The Local Inconsistency Resolution Algorithm

Oliver E. Richardson

Key Representation: Probabilistic Dependency Graphs (PDGs) are directed (hyper) graphs with probabilities and confidences attached to edges.

PDGs can capture:
- inconsistent beliefs, providing a natural way to measure the degree of this inconsistency;
- **graphical models**, such as Bayesian networks and factor graphs;
- **learning settings** and their **loss functions**, e.g.,
 - variational autoencoders (VAEs);
 - statistical divergences \mathcal{X}, φ and γ;
- **regularizers** as priors, accuracy, MSE, ….

Inconsistency semantics.

- The two variants are equivalent.
-PDGs Add each θ_{α} as a variable
- Trivial parameterization: every $\theta_{\alpha} = \{0\}$

PDGs ≈ PPDGs

Structural Deficiency with (α, α)

$$E \left[\log \frac{p(x)}{\lambda(x)} \prod_{a \in A} \frac{\lambda(T_{a})}{\lambda(T_{a})} \right]$$

Degree of inconsistency $m_{\gamma} := \inf_{\mu} \left(\Omega_{\text{mc}}(\mu) + \gamma \text{Def}_{m}(\mu) \right)$

is the smallest possible incompatibility with any $\mu(x)$.

Algorithm: Local Inconsistency Resolution (LIR)

Input: context PDG \mathcal{G}_{x}, mutable memory $\mathcal{M}(\theta)$.

1. Initialize $\theta^{(0)}$; for $t = 0, 1, 2, \ldots$ do
 - $\mathcal{G}_{x} \leftarrow \text{REFRESH}(\mathcal{G}_{x})$;
 - $\varphi, \chi, \gamma \leftarrow \text{REFOCUSE}()$;
 - Write $\exp(t \cdot X)$ for the path following vector field X for time t, starting at 0.
 - Gradient Flow of $f: \Theta \rightarrow \mathbb{R}$, starting at θ:
 - $\theta(t+1) \leftarrow \exp(t \cdot \nabla_{\theta} f(\theta))$;
 - Calculate the inconsistency of the combined context and memory, weighted by attention.

2. $\theta^{(t+1)} \leftarrow \exp(t \cdot \nabla_{\theta} f(\theta))$

 Reduce this inconsistency by an approximation to gradient flow, starting at previous state $\theta^{(t)}$, changing each parameter in proportion to its control of it.

Focal Points:

Attention and Control

attend only to probabilities of a subset of arcs $A \subseteq \mathcal{A}$

control only parameters of a subset of arcs $C \subseteq \mathcal{A}$

Typical use case: select focus (φ, χ) from a fixed set of focal points $F = \{ \bullet, \square, \triangle, \ldots \}$.

More Examples

- Training Generative Adversarial Networks (GANs).
- Message Passing: Sum-Product Belief Propagation
- Variational Inference, EM algorithm, e.g., VAE training.

Why causes changes in beliefs? Some say it is internal conflict. But identifying inconsistencies is difficult. So in practice, we resolve them **locally**: looking only at a small part of the picture, and changing only another small part at a time.