proportional to the size of the optimization problem. B
ST e e O (N4 (T +log — ) QT) C O(N?) - < exper -
(M. (1) = Olnem() +~ STnem(i) overall incompatibility, € (if T is bounded) A_‘Slm”_ar synthetic experlme_nt, this Results on a BN dataset. (But in this case, we
VAR mAK g_m AR placing weight y = 0 time with random k-trees, using Fhe can use belief propagation, which is strictly better).
“E, | 3 log p(T']S)7e 70 S H () on the structural compact cluster-tree representation
. ST en B.(T|S)5 Information. _ ] ) . ) o o : | o ’
o nTe THEOREM: calculating Inconsistency IS » 78 — ' R R b
: . . . . we 3 - . - I N A
B . . o closely related to inference & just as difficult. =, o oot * 9
* y-inconsistency (7)., : find the minimum value of this function. | | | | : ot - o
» y-inference: answer questions about all minimizing distribution(s). a) Calculating the degree of inconsistency Is #P-hard; 3 v ! ey Ll
the observational limit (behavior as y — 0): b) There’s a linear reduction from y-Inference to the v . P nfeence | s e

- - - e  (-inference e torch:joint.Ibfgs
problem of calculating y-inconsistency.

gap between objective and best known for this PDG (plus 1le-15) gap between objective and best known for this PDG (plus le-15)
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