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Key Representation: Probabilistic Dependency 

Graphs (PDGs) are directed (hyper) graphs with 

probabilities and confidences attached to edges.

A generic algorithm for learning and (approximate) inference, with an 

intuitive epistemic interpretation. Unifies many important algorithms. 

PDGs can capture:

❖ graphical models, such as Bayesian networks

and factor graphs

• variational autoencoders (VAEs)

…. including their standard 

loss function, as inconsistency

(but PDGs are

 more modular),

(but PDGs are better calibrated).

❖ inconsistent beliefs, providing a natural way to 

measure the degree of this inconsistency;

❖ learning settings and their loss functions, e.g.,

MORE EXAMPLES

FORMALISM: PARAMETERIZED PDGS

Structural Deficiency with (𝒜, 𝜶) 

A joint probability 𝜇 𝒳  can be incompatible with a PDG in two ways:

Observational Incompatibility with (ℙ, β)

placing weight 𝛾 ≥ 0 

on the structural

information

•  a convex parameter space Θ𝑎 ⊆  ℝ𝑛

•  a conditional probability                ,

•  two confidences:  𝛽𝑎   and  𝛼𝑎 .

variables 𝒳 connected by arcs 𝒜;
each             ∈ 𝒜  is associated with:

(observational) (structural)

FOCUS: ATTENTION AND CONTROL

attend only to probabilities of 

 a subset of arcs 𝐴 ⊆ 𝒜     

 (or attn mask      ) 

control only parameters of

 a subset of arcs 𝐶 ⊆ 𝒜 

 (or ctrl mask      )

Generator’s focus

Send 𝑎 → 𝑋 Send X → 𝑎

Adversarial Training. 

starting at previous state 𝜃 𝑡 ,

Gradient Flow of 𝑓: Θ → ℝ  starting at 𝜃:

Write  exp𝜃(𝑡 X)  for the path following 

 vector field X  for time t, starting at θ.  Calculate the inconsistency of the 

combined context and memory, 
weighted by attention.

changing each parameter in proportion to our control of it.

Reduce this inconsistency by (an approximation to) gradient flow,

1.
select attn and ctrl masks

2.

What causes changes in beliefs?  Some say it is internal 

conflict. But identifying inconsistencies is difficult.  So in 

practice, we resolve them locally: looking only at a small part 

of the picture, and changing only another small part at a time.

• regularizers as priors, accuracy, MSE, ….

• statistical divergences

Generates Rényi divergences, reverse 

KL, conditional divergences.

Fix a parameter setting 𝜃 ∈ ς𝑎∈𝒜 Θ𝑎,  to get an (ordinary) PDG   . 

≅

is the smallest possible incompatibility with any 𝜇 𝒳 .

LIR IN THE CLASSIFICATION SETTING

Consider a discriminator 𝑝𝜃 𝑌 𝑋  and sample (𝑥, 𝑦).

Together, they have inconsistency 

Can resolve by modifying: 
 

• 𝜃,  to train the discriminator

• y,  resulting in a forward pass

• x,  to form an adversarial example

.

Add discriminator params as a 

variable Θ𝑝 with Gaussian prior. 

F = {    ,    , …}.
Typical use case: select focus 𝜑, 𝜒  from a fixed set of

foci

❖ Training Generative Adversarial Networks (GANs).
Typically trained with minimax game:     min𝐺 maxD ℒ𝐺𝐴𝑁

Patch 𝑝 to classify 𝑥′ as 𝑦

Construct attack 𝑥′ ≈ 𝑥 

that 𝑝 misclassifies as 𝑦′Degree of inconsistency

❖ Message Passing: Sum-Product Belief Propagation 

Trivial parameterization:

every Θa = { 0 } 

Add each Θa 

as a variable PPDGs

PDGs

Inconsistency semantics. Observation: the message passing equations are sums of 

products of factors, i.e., do inference in local factor graphs. 

SGD. Control over p𝜃. Replace (x,y) with empirical distribution 

over a batch, and suppose      gets a new batch.  

This performs SGD with learning rate 𝜒(𝑝) ⋅ 𝜑(𝑝).

: collection of messages (BP data structure)

: original factor graph, as a PDG

inconsistency = JSD( 𝐺, 𝑝data)
or +ℒ𝐺𝐴𝑁 if disbelieves D

Discriminator’s focus
inconsistency = KL(𝐷, 𝐷opt)
or - ℒ𝐺𝐴𝑁  if disbelieves e

❖ Variational Inference, EM algorithm, e.g., VAE training.
Observe symmetry!

The two 

variants are 

equivalent.

Here, 


	Slide 1: The Local Inconsistency Resolution Algorithm

