
Mixture Languages

1 MOTIVATION
There is an important distinction between a process whose state
is continuous, and one that evolves continuously over time. There
are many general-purpose programming abstractions for model-
ing processes with continuous state (e.g., real-valued variables and
probabilistic programs), but programming languages for model-
ing of continuous time processes are quite domain-specific. This is
because the correctness of such computations is not considered a
matter of computer science—after all, the correctness of a physics
engine is a matter of physics, and the correctness of an animation
is a matter of taste. Yet continuous-time processes of every kind
compose in the same (surprisingly unfamiliar) way: they can be
“mixed”. This is different from the dominant model of concurrency,
in which parallel composition amounts to a non-deterministic in-
terleaving of atomic instructions and is notoriously unintuitive. But
for two continuous processes, concurrency has a single clear and
intuitive meaning: run them at the same time. Roughly speaking,
this corresponds to a uniform infinitesimal interleaving.

i2;i1

i1 ⊕i2

To illustrate, suppose we are writing code to control a
(simulated) robot, in which i1 represents five rotations
of the left wheels, and i2 represents five rotations of
the right ones. If we execute i1 and i2 concurrently,
one might reasonably expect the robot to go straight
forwards—but this is technically impossible according
to the conventional model of concurrent computation,
because no matter howwe interleavei1 andi2, only one
wheel moves at a time. More disturbingly, the dominant
model of concurrency regards close approximations to
forward motion, such as rapid alternation between right
and left, as no more appropriate than completing all five
rotations of the right wheels before moving on to the left
ones. This example illustrates an important point: mixing
the results of executing i1 and i2, can be quite different
from executing a mixture of i1 and i2 themselves.

Discrete computations, too, can be given continuous
semantics, and often to positive effect. When we embed a discrete-
state representation in a continuous one, we gain the ability to mix
program states (such as convex relaxations of integer programs,
and the embedding of deterministic components inside randomized
programs). Analogously, when we regard a discrete-time process as
a subset of a continuous one, we gain the ability to mix programs.
Doing so can lead to insights into, and natural generalizations of,
the original discrete-time processes, as show in Section 3 through
an example of probabilistic programs.

In the coming sections, we develop a programming language
with semantics that supports continuous partial execution. In brief,
a command can be executed to a degree B ∈ [0, 1] where B = 0
corresponds to a no-op, and B = 1 fully executes the command.
Working with continuous executions allows us to define a natural
and interesting notion of parallel composition. Furthermore, the
resulting programs are typically invertable and differentiable. Our
construction is parametric on a set Φ of primitive commands.

2 THE PROGRAMMING LANGUAGE
2.1 Syntax
Suppose we are given a set Φ of primitive commands. Our basic
language L(Φ) includes programs inductively constructed through
sequential composition (;), parallel composition (⊕), clipping, i.e.,
the partial execution of commands to a degree B ∈ [0, 1].

L(Φ) 3 i, i ′ ::= skip
�� q

�� i;i ′
�� i ⊕i ′

�� i (B) ,

for values B ∈ [0, 1], and q ∈ Φ.
Once we include boolean expressions 1, we can further extend

our language to include familiar control flow structures

Lcf (Φ) 3 k,k ′ ::= i
�� if 1 thenk elsek ′ �� while 1 :k,

where i ∈ L(Φ) as before.

2.2 Operational Semantics: Overview
We begin by describing four closely related formalisms for describ-
ing the operational behavior of a program i ∈ L(Φ). Let Θ denote
set of possible program states. Each variant of the semantics re-
quires more structure (topological, differentiable, metric) on Θ.

Endpoint Semantics. The traditional state-transformer style se-
mantics for a programi is a map JiK∗ : Θ → Θ such that executing
i starting in state \ ∈ Θ leads us to the final program state JiK∗ (\).
We call this the endpoint semantics of i . If JiK∗ = Ji ′K∗, then we
say that i and i ′ are endpoint-equivalent.

