THE LOCAL INCONSISTENCY RESOLUTION ALGORITHM

Oliver E Richardson

Key Representation: Probabilistic Dependency Graphs (PDGs) are directed (hyper) graphs with probabilities and confidences attached to edges.

PDGs can capture:

- inconsistent beliefs, providing a natural way to measure the degree of this inconsistency;
- * graphical models, such as Bayesian networks

- * learning settings and their loss functions, e.g.,
 - variational autoencoders (VAEs)

$$\left\langle \begin{array}{c} p \\ \xrightarrow{p} \\ \xrightarrow{\infty} \\ \xrightarrow{\infty} \\ \xrightarrow{\infty} \\ \xrightarrow{\infty} \\ \xrightarrow{\infty} \\ \xrightarrow{n} \\ \xrightarrow{$$

• statistical divergences

 $\begin{pmatrix} p \\ \hline (p) \end{pmatrix} X \leftarrow \begin{pmatrix} q \\ \hline (p) \end{pmatrix}$

 $= -\text{ELBO}_{p.e.d}(x)$ including their standard loss function, as inconsistency

Generates Rényi divergences, reverse KL. conditional divergences.

• regularizers as priors, accuracy, MSE,

FORMALISM: PARAMETERIZED PDGS

variables \mathcal{X} connected by arcs \mathcal{A} ; $\mathcal{M}(\Theta) =$ each $(S \xrightarrow{a} T) \in \mathcal{A}$ is associated with:

- a convex parameter space $\Theta_a \subseteq \mathbb{R}^n$
- a conditional probability $\mathbb{P}_a(T|S, \Theta_a)$,
- two confidences: β_a and α_a . (observational)

Fix a parameter setting $\theta \in \prod_{a \in \mathcal{A}} \Theta_a$, to get an (ordinary) PDG $\mathcal{M}(\theta)$.

The two variants are equivalent.

PDGs Add each Θ_a as a variable

Inconsistency semantics.

A joint probability $\mu(X)$ can be incompatible with a PDG in two ways:

Observational Incompatibility with (\mathbb{P} , β)	Structural Deficiency with $(\mathcal{A}, \boldsymbol{\alpha})$
$\sum_{S \xrightarrow{a} T \in \mathcal{A}} \beta_a D(\mu(T, S) \ \mathbb{P}_a(T S)\mu(S))$	$\mathbb{E}_{\mu} \left[\log \frac{\mu(\mathcal{X})}{\lambda(\mathcal{X})} \prod_{S \xrightarrow{\alpha} T} \left(\frac{\lambda(T S)}{\mu(T S)} \right)^{\alpha_{a}} \right]$
Degree of inconsistency $\langle\!\langle \boldsymbol{\mathcal{M}} \rangle\!\rangle_{\gamma} := \inf_{\mu} \left(OInc_{\boldsymbol{\mathcal{M}}}(\mu) - \mathcal{O}(\mu) \right)$	$+\gamma SDef_m(\mu)$ placing weight $\gamma \ge 0$ on the structural information

is the smallest possible incompatibility with any $\mu(\mathcal{X})$.

A generic algorithm for learning and (approximate) inference, with an intuitive epistemic interpretation. Unifies many important algorithms.

Algorithm: Local Inconsistency Resolution (LIR)

Input: context PDG *Ctx*, mutable memory $\mathcal{M}(\Theta)$. Initialze $\theta^{(0)}$; for $t = 0, 1, 2, \dots$ do

 $t \mapsto \exp_{\theta}(t\nabla_{\Theta}f(\Theta))$

Consider a discriminator $p_{\theta}(Y|X)$ and sample (x, y). Together, they have inconsistency

Can resolve by modifying:

- \bullet
- \bullet

SGD. Control over p_{θ} . Replace (x,y) with empirical distribution over a batch, and suppose REFRESH(Ctx) gets a new batch. This performs SGD with learning rate $\chi(p) \cdot \varphi(p)$.

Adversarial Training. Add discriminator params as a variable Θ_p with Gaussian prior.

What causes changes in beliefs? Some say it is internal conflict. But identifying inconsistencies is difficult. So in practice, we resolve them *locally*: looking only at a small part of the picture, and changing only another small part at a time.

FOCUS: ATTENTION AND CONTROL

LIR IN THE CLASSIFICATION SETTING

$$\xrightarrow{x} X \xrightarrow{p_{\theta}} Y \xleftarrow{y} = \log \frac{1}{p_{\theta}(y|x)}.$$

 θ , to train the discriminator

y, resulting in a forward pass

• *x*, to form an adversarial example

Construct attack $x' \approx x$ that p misclassifies as y'

Patch p to classify x' as y

Observe symmetry!

control only parameters of a subset of arcs $\mathcal{C} \subseteq \mathcal{A}$ (or ctrl mask χ)

Typical use case: select focus (φ, χ) from a fixed set of foci $\mathbf{F} = \{ \square, \square, \ldots \}.$

MORE EXAMPLES

 $p_{\text{data}}!$

Generator's focus inconsistency = JSD(G, p_{data}) or $+\mathcal{L}^{GAN}$ if disbelieves D

Observation: the message passing equations are sums of products of factors, i.e., do inference in *local* factor graphs.

✤ Variational Inference, EM algorithm, e.g., VAE training.

attend only to probabilities of a subset of arcs $A \subseteq \mathcal{A}$ (or attn mask φ)

Training Generative Adversarial Networks (GANs). Typically trained with minimax game: $\min_{G} \max_{D} \mathcal{L}^{GAN}$

> Discriminator's focus inconsistency = $KL(D, D^{opt})$ or - \mathcal{L}^{GAN} if disbelieves e

Message Passing: Sum-Product Belief Propagation

Here, $\mathcal{M}(\theta)$: collection of messages (BP data structure) *Ctx* : original factor graph, as a PDG