While the endpoint semantics fully describes what state a pro-
gram would return upon each input, it does not contain enough
information to inductively define the semantics of clipped pro-
grams: in order to determine the result of partially executing i , the
semantics must describe not only the final state after executing the
instruction, but also the path it took to get there.

Path Semantics. Now suppose that Θ is not merely a set, but a
also a topological space of program states. This would allow us to
is to interpret i ∈ L(Φ) as a path in spate space, i.e., a continuous
map ∫9JiK of type [0, 1] × Θ → Θ, whose first argument B ∈ [0, 1]
specifies a proportion of the way through program execution. In-
tuitively, it describes the evolution of the system. To think of it
as paramterized by time, it is more useful to make the change of
variables C = − log(1 − B) ∈ [0,∞]; we call this temporal version a
trajectory, rather than a path. This semantics has the property that
B = 0 (C = 0) leaves the state unchanged (∀\ ∈ Θ. ∫9JiK(0, \) = \),
and B = 1 (C =∞) corresponds to the endpoint semantics.

While the information in this semantics allows us to partially
execute (clip) programs, it is still unclear how to inductively define
the semantics of mixture commands based on it. Consider again
the robot: given only the path taken when either wheel moves by
itself, it is not obvious that we can construct the appropriate path
when they move together—and the problem becomes harder in the
presence of walls and obstacles. What should we do, for example,
if our mixture takes us to a point (B, \) that is not on any path? To

1

get around this, we will need a closely related but slightly stronger
semantics that contains this counter-factual information.

Vector Field Semantics. Now, suppose Θ is a manifold (with cor-
ners). A vector field over Θ, is a differentiable map - assigning to
each point \ ∈ Θ a tangent vector at \ . The set of vector fields over
Θ, denoted X(Θ), forms a vector space, and so we can add them
together; this will be the basis of our mixture operation. Concretely,
we interpret programs i ∈ L(Φ) as maps XJiK : [0, 1] → X(Θ),
where the first parameter indicates the proportion through pro-
gram execution, just as in the path semantics. We take this vector
field semantics to be fundemental, and derive the path and end-
point semantics from it. Given XJiK, the path semantics is given by
∫9JiK(B, \0) := o (B), where o (B) is the (unique) solution to the ODE

o (0) = \0;
d

dB
o (B) = XJiK(B) (o (B)) . (1)

To write the semantics in terms of C rater than B at the level of
vector fields, then not only must we substitute 1− 4−C for B , but we
must also apply the chain rule, multiplying by dC

dB = 1
1−B . We call i

autonomous if XJiK does not depend on C . This means XJiK(B, \) =
- (\)/(1 − B) for some vector field - .

Example 2.1. Suppose Θ = [0, 1], and i is the instruction that
moves linearly to state 0, i.e., ∫9JiK(B, \0) = \0 (1 − B) = \04

−C . The
constraint (1) states that, for all \0, we must have XJiK(B, \0 (1 −
B)) = − m

mB \0 (1 − B) = −\0. Thus, for \ ≤ 1 − B , we can choose
\0 = \

1−B to determine that XJiK(B, \) = −\/(1 − B). At the same
time, it is easy to see that the vector field corresponding to the ODE
do
dC = −o leads to the same path, but does not depend on C .

Loss Function Semantics. Finally, suppose that Θ is not only a
manifold, but also comes equipped with a Riemannian metric. This
is the minimal requirement needed to view the gradient of a scalar
function as a vector field. Thus, if we can interpret an instruction i

as a ℓJiK : Θ → R, then we can define the autonomous command
XJiK(B, \) := 1

1−B ∇ℓJiK(\) .

2.3 Operational Semantics: Construction
For primitive commands, sometimes it makes sense to supply a
vector field directly (e.g, if q represents “go left”), and other times
it makes more sense to specify a loss function, or a path semantics.
Some care is needed to make sure everything is well-defined. There
is much to be said on this topic, but we do not say it here.

Given a vector field semantics XJqK for primitive commands
q ∈ Φ, we now define the vector field semantics for L(Φ) induc-
tively. For parallel composition, we simply add the fields together.
Formally, define

XJskipK(B) := 0

XJi1 ⊕ i2K(B) := XJi1K(B) + XJi2K(B)

XJi (2)K(B) := XJiK(2B) .
What remains is sequential composition. The following is the

standard way of composing paths in the development of homotopy
[Hatcher 2002], translated to the vector field semantics.

XJi1;i2K(B) :=
{
2 · XJi1K(2B) B ≤ 1

2

2 · XJi2K(2B − 1) B > 1
2

Intuitively, we would like to first travel along i1’s path and then
i1’s. To do so, we give both half the interval, and move double the
speed. Unfortunately, this definition is not associative—although
the paths of i12;3 := (i1;i2);i3 and i1;23 := i1; (i2;i3) pass
through the same states, they are parameterized differently. This is
why topologists only consider path composition up to homotopy
equivalence. For us, one analogue is to consider only the endpoint
semantics of purely sequential programs. Sequential composition
is still associative in the endpoint semantics, so long as we do not
also make use of mixtures and clipping.

We defer the semantics of conditionals to Appendix B.

3 KEY APPLICATION: OBSERVE AND DRAW
Probabilistic programming literature divides between those work
with an imperative language extended with a sampling command
and those work with an additional observe command for condition-
ing on the distribution. We show a unexplored duality between the
sampling and the (generalized) observe command, in a continuous-
time semantics interpolating probabilistic programs.

Let X be a fixed set of variables. Define two sets Φobs and Φdraw
of primitive commands, consisting of all statement of the form
“observe ? (. |-)”, and “draw . ∼ ? |- ” respectively, where-,. ⊆
X and ? specifies a probability measure over . for each value of - .
Let Z denote the set of variables apart from - and . .

Take Θ to be the set of probability measures over joint settings
of X, whose metric structure is given by the Fisher information.1
The entropy of a measure a relative to `, defined as �� (` ‖ a) :=
E` [log `

a], is the excess cost of using codes optimized for a when
reality is distributed according to `. The roles of a and ` are not
symmetric. We give loss semantics to observe by having ? play
the role of belief, and to draw by having it play the role of reality.

ℓ

r
observe ? (. |-)

z
(`) := ��

(
` (-,.)

 ` (-) · ? (. |-)
)

ℓ

r
draw . ∼ ? |-

z
(`) := ��

(
` (-,Z) · ? (. |-)

 ` (-,.,Z))
From it, we derive the path semantics (see appendix C)∫
−
r
observe ? (. |-)

z
(B, `) ∝ ` ·

(
? (. |-)
` (. |-)

)B
, and (2)∫

−
r
draw . ∼ ? |-

z
(B, `) = ` (-,Z)

(
(1 − B)` (. |-,Z) + (B)? (. |-)

)
.

Intuitively, observe instructions interpolate multiplicatively, fil-
tering ` so that it has the desired conditional probabilities. draw
instructions, on the other hand, interpolate additively. For example,
XJdraw . ∼ ? ⊕ draw . ∼ @K = XJdraw . ∼ 1

2? + 1
2@K.

Proposition 3.1. Let Prob denote the fragment of probabilistic
programming language in [Kozen 1979; Staton 2020] consists of skip,
sampling (i.e., draw), observe and sequencing. The semantics of Prob
coincides with the endpoint semantics of those commands inL(Φdraw).
Formally, ∀i ∈ Prob, JiK = JiK∗ .

Proposition 3.2. The semantics of probabilistic graphical models
(including Bayesian Networks and Markov Random Fields), are the
endpoint semantics of the appropriate mixture of observe commands.

Examples in ML and game theory can be found in Appendix A.
1by Chentsov’s Theorem [Chentsov 1982], this is the unique metric on Θ that is
invariant under sufficient statistics, and and the gradient it induces is sometimes
known as the natural gradient, a cornerstone of information geometry [Nielsen 2020].

2

Mixture Languages

REFERENCES
Nikolai N Chentsov. 1982. Statistical Decision Rules and Optimal Inference. American

Mathematical Society, Providence, Rhode Island (1982).
Allen Hatcher. 2002. Algebraic Topology. Cambridge University Press.
Dexter Kozen. 1979. Semantics of probabilistic programs. In 20th Annual Symposium

on Foundations of Computer Science (sfcs 1979). IEEE, 101–114.
Frank Nielsen. 2020. An elementary introduction to information geometry. Entropy

22, 10 (2020), 1100.
Oliver E Richardson and Joseph Y Halpern. 2021. Probabilistic Dependency Graphs.

AAAI ’21 (2021). arXiv:2012.10800 [cs.AI]
Sam Staton. 2020. Probabilistic programs as measures. Foundations of Probabilistic

Programming (2020), 43.

A FURTHER APPLICATIONS AND EXAMPLES
Training a Network. Consider a binary classifier for examples

G ∈ - , parameterized by a neural network whose final layer is
a softmax. In this case, we have a function 5\ : - → [0, 1] for
each \ ∈ R= . Take Θ := R= to be possible parameter settings of
the network, and Φ := - × {0, 1} to be the set of possible labeled
examples. When C ≈ 0 is small, J(G,~) (C)K∗ computes a single
iteration of SGD with batch {(G,~)}, with learning rate C . Similarly,
J((G1, ~1) ⊕ · · ·⊕ (G<, ~<)) (C)K∗ computes a single iteration of SGD
with batch {(G8 , ~8)}<8=1, In this way, training with the full dataset
gradient is a mixture of training on all data D = {(G8 , ~8)}=8=1 at
once, simultaneously.

Furthermore,\∗ := J
⊕

DK∗ (\) is the limitingweights of the net-
work at convergence, when trained on dataset D, and ∫9J

⊕
DK(\)

is the idealized training curve given by gradient flow. In general, a
program i ∈ L(Φ) can represent training schedules, which can be
sequenced (;), superimposed (⊕), reweighted (by scaling), or used
only in certain contexts (if/then). If Θ carries parameters for mul-
tiple networks, we can describe for complex relationships between
the two, such as adversarial training.

Dynamics in Tabular Games. Suppose 8 = 1, . . . , = are players in
a game with payoffs* . Let �8 denote the set of possible actions of
each player 8 . To play a round of the game, each player 8 chooses a
(randomized) strategy ?8 ∈ Δ�8 . Each player’s payoff may be differ-
ent, and is a function* : (∏8 �8) → R= of the joint actions of all
players. If p = (?1, . . . , ?=) represents each player’s strategy, then
player 8 recieves payoff Ea∼p [*8 (a)] ∈ R in expectation. A primary
concern of game theory is modeling each player’s responses to
others. To model this in our framework, let Θ :=

∏
8 Δ�8 be the

set of joint strategies, and Φ := {br8 }=8=1 represent best response
actions for each player, which adjusts its own strategy to maximize
its expected utility in context:

XJbr8K(B) (p) = ∇?8 Ea∼p
[*8 (a)] .

A program i ∈ L(Φ) is then a schedule of who gets to best
respond, in what order, and how much they get to change their
parameters. As one might hope, Jbr8K∗ (p) is p, but with component
8 altered so as to be a best response to the others.

Proposition A.1. The mixed strategy p is a Nash equilibrium if
and only if XJiK(B, p) = 0 for p ∈ L(Φ).

Proof. If p is a Nash equilibrium, then in particular ?8 must
locally maximize Ea∼p [*8 (a)], for all 8 , so the vector field of every
primitive instruction must be zero.Thus, all mixtures and sequences
of them must also be zero.

Conversely, suppose XJiK = 0 for all programs i , and in partic-
ular for the primitive programs {br8 }=8=1. Then, since Ea∼p [*8 (a)]
is linear in ?8 , this means there is globally no better response. Since
no player can improve their utility by switching strategies, p is a
Nash equilibrium. �

B OMITTED PARTS OF THE LANGUAGE
When boolean expressions 1 can be given “hard” interpretations
J1K : Θ → {0, 1}, the semantics of if 1 then i works in the usual
way. At a state \ ∈ Θ where 1 is true, use the semantics of i , and
otherwise use the semantics of skip:

X

r
if 1 then i

z
(B) (\) := J1K(\) · XJiK(B) (\) .

However, this is not expressive enough to capture conditionals in
probabilistic programming languages. In that setting, a state \ ∈ Θ
is a joint probability distribution variables, according to which a
boolean expression typically has an intermediate probability of
being true. Using the expression above with the extended domain
J1K ∈ [0, 1] equal to the probability of interest, does not work
properly. This is because, intuitively, once we enter the body of the
if, the program state should be the distribution conditioned on the
event � where 1 is true. What we want is something like this:

Jif 1 then iK∗ (\) = \ (�) · JiK∗ (\ | �) + (1 − \ (�)) (\ | ¬�) .
… but what is the analogue of the conditional distribution \ | � in
this more general setting? It appears that the Riemannian metric
structure on Θ (that enables us to take gradients), also gives us a
second useful bit of structure that can generalize the semantics of
conditionals in probabilistic programming.

In more detail: the Riemannian metric uses a natural way of
transporting tangent vectors along smooth paths, called parallel
transport. This means that, given a tangent vector E ∈)\Θ, and a
smooth path W : [0, 1] → Θ with W (0) = \ and W (1) = \ ′, there is a
vectorF := W♯ (E) ∈)\ ′Θ that is the result of smoothly transporting
the direction E from \ to \ ′, along W . For notational convenience, let
W−♯ denote reverse transport along the path, so that W−♯ (F) = E .

To simplify the notion, let
∫
\
JiK := ∫9JiK(−, \) : [0, 1] → Θ be

the path semantics with fixed starting point \ . With this notation,
we can define the semantics of conditionals as:

X

r
if 1 then i

z
(B, \) := J1K(\) ·

(∫
\
[[1]]

)−♯ (
X[[i]] (B,

∫ 1

\
[[k]])

)
.

(3)

The second half of (3) is, in a sense, the analogue of conditioning
that we are after. It tells us that we should follow the vector field
for i — but evaluated not at where we are, but where we would be,
if we were to first assert 1. This means evaluating the vector field
at the point

∫ 1

\
[[1]] = [[1]]∗ (\), analogous to “\ conditioned on 1”,

and translating the vector backwards along the path
∫
\
[[k]] that we

used to get there. This works well in simple simple examples, and
we conjecture that it captures probabilistic conditional expressions
under a mild syntactic restriction.

Scaling. Also useful is the command (:)i , which scales the vec-
tor field of i by : , i.e., XJ(:)iK(B) := : · XJiK(B). Perhaps surpris-
ingly, this does not change the endpoint semantics unless used in
combination with clipping or mixture.

3

https://arxiv.org/abs/2012.10800

C SUPPORTING PROOFS
Proof of Eq 2. To take a gradient with respect to the Fisher geometry, one needs only to premultiply by I(\)−1, the inverse of the fisher

matrix at \ . In this case, because we are parametrizing by the simplex, the Fisher matrix is diagonal, and the (F,F)th entry is 1/` (F). After
introducing a Lagrange multiplier _ for the constraint that

∑
F ` (F) = 1, we calculate:

XJdraw . ∼ ? | - K

= I(`)−1
(
∇��

(
` (-,Z)? (. |-)

 ` (-,.,Z)) − _

)
= F ↦→ ` (F)

∑
G,~,z

(m

m` (F) [` (G, z)] log
? (~ |G)
` (~ |G, z) +

m

m` (F)

[
log

? (~ |G)
` (~ |G, z)

]
` (G, z)

)
? (~ |G) − _` (F)

= F ↦→ ` (F)
∑
G,~,z

(
X (G, z = GF , zF) log

? (~ |G)
` (~ |G, z) −

` (~ |G, z)? (~ |G)
? (~ |G)` (~ |G, z)2

m

m` (F) [` (~ |G, z)] ` (G, z)
)
? (~ |G) − _` (F)

= F ↦→ ` (F)
∑
~

? (~ |GF) log
? (~ |GF)

` (~ |GF , zF)
− ` (F)

∑
G,~,z

` (G, z)? (~ |G)
` (~ |G, z)

X (G, z = GFzF)
` (G, z) [X (~ = ~F) − ` (~ |G, z)] − _` (F)

= F ↦→ ` (F)�� (? (. |GF) ‖ ` (. |GF , zF)) − ` (F)
(
1 − _ + ? (~F |GF)` (GF , zF)

` (GF , ~F , zF)

)
= F ↦→ ` (F)_′ − ? (~F |GF)` (GF , zF)
= ` (-,.,Z)_′ − ? (. |-)` (-,Z) since the gradient must sum to zero, _′ = 1, yielding
= ` (-,Z) (` (. | -,Z) − ? (. |-)) .

One can easily see that this is the same vector field as
m

mB
` (-,Z)

(
(1 − B)` (. |-,Z) + (B)? (. |-)

)
.

Since the path starts at ` and its derivative is the vector field above, it must be the path semantics of draw . ∼ ? |- by the uniqueness of
ODE solutions. The remaining details for the other half of the equation are similar in nature, and are similarly dense; they will be typeset in
the full paper. �

Proof of Proposition 3.2. By Eq 2,

JskipK∗ (`) = ` = JskipK(`);

Jobserve X (. = ~)K∗ =
∫
−
r
observe X (. = ~)

z
(1, `)

∝ ` (.,Z) ·
(
X (. = ~)
` (.)

)
= ` (Z | .) · X (. = ~)
= ` (Z | . = ~)

Jdraw . ∼ ? |- K∗ =
∫
−
r
draw . ∼ ? | -

z
(1, `)

= ` (-,Z) · ? (. |-)
= bind(` (-,.,Z), . ↦→ ? (. |-))
= Jdraw . ∼ ? |- K;

Ji1;i2K∗ (`) = Ji2K∗ (Ji2K∗ (`))
= Ji2K(Ji2K(`))
= Ji1;i2K(`) . �

Proof of Proposition 3.3. Probabilistic Dependency Graphs (PDG) [Richardson and Halpern 2021] generalize Bayesian Networks and
Factor graphs. The distribution specified by a PDG is the one that minimizes a weighted sum of relative entropy commands, precisely of the
form of the observe command. Concretely, given a PDG M with arcs A = {(0 →)0}0∈A with corresponding conditional probabilities P0,
quantiative confidences {V0}0∈A , and qualitative confidences {U0}0∈A , and a trade-off factor W > 0, we can define the mixture program

i (M,W) := (W)observe Unif(X) ⊕
⊕
0∈A

(V0)observe P0()0 | (0) ⊕ (−U0W)observe Unif()0 | (0) .

It is straightforward to see that the loss function semantics of this combined instruction is precisely the scoring function semantics
[[M]]W : ΔVX → R, where ΔVX is the set of joint distributions over (the values of) X. To get the distribution semantics by which
PDGs capture other models, we need only to find the minima of that distribution, which is the endpoint semantics. In other words,
[[M]]∗W =

{
Ji (M,W)K∗ (`) : ` ∈ ΔVX

}
. In particular, in the typical casewhen the function is strictly convex, we have [[M]]∗W = {Ji (M,W)K∗ (`0)}

for every `0 ∈ ΔVX. Thus, PDGs, and the graphical models they generalize, can be viewed as the endpoint semantics of mixtures of observe
commands. �

4

	1 Motivation
	2 The Programming Language
	2.1 Syntax
	2.2 Operational Semantics: Overview
	2.3 Operational Semantics: Construction

	3 Key Application: Observe and Draw
	References
	A Further Applications and Examples
	B Omitted Parts of the Language
	C Supporting Proofs